

REGULATOR/RELIEF VALVE INSPECTION CHECKLIST

For Gas Pipeline Facilities **SOUTH DAKOTA PUBLIC UTILITIES COMMISSION**

§192.147 Flanges and flange accessories.

- (a) Each flange or flange accessory (other than cast iron) must meet the minimum requirements of ASME/ANSI B 16.5 and MSS SP-44 (incorporated by reference, see §192.7), or the equivalent.
- (b) Each flange assembly must be able to withstand the maximum pressure at which the pipeline is to be operated and to maintain its physical and chemical properties at any temperature to which it is anticipated that it might be subjected in service.

§ 192.181 Distribution line valves.

(b) Each regulator station controlling the flow or pressure of gas in a distribution system must have a valve installed on the inlet piping at a distance from the regulator station sufficient to permit the operation of the valve during an emergency that might preclude access to the station.

§ 192.199 Requirements for design of pressure relief and limiting devices.

Except for rupture discs, each pressure relief or pressure limiting device must:

- (a) Be constructed of materials such that the operation of the device will not be impaired by corrosion;
- (b) Have valves and valve seats that are designed not to stick in a position that will make the device inoperative:
- (c) Be designed and installed so that it can be readily operated to determine if the valve is free, can be tested to determine the pressure at which it will operate, and can be tested for leakage when in the closed position;
- (d) Have support made of noncombustible material;
- (e) Have discharge stacks, vents, or outlet ports designed to prevent accumulation of water, ice, or snow, located where gas can be discharged into the atmosphere without undue hazard:
- (f) Be designed and installed so that the size of the openings, pipe, and fittings located between the system to be protected and the pressure relieving device, and the size of the vent line, are adequate to prevent hammering of the valve and to prevent impairment of relief capacity;

- (g) Where installed at a district regulator station to protect a pipeline system from over pressuring, be designed and installed to prevent any single incident such as an explosion in a vault or damage by a vehicle from affecting the operation of both the overpressure protective device and the district regulator; and
- (h) Except for a valve that will isolate the system under protection from its source of pressure, be designed to prevent unauthorized operation of any stop valve that will make the pressure relief valve or pressure limiting device inoperative.

§192.201 Required capacity of pressure relieving and limiting stations.

- (a) Each pressure relief station or pressure limiting station or group of those stations installed to protect a pipeline must have enough capacity, and must be set to operate, to insure the following:
 - (1) In a low pressure distribution system, the pressure may not cause the unsafe operation of any connected and properly adjusted gas utilization equipment.
 - (2) In pipelines other than a low pressure distribution system:
 - (i) If the maximum allowable operating pressure is 60 p.s.i. (414 kPa) gage or more, the pressure may not exceed the maximum allowable operating pressure plus 10 percent, or the pressure that produces a hoop stress of 75 percent of SMYS, whichever is lower;
 - (ii) If the maximum allowable operating pressure is 12 p.s.i. (83 kPa) gage or more, but less than 60 p.s.i. (414 kPa) gage, the pressure may not exceed the maximum allowable operating pressure plus 6 p.s.i. (41 kPa) gage; or
 - (iii) If the maximum allowable operating pressure is less than 12 p.s.i. (83 kPa) gage, the pressure may not exceed the maximum allowable operating pressure plus 50 percent.
- (b) When more than one pressure regulating or compressor station feeds into a pipeline, relief valves or other protective devices must be installed at each station to ensure that the complete failure of the largest capacity regulator or compressor, or any single run of lesser capacity regulators or compressors in that station, will not impose pressures on any part of the pipeline or distribution system in excess of those for which it was designed, or against which it was protected, whichever is lower.
- (c) Relief valves or other pressure limiting devices must be installed at or near each regulator station in a low-pressure distribution system, with a capacity to limit the maximum pressure in the main to a pressure that will not exceed the safe operating pressure for any connected and properly adjusted gas utilization equipment.

