Direct Testimony and Schedules Christopher J. Barthol

Before the South Dakota Public Utilities Commission State of South Dakota

In the Matter of the Application of Northern States Power Company for Authority to Increase Rates for Electric Service in South Dakota

> Docket No. EL25-____ Exhibit___(CJB-1)

Class Cost of Service Study

June 30, 2025

Table of Contents

I.	Introduction and Qualifications			
II.	II. Class Cost of Service Study		2	
	А.	Overview of Proposed Class Cost of Service Study	2	
	В.	CCOSS Results	4	
	C.	Production Plant Stratification	8	
	D.	Classification and Allocation of Distribution Plant Costs	10	
		1. Direct Assignment of Distribution Costs to the Street Lighting Class	10	
		 Adjustment for Percent of Customers Served by Multi- Phase versus Single-Phase Primary Distribution Lines 	12	
		3. Separation of Distribution Plant Costs into Capacity and Customer-Related Components	14	
		 Classification and Allocation of Other Production O&M Costs 	21	
III.	Tari	ff Changes: Section No. 6 General Rules and Regulations	23	
	А.	Excess Footage Charges—Section 6.5.1.A1	23	
	В.	Winter Construction Charges—Section 6.5.1.A2	24	
	C.	Dedicated Switching—Section 6.1.8	24	
	D.	Revenue Impact of the Proposed Excess Footage, Winter Construction, and Dedicated Switching Rate Increases	25	
IV.	Con	clusion	25	

Schedules

Statement of Qualifications and Experience	Schedule 1
Guide to Class Cost of Service	Schedule 2
Summary of 2024 Class Cost of Service Study	Schedule 3
2024 Class Cost of Service Study Detail	Schedule 4
Primary Distribution Line Allocators	Schedule 5
Minimum System/Zero Intercept Results	Schedule 6
Excess Footage, Winter Construction, and Dedicated Switching Charges	Schedule 7

1		I. INTRODUCTION AND QUALIFICATIONS
2		
3	Q.	PLEASE STATE YOUR NAME AND TITLE.
4	А.	My name is Christopher J. Barthol. I am a Rate Consultant.
5		
6	Q.	PLEASE DESCRIBE YOUR QUALIFICATIONS AND EXPERIENCE.
7	А.	My qualifications include 14 years of regulatory experience in the areas of rate
8		design and class cost of service. I have served as a witness before the South
9		Dakota Public Utilities Commission, the North Dakota Public Service
10		Commission, and the Minnesota Public Utilities Commission. I have a Bachelor
11		of Arts in Economics from Saint Cloud State University and a Master of Science
12		in Agricultural Economics from Purdue University. A detailed statement of my
13		qualifications and experience is provided in Exhibit(CJB-1), Schedule 1.
14		
15	Q.	For whom are you testifying?
16	А.	I am testifying on behalf of Northern States Power Company, a Minnesota
17		corporation (NSP, Xcel Energy, or the Company).
18		
19	Q.	WHAT IS THE PURPOSE OF YOUR TESTIMONY IN THIS PROCEEDING?
20	А.	The purpose of my testimony is to present the Company's proposed Class Cost
21		of Service Study (CCOSS) and sponsor Exhibit(NSP-1), Statement O,
22		located in Volume 1 of our Application.
23		
24	Q.	PLEASE SUMMARIZE THE COMPANY'S CCOSS PROPOSAL IN THIS CASE.
25	А.	The CCOSS is done on a historic 2024 calendar year embedded cost basis which
26		functionalizes, classifies, and allocates plant and expenses in the test year on
27		cost-causation principles. The Company is not proposing any significant

1		changes to the CCOSS methodology last approved by the South Dakota Public
2		Utilities Commission. I will describe the modifications to the class allocations
3		and the rationale for the adjustments, detail the class allocations indicated by
4		the CCOSS, and discuss the results of the CCOSS.
5		
6		II. CLASS COST OF SERVICE STUDY
7		
8		A. Overview of Proposed Class Cost of Service Study
9	Q.	HAS THE COMPANY MADE MATERIAL CHANGES TO ITS CCOSS WHEN
10		COMPARED TO THE ONE APPROVED IN THE COMPANY'S LAST GENERAL
11		ELECTRIC RATE CASE?
12	А.	Other than one refinement we are proposing to the Minimum System Study,
13		our CCOSS methodology is substantially the same as the one used by the
14		Company and underlying the settlement approved by the Commission in
15		Docket No. EL22-017. We updated the Company's proposed CCOSS to reflect
16		pro forma 2024 data. Specifically, all costs have been updated to reflect 2024
17		weather normalized costs. The hourly load data, energy use data, and customer-
18		related data have also been updated to reflect weather normalized sales data for
19		2024 and have been used to update class cost allocation factors.
20		
21	Q.	HAS THERE BEEN ANY CHANGE TO HOW CUSTOMER CLASSES ARE DEFINED
22		SINCE THE COMPANY'S LAST RATE CASE?
23	А.	No, the basic classes of service employed in the Company's CCOSS are the
24		same class definitions consistently used by the Company in past rate cases. The
25		basic rate classes in the class cost of service study are:
26		• Residential;
27		Commercial Non-Demand Billed;

1		• Commercial and Industrial (C&I) Demand Billed; and
2		• Street Lighting.
3		
4		In the CCOSS, the C&I Demand Billed class is further separated by voltage
5		level.
6		
7	Q.	HAS THE COMPANY PROVIDED ANY OTHER DOCUMENTS EXPLAINING HOW ITS
8		CCOSS IS DEVELOPED?
9	А.	Yes. The Company has provided a document titled "Guide to Class Cost of
10		Service Study," which is included with my testimony as Exhibit(CJB-1),
11		Schedule 2. It provides a primer on how the CCOSS was conducted, including
12		the processes of cost functionalization, classification, and allocation. These
13		basic processes are common to all embedded cost studies. This Guide also
14		describes how each of the cost allocation factors was developed and identifies
15		the cost items to which each allocator is applied.
16		
17	Q.	WHAT IS THE ROLE OF THE CCOSS IN THE RATEMAKING PROCESS?
18	А.	The CCOSS allocates jurisdictional costs (in this case, costs of the Company's
19		State of South Dakota electric jurisdiction) to customer classes using class cost
20		allocation factors. The CCOSS measures the contribution each class makes to
21		the Company's overall cost of service, including calculating inter-class and intra-
22		class cost responsibilities. One of the primary goals of the CCOSS is to develop
23		class cost allocation factors that accurately reflect cost causation. The CCOSS
24		therefore serves as a tool for evaluating and refining the Company's rate
25		structure, as discussed in more detail by Company witness Nicholas N. Paluck.
26		

1	Q.	Is the Company's CCOSS the appropriate tool for evaluating the				
2		RATE DESIGN IN THIS CASE?				
3	А.	Yes. As discussed by Company witness Paluck, a CCOSS is the appropriate				
4		starting point for evaluating a given rate design. The Company's proposed				
5		CCOSS is appropriate because it:				
6		• Properly recognizes that our investments in baseload generation				
7		facilities provide value to all customers, particularly our energy-intensive				
8		users;				
9		• Accurately reflects the value of our investments in peaking capacity,				
10		transmission and distribution facilities used to meet system peak				
11		requirements;				
12		• Recognizes the differing impacts that seasonal and time usage patterns				
13		can have on the cost of service; and				
14		• Recognizes that certain distribution costs are incurred simply to supply				
15		service to customers regardless of the kW load they demand.				
16						
17		B. CCOSS Results				
18	Q.	PLEASE SUMMARIZE THE RESULTS OF THE 2024 CCOSS.				
19	А.	Table 1 below provides a summary of the 2024 test year CCOSS (the 2024				
20		CCOSS) results at the class level, showing the resulting class cost responsibilities				
21		(as opposed to revenue responsibilities that are addressed by Company witness				
22		Paluck). A summary of the CCOSS results at the class level is also provided in				
23		Exhibit(CJB-1), Schedule 3. However, for comparison purposes, Schedule				
24		3 also provides the class revenue allocation proposed by Company witness				
25		Paluck. The detailed 2024 CCOSS output is shown in Exhibit(CJB-1),				
26		Schedule 4.				

27

1		These CCOSS results indicate the changes from present rates to the Company's								
2		revenue requirement that would be necessary to result in equal rates of return								
3		on investment for each class (i.e., the increase in rates necessary to produce								
4		equalized rates of return).								
5										
6		Table 1 Summary of 2024 Class Cost of Service Study								
7	NSPM-South Dakota Electric Jurisdiction (\$ Thousands)									
8			,							
9			Total	Residential	Non-Demand	Demand	Street Ltg			
10	[1]	Unadjusted Rate Revenue Reqt (CCOSS page 2, line 1)	333,121	152,105	13,991	164,411	2,614			
11	[2]	Incr Misc Chrgs & Late Pay (CCOSS page 7, line 21 to line 23)	<u>58</u>	<u>55</u>	<u>2</u>	<u>1</u>	<u>0</u>			
11	[3]	Unadjusted Operating Revenues (line 1 + line 2)	333,179	152,160	13,993	164,412	2,614			
12	[4]	Present Rates (CCOSS page 2, line 2)	<u>289,622</u>	<u>122,437</u>	<u>12,552</u>	<u>152,421</u>	<u>2,213</u>			
12	[5]	Unadjusted Deficiency (line 3 - line 4)	43,557	29,723	1,441	11,991	401			
15	[6]	Defic / Pres (line 5 / line 4)	15.0%	24.3%	11.5%	7.9%	18.1%			
14	[7]	Ratio: Class % / Total %	1.00	1.61	0.76	0.52	1.20			
10										
16		COST RESPONSIBILITIES FOR RATE DISCOUNTS	Total	Residential	Non-Demand	Demand	Street Ltg			
17			<u></u>	<u></u>	<u></u>	20114114	<u></u>			
18	[8]	Interruptible Rate Discounts (CCOSS page 2, line 5)	2,073	927	4	1,142	0			
19	[9]	Interruptible Rate Disc Cost Allocation (CCOSS page 2, line 7)	2,073	801	77	1,195	0			
20	[10]	Revenue Requirement Change (line 9 - line 8)	0	(127)	73	54	0			
21										
22			Total	<u>Residential</u>	Non-Demand	Demand	Street Ltg			
22	[11]	Adjusted Rate Revenue Reqt (line 1 + line 10)	333,121	151,978	14,064	164,465	2,614			
23	[12]	Incr Misc Chrgs & Late Pay (CCOSS page 7, line 21 to line 23)	<u>58</u>	<u>55</u>	<u>2</u>	<u>1</u>	<u>0</u>			
24	[13]	Adjusted Operating Revenues (line 11 + line 12)	333,179	152,033	14,066	164,466	2,614			
25	[14]	Present Rates (line 4)	<u>289,622</u>	<u>122,437</u>	<u>12,552</u>	<u>152,421</u>	<u>2,213</u>			
43	[15]	Adjusted Deficiency (line 13 - line 14)	43,557	29,597	1,514	12,045	401			
26	[16]	Defic / Pres Rates (line 15 / line 14)	15.0%	24.2%	12.1%	7.9%	18.1%			
27	[17]	Ratio: Class % / Total %	1.00	1.61	0.80	0.53	1.20			

1	Q.	IN TABLE 1, YOU SHOW "UNADJUSTED" AND "ADJUSTED" COST					
2		RESPONSIBILITIES. PLEASE SUMMARIZE THIS DISTINCTION.					
3	А.	The distinction between "unadjusted" and "adjusted" cost responsibilities					
4		relates to how the cost of interruptible rate discounts are reflected in the					
5		CCOSS. The method used to reflect the cost of the interruptible rate discounts					
6		is the same as that used in the Company's last rate case.					
7							
8	Q.	WHAT IS INTERRUPTIBLE SERVICE?					
9	А.	Interruptible service is offered to customers who agree to control demand to a					
10		predetermined level whenever required by the Company.					
11							
12	Q.	WHY DOES INTERRUPTIBLE SERVICE RECEIVE A DISCOUNT?					
13	А.	Customers who opt for interruptible service receive a discount because they are					
14		subject to curtailment under this service, which is priced to reflect the lower					
15		degree of service.					
16							
17	Q.	How does the Company treat interruptible service in the CCOSS?					
18	А.	The Company's CCOSS process treats interruptible discounts as a cost of					
19		peaking capacity and allocates that cost to classes based on firm or					
20		uninterrupted loads. As explained in previous cases, the Company views					
21		interruptible service as firm service with an attached, after-the-fact, purchased-					
22		power contract provision. Through this provision, the Company has the option					
23		to buy back all or part of a customer's regulatory entitlement to firm service.					
24		The resulting capacity purchase transactions occur when, and if, doing so is a					
25		cost-effective source of peaking capacity; this helps the Company obtain a					
26		reliable power supply portfolio at the lowest cost. This means interruptible rate					

1		discounts are really capacity-related power supply costs, and they need to be
2		recognized as such in the CCOSS.
3		
4	Q.	How are interruptible rate discounts reflected in the CCOSS?
5	А.	The Company has specific line items in the CCOSS model to address the
6		allocation of interruptible rate discounts:
7		1. Line 8 on Table 1 above and Schedule 3, labeled "Interruptible Rate
8		Discounts" shows the amount of the total interruptible rate discounts
9		originating from each class. The amounts shown for each class are lost
10		revenues from that class. These discounts reduce the revenue received
11		from the classes and thus have the effect of increasing the revenue
12		requirement for the classes that receive the discounts.
13		2. Line 9 on Table 1 above and Schedule 3, labeled "Interruptible Rate
14		Disc. Cost Allocation" shows how the cost of interruptible rate
15		discounts are allocated to the classes. Interruptible rate discounts are
16		allocated using the applicable generation capacity cost allocation factor.
17		3. Line 10 on Table 1 above and Schedule 3, labeled "Revenue
18		Requirement Change" shows the net change in the revenue
19		requirement for each customer class.
20		4. The resulting Line 11 on Table 1 above and Schedule 3, labeled
21		"Adjusted Rate Revenue Requirement" shows the appropriate cost of
22		service for determining class revenue responsibilities. Finally, the
23		adjusted revenue deficiency and percent deficiency are shown on lines
24		15 and 16, respectively.

1

C. Production Plant Stratification

2 Q. PLEASE DESCRIBE THE PROCESS THE COMPANY USES FOR ALLOCATING FIXED
3 PRODUCTION PLANT COSTS.

4 The Company classifies fixed production plant into capacity versus energy-А. related sub-functions using a process called "Plant Stratification." Though 5 6 refined over the years, this is the same process the Company has used with 7 Commission approval since the late 1970s. This process has also been referred 8 to in the National Association of Regulatory Utility Commissioners (NARUC) 9 Electric Utility Cost Allocation Manual (NARUC Manual) as the Equivalent 10 Peaker method. This allocation method is also supported by the Commissions 11 in Minnesota and North Dakota.

12

13 Q. WHAT IS THE MAIN ADVANTAGE OF THE STRATIFICATION METHODOLOGY?

A. This method appropriately recognizes that a significant portion of the fixed
capital costs of baseload and intermediate plants are incurred to obtain fuel
savings that more than offset the higher fixed costs, thereby minimizing total
costs. Therefore, this methodology appropriately allocates the cost of the
different types of generation in our fleet to the customers who benefit from that
resource diversity.

20

Q. How does the Company classify fixed production plant intocapacity-related and energy-related portions?

A. The capacity-related portion of the fixed costs of owned-generation is the
amount less than or equivalent to the cost of a comparable combustion turbine
(CT) peaking plant (the generation source with the lowest capital cost and the
highest operating cost). Since CTs are only used at peak times, they are classified
as 100 percent capacity-related. The fixed generation costs that exceed the cost

of a comparable CT peaking plant are sub-functionalized as energy-related.
Since these costs are in excess of the CT costs, they were not theoretically
incurred to obtain capacity, but rather to obtain the lower-cost energy that such
plants can produce. The capacity- and energy-related portions are expressed as
percentages of total fixed production plant costs.

6

Q. HAS THE COMPANY UPDATED ITS PLANT STRATIFICATION ANALYSIS FOR THECURRENT CASE?

9 A. Yes. The Company updated the Plant Stratification analysis to reflect the
10 current-dollar replacement costs of each plant type toward developing
11 stratification percentages. The Company's updated plant replacement costs and
12 the resulting capacity-energy splits are shown in Table 2 below.

- 13
- 14

Table 2Stratification Allocation by Plant Type

	Stratification Miocation by Franci Type						
Plant Type	Capital Replacement Value \$/kW	Capacity Ratio	Capacity Percentage	Energy Percentage			
Peaking	\$1,552	\$1,552 / \$1,552	100.0%	0.0%			
Nuclear	\$7,312	\$1,552 / \$7,312	21.2%	78.8%			
Fossil	\$4,230	\$1,552 / \$4,230	36.7%	63.3%			
Combined Cycle	\$2,336	\$1,552 / \$2,336	66.4%	33.6%			
Hydro	\$8,090	\$1,552 / \$8,090	19.2%	83.8%			
Wind	\$12,593	\$1,552 / \$12,593	12.3%	87.7%			
Solar	\$3,048	\$1,552 / \$3,048	50.9%	49.1%			
	•	•					

23

I note that Table 2 should not be interpreted to identify which resources provide more or less overall value to our customers. This table simply isolates the capacity-related cost of each resource to perform the stratification calculation. Q. ARE THE STRATIFICATION PERCENTAGES APPLIED TO EACH COMPONENT OF
 THE REVENUE REQUIREMENT?

A. Yes. The process of "stratifying" the revenue requirements of fixed production
plant is accomplished by applying these stratification percentages to each rate
base component (*e.g.*, book investment, accumulated depreciation, accumulated
deferred income taxes, construction work in progress) for each generation plant
type.

- 8
- 9

10

D. Classification and Allocation of Distribution Plant Costs

- 1. Direct Assignment of Distribution Costs to the Street Lighting Class
- 11 Q. WHAT DISTRIBUTION COSTS DID THE COMPANY DIRECT ASSIGN TO THE STREET
 12 LIGHTING CLASS?
- A. Consistent with past South Dakota rate cases, the Company has directly
 assigned all of the costs in FERC Account 373. FERC Account 373 includes all
 street lighting costs except for the cost of wood poles used solely by lighting in
 overhead distribution areas. The specific cost items included in FERC Account
 373 are:
- Overhead and underground distribution lines that only serve street
 lighting;
- Metal and fiberglass street lighting poles in underground areas;
- Lamps and fixtures; and
 - Automatic control equipment.
- 23

22

As shown on page 4, line 47 of Schedule 4, we directly assigned \$5.2 million of FERC Account 373 costs to the Street Lighting class in the 2024 CCOSS. This direct assignment is appropriate because the costs included in FERC Account 373 are directly attributable to Street Lighting.

- Q. WHAT OTHER DISTRIBUTION COSTS ARE ATTRIBUTABLE TO THE STREET
 LIGHTING CLASS?
- A. As we did in the last rate case, the Company has conducted an analysis to
 determine if there are costs in FERC Account 364 that should be assigned to
 the Street Lighting class.
- 6

7 Q. WHAT COSTS ARE INCLUDED IN FERC ACCOUNT 364?

A. FERC Account 364 includes the cost of installed poles, towers, and appurtenant
fixtures used for supporting overhead distribution conductors and service wires.
Many of these poles have street lights attached and the cost of poles that only
have street lights attached is not included in FERC Account 373.

12

13 Q. Does Account 364 include more than just Street Lighting costs?

14 А. Yes. FERC Account 364 includes the cost of 43,624 wooden poles. Company-15 owned street lights are attached to 3,715 of these poles, meaning 8.52 percent of the FERC Account 364 costs are at least partially attributable to street 16 17 lighting. Through consultation with our Street Lighting staff, we determined 18 that 60 percent of the lighting poles serve only Street Lighting customers (*i.e.*, 19 they do not have facilities attached that serve other customer classes). Since 20 these poles are only used for street lighting, it's appropriate to assign the cost 21 of these poles to the Street Lighting class. Line 9 of Table 3 below estimates 22 lighting pole costs that should be direct assigned to the Street Lighting class as 23 a result of this analysis. This direct assignment is also shown in Exhibit (CJB) 24 Schedule 4 on page 4, line 27.

1			Table 3				
2		Calculation of FERC Account 364 Direct Assignment					
3		NSPM-South Dakota Electric Jurisdiction (\$ Thousands)					
4							
5		Line	Original Direction Constant				
6		NO.	Original Plant in Service				
7		1	FERC 364	\$83,105			
8		2	Wood pole cost as a percent of FERC 364	<u>73.84%</u>			
9		3	Total FERC Codes 364 and 365 (Line 1 x Line 2)	\$61,362			
10		4	SD Company-Owned Street Lights on Wooden Poles	3,715			
11		5	Total SD Wooden Poles	43,624			
12		6	Lighting Poles as % of Total Poles (Line 4 / Line 5)	8.52%			
13		-		65.000			
14		'	Lighting % X Wood pole portion of FERC 364 (Line 6 " Line 3)	\$5,226			
15		8	Percent of Lighting Poles that Only Serve Lighting	60%			
16		9	FERC Acct Direct Assignment to Lighting (Line 7 * Line 8)	\$3,135			
17							
18							
19 20			2. Adjustment for Percent of Customers Served by M. Phase Primary Distribution Lines	ulti-Phase versus Single-			
21	Q.	PLEASE DESCRIBE THE DIFFERENCE BETWEEN SINGLE-PHASE AND MULTI-					
22		PHAS	PHASE PRIMARY DISTRIBUTION CONFIGURATIONS.				
23	А.	Feed	Feeders originate at distribution substations in a three-phase configuration and				
24		then	then often split into three, single-phase lines that serve lower usage customers				
25		(in les	ss common instances the system may split into a two	-phase configuration).			
26							

Q. WAS THE COMPANY ABLE TO QUANTIFY THE PERCENTAGE OF CUSTOMERS IN
 EACH CUSTOMER CLASS THAT RECEIVE SERVICE OFF THE SINGLE-PHASE
 PRIMARY DISTRIBUTION SYSTEM AS OPPOSED TO THE MULTI-PHASE PRIMARY
 DISTRIBUTION SYSTEM?

A. Yes. Based on data in the Company's Geographic Information System (GIS),
the Company's Distribution staff determined that 75.6 percent of South Dakota
residential customers receive service off the single-phase primary distribution
system. Table 4 also shows that significantly fewer C&I customers receive
service from the single-phase primary distribution system.

10

11

12

Table 4Percent of Customers Served by Single-Phase and Multi-PhasePrimary Distribution Lines

13	Primary Distribution	Customer Class					
14 15	Line Serving the Customer Premise	Residential Customers	C&I Non- Demand	C&I Demand	Lighting Customers		
16	Single-Phase	75.6%	42.1%	14.8%	51.7%		
17	Multi-Phase	24.4%	57.9%	85.2%	48.3%		
18	Total	100.0%	100.0%	100.0%	100.0%		

19

Q. HAS THE COMPANY BASED ITS CLASS ALLOCATION OF PRIMARY DISTRIBUTION
LINE COSTS ON THE ABOVE UPDATED ANALYSIS?

A. Yes. Consistent with prior South Dakota rate cases, we continue to separate
distribution lines into capacity and customer components using a Minimum
System Study, as described in the Guide to Class Cost of Service Study, Schedule
2. As we did in the last rate case, we classified costs for primary distribution
lines into single-phase and multi-phase components. We based the split on miles
of single-phase and multi-phase distribution plant and their associated
replacement cost (in dollars per mile). The resulting separation of costs is shown

1	on page four of Sc	chedule 4, lines 19-22 (c	overhead primary	v distribution line	es)	
2	and lines 29-32 (underground primary distribution lines). We also created					
3	distribution line cost allocators to account for the differing usage of the single-					
4	phase portions of the system by different customer classes. Exhibit(CJB-1),					
5	Schedule 5 shows how these allocators were developed.					
6						
7 8	3. Separa Compo	ution of Distribution Plant C onents	Costs into Capacity	and Customer-Relat	ted	
9	Q. IN THE COMPANY'S	S CCOSS, HOW HAVE TH	HE COSTS FOR DI	STRIBUTION PLAN	νT	
10	BEEN CLASSIFIED?					
11	A. Table 5 below sho	ows how the Company	has classified co	osts for the variou	us	
12	distribution proper	ty units in the CCOSS.	This classification	n is consistent wi	th	
13	east South Dekote rate gases					
1.5	Dast South Darota	rate cases.				
13	past South Dakota	rate cases.				
13 14 15	past South Dakota	Table 5				
13 14 15	Classifi	Table 5 ication of Distribution	Plant Investme	ent		
13 14 15 16	Classifi Distribution Plant Property Unit	Table 5 ication of Distribution TY 2024 SD Plant Investment (\$000)	Plant Investme Demand	ent Customer		
14 15 16 17	Classifi Distribution Plant Property Unit Distribution	Table 5 ication of Distribution TY 2024 SD Plant Investment (\$000)	Plant Investme Demand Component	ent Customer Component		
14 15 16 17 18	Classifi Distribution Plant Property Unit Distribution Substations	Table 5 ication of Distribution TY 2024 SD Plant Investment (\$000) \$88,889	Plant Investme Demand Component X	ent Customer Component		
14 15 16 17 18 19	Classifi Distribution Plant Property Unit Distribution Substations Primary Voltage Transformers	Table 5 ication of Distribution TY 2024 SD Plant Investment (\$000) \$88,889 \$8,769	Plant Investme Demand Component X X	ent Customer Component		
14 15 16 17 18 19 20	Classifi Distribution Plant Property Unit Distribution Substations Primary Voltage Transformers Primary Voltage Distribution Lines	Table 5 ication of Distribution TY 2024 SD Plant Investment (\$000) \$88,889 \$88,769 \$284,166	Plant Investme Demand Component X X X X	ent Customer Component X		
14 15 16 17 18 19 20 21	ClassifiClassifiDistribution PlantProperty UnitDistributionSubstationsPrimary VoltageTransformersPrimary VoltageDistribution LinesSecondary VoltageDistribution LinesDistribution Lines	Table 5 ication of Distribution TY 2024 SD Plant Investment (\$000) \$88,889 \$88,769 \$284,166 \$90,684	Plant Investme Demand Component X X X X X X	ent Customer Component X X		
14 14 15 16 17 18 19 20 21 22	ClassifiClassifiDistribution PlantProperty UnitDistributionSubstationsPrimary VoltageTransformersPrimary VoltageDistribution LinesSecondary VoltageDistribution LinesSecondary VoltageTransformersPrimary VoltageDistribution LinesSecondary VoltageTransformers	Table 5 Table 5 Table 5 Ty 2024 SD Plant Investment (\$000) \$88,889 \$88,889 \$88,889 \$88,769 \$284,166 \$90,684 \$40,626 \$40,626	Plant Investme Demand Component X X X X X X X X X	ent Customer Component X X X X		
13 14 15 16 17 18 19 20 21 22 23 24	ClassifiClassifiDistribution PlantProperty UnitDistributionSubstationsPrimary VoltageTransformersPrimary VoltageDistribution LinesSecondary VoltageDistribution LinesSecondary VoltageTransformersSecondary VoltageTransformersSecondary VoltageTransformersServices	Table 5 Table 5 TY 2024 SD Plant Investment (\$000) \$88,889 \$88,889 \$88,769 \$284,166 \$90,684 \$40,626 \$43,493	Plant Investme Demand Component X X X X X X X X X X X	ent Customer Component X X X X X X		

Q. WHAT ANALYSIS DID THE COMPANY PERFORM TO DO THIS SEPARATION OF COSTS?

A. In this case, the Company relied on two analyses, a Minimum System Study and
a Zero Intercept Study. We updated the Minimum System Study and included
three new updates. First, we performed an extensive review of what equipment
would be considered "minimum." Second, we performed an extensive review
of the installed cost of distribution equipment. Third, we also performed a Zero
Intercept Study. A Zero Intercept Study is the primary alternative method to
classify the customer component of distribution costs.

10

11 Q. What steps are taken to complete a Minimum System Study?

A. The following steps are taken to complete a Minimum System Study (these stepsare also described on pages 90-92 of the NARUC Manual):

Step 1: Determine the minimum sized conductor, transformer, and serviceinstalled on the distribution system.

16

Step 2: Determine the installed cost per unit for the minimum sized plant. Installed costs include material costs, labor costs, and equipment costs.

- 1920 Step 3: Multiply the cost per unit of the minimum sized plant by the total
- 21 inventory of each plant type.
- 22

23 Step 4: The total cost of the minimum sized plant is divided by the total cost 24 of the actual sized distribution plant in the field. This ratio is deemed to be 25 the customer-related portion of distribution plant investment, with the 26 remaining balance being the demand-related portion.

1	Q.	WHAT STEPS ARE TAKEN TO COMPLETE A ZERO INTERCEPT STUDY?
2	А.	The steps for completing a Zero or Minimum Intercept are described on pages
3		92-94 of the NARUC Manual. A Zero Intercept Study requires considerably
4		more data and analysis than a Minimum System Study. A Zero Intercept Study
5		requires the following data:
6		• A listing of all the configurations of equipment installed for the
7		following distribution property units:
8		 Overhead Primary Conductor
9		 Overhead Secondary Conductor
10		o Overhead Transformers
11		 Underground Primary Conductor
12		 Underground Secondary Conductor
13		o Underground Transformers
14		 Primary Voltage Stepdown Transformers
15		• For each of the above property units, the equipment inventory is
16		obtained for each property unit configuration.
17		• The maximum capacity rating for each property unit configuration.
18		• Ampacity for conductors
19		o kVa for Transformers
20		• The installed cost per unit for the most common property unit
21		configurations.
22		
23	Q.	AFTER THE DATA IS ACQUIRED FOR THE ZERO INTERCEPT STUDY, WHAT IS THE
24		NEXT STEP IN THE ANALYSIS?
25	А.	After the data is acquired, the following steps are taken to complete a Zero
26		Intercept Study:

1		Step 1: The statistical analysis technique called linear regression is applied
2		to the data acquired for each property unit. Specifically, the variable "cost
3		per unit" as the dependent variable (Y axis) is regressed on the variable
4		"maximum capacity" as the independent variable (X axis). The point where
5		the regression line crosses the Y intercept is the theoretical "zero load" cost
6		per unit.
7		
8		Step 2: The zero load cost per unit is multiplied