§192.203 Instrument, control, and sampling pipe and components

- (a) Applicability. This section applies to the design of instrument, control, and sampling pipe and components. It does not apply to permanently closed systems, such as fluid-filled temperature-responsive devices.
- (b) Materials and design. All materials employed for pipe and components must be designed to meet the particular conditions of service and the following:
 - (1) Each takeoff connection and attaching boss, fitting, or adapter must be made of suitable material, be able to withstand the maximum service pressure and temperature of the pipe or equipment to which it is attached, and be designed to satisfactorily withstand all stresses without failure by fatigue.
 - (2) Except for takeoff lines that can be isolated from sources of pressure by other valving, a shutoff valve must be installed in each takeoff line as near as practicable to the point of takeoff. Blowdown valves must be installed where necessary.
 - (3) Brass or copper material may not be used for metal temperatures greater than 400(F (204°C).
 - (4) Pipe or components that may contain liquids must be protected by heating or other means from damage due to freezing.
 - (5) Pipe or components in which liquids may accumulate must have drains or drips.
 - (6) Pipe or components subject to clogging from solids or deposits must have suitable connections for cleaning.
 - (7) The arrangement of pipe, components, and supports must provide safety under anticipated operating stresses.
 - (8) Each joint between sections of pipe, and between pipe and valves or fittings, must be made in a manner suitable for the anticipated pressure and temperature condition. Slip type expansion joints may not be used. Expansion must be allowed for by providing flexibility within the system itself.
 - (9) Each control line must be protected from anticipated causes of damage and must be designed and installed to prevent damage to any one control line from making both the regulator and the over-pressure protective device inoperative.

§ 192.479 Atmospheric corrosion control: General.

- (a) Each operator must clean and coat each pipeline or portion of pipeline that is exposed to the atmosphere, except pipelines under paragraph (c) of this section.
- (b) Coating material must be suitable for the prevention of atmospheric corrosion.

- (c) Except portions of pipelines in offshore splash zones or soil-to-air interfaces, the operator need not protect from atmospheric corrosion any pipeline for which the operator demonstrates by test, investigation, or experience appropriate to the environment of the pipeline that corrosion will -
 - (1) Only be a light surface oxide; or
 - (2) Not affect the safe operation of the pipeline before the next scheduled inspection.

§192.481 Atmospheric corrosion control: Monitoring.

- (a) Each operator must inspect and evaluate each pipeline or portion of the pipeline that is exposed to the atmosphere for evidence of atmospheric corrosion, as follows:
- Pipeline type: Then the frequency of inspection is:
 - (1) Onshore other than a Service Line
 - At least once every 3 calendar years, but with intervals not exceeding 39 months.
 - (2) Onshore Service Line
 - At least once every 5 calendar years, but with intervals not exceeding 63 months, except as provided in paragraph (d) of this section.
 - (3) Offshore
 - At least once each calendar year, but with intervals not exceeding 15 months.
- (b) During inspections the operator must give particular attention to pipe at soil-to-air interfaces, under thermal insulation, under disbonded coatings, at pipe supports, in splash zones, at deck penetrations, and in spans over water.
- (c) If atmospheric corrosion is found during an inspection, the operator must provide protection against the corrosion as required by Sec. 192.479.
- (d) If atmospheric corrosion is found on a service line during the most recent inspection, then the next inspection of that pipeline or portion of pipeline must be within 3 calendar years, but with intervals not exceeding 39 months.

§192.707 Line markers for mains and transmission lines.

- (a) Buried pipelines. Except as provided in paragraph (b) of this section, a line marker must be placed and maintained as close as practical over each buried main and transmission line:
 - (1) At each crossing of a public road and railroad; and
 - (2) Wherever necessary to identify the location of the transmission line or main to reduce the possibility of damage or interference.
- (b) Exceptions for buried pipelines. Line markers are not required for the following pipelines:
 - (1) Mains and transmission lines located offshore, or at crossings of or under waterways and other bodies of water.
 - (2) Mains in Class 3 or Class 4 locations where a damage prevention program is in effect under §192.614.
 - (3) Transmission lines in Class 3 or 4 locations until March 20, 1996.
 - (4) Transmission lines in Class 3 or 4 locations where placement of a line marker is impractical.
- (c) Pipelines above ground. Line markers must be placed and maintained along each section of a main and transmission line that is located above ground in an area accessible to the public.
- (d) Marker warning. The following must be written legibly on a background of sharply contrasting color on each line marker:
 - (1) The word "Warning," "Caution," or "Danger" followed by the words "Gas (or name of gas transported) Pipeline" all of which, except for markers in heavily developed urban areas, must be in letters at least 1 inch (25 millimeters) high with ½ inch (6.4 millimeters) stroke.
 - (2) The name of the operator and telephone number (including area code) where the operator can be reached at all times.

§ 192.739 Pressure limiting and regulating stations: Inspection and testing.

- (a) Each pressure limiting station, relief device (except rupture discs), and pressure regulating station and its equipment must be subjected at intervals not exceeding 15 months, but at least once each calendar year, to inspections and tests to determine that it is -
- (1) In good mechanical condition:
- (2) Adequate from the standpoint of capacity and reliability of operation for the service in which it is employed;
- (3) Except as provided in paragraph (b) of this section, set to control or relieve at the correct pressure consistent with the pressure limits of § 192.201(a); and
- (4) Properly installed and protected from dirt, liquids, or other conditions that might prevent proper operation.
- (b) For steel pipelines whose MAOP is determined under § 192.619(c), if the MAOP is 60 psi (414 kPa) gage or more, the control or relief pressure limit is as follows:

If the MAOP produces a hoop stress that is:	Then the pressure limit is:
Greater than 72 percent of SMYS	MAOP plus 4 percent.
Unknown as a percentage of SMYS	A pressure that will prevent unsafe operation of the pipeline considering its operating and maintenance history and MAOP.

§192.743 Pressure limiting and regulating stations: Capacity of relief devices

- (a) Pressure relief devices at pressure limiting stations and pressure regulating stations must have sufficient capacity to protect the facilities to which they are connected. Except as provided in §192.739(b), the capacity must be consistent with the pressure limits of §192.201(a). This capacity must be determined at intervals not exceeding 15 months, but at least once each calendar year, by testing the devices in place or by review and calculations
- (b) If review and calculations are used to determine if a device has sufficient capacity, the calculated capacity must be compared with the rated or experimentally determined relieving capacity of the device for the conditions under which it operates. After the initial calculations, subsequent calculations need not be made if the annual review documents that parameters have not changed to cause the rated or experimentally determined relieving capacity to be insufficient.
- (c) If a relief device is of insufficient capacity, a new or additional device must be installed to provide the capacity required by paragraph (a) of this section.

§192.747 Valve maintenance: Distribution systems.

- a) Each valve, the use of which may be necessary for the safe operation of a distribution system, must be checked and serviced at intervals not exceeding 15 months, but at least once each calendar year.
- (b) Each operator must take prompt remedial action to correct any valve found inoperable, unless the operator designates an alternative valve.

II. REGULATOR STATIONS

Station ID			
Location (city)			
Location (street)			
Station Type (SCSR, DCSR, MS, FT)			
Atmospheric Corrosion (pitting/surface rust) (§192.479)			
Protective coating condition at soil/air interface (§192.479 &192.481)			
Pipe is isolated from contact with building & ground (§192.481)			
Relief valve(s) and station valves locked open (§192.199(h))			
Relief Type (PV, DO, PO)			
Overpressure relief pipe directed to atmosphere (§192.199(e))			
Sufficient capacity with relief piping (§192.743)			
Vent pipe opening protected from bugs/weather (§192.739 & 192.199(e))			
Instrument and control piping materials & protected (§192.203)			
Pipeline markers/sign present with operational phone number (§192.707)			
Location of station (inside/outside)			
Barricades necessary and installed (§192.199(g))			
Are supports made of non-combustible material (§192.199(d))			
Flange bolts through nuts (§192.147)			
Leaks detected audibly or through smell			
Inlet pressure (psi)			
Outlet pressure (psi)			
Relief set point (<i>psi</i>) (§192.201)			
Inlet valve at safe distance (192.181(b))			
Emergency Valves operable (192.747)			
Comment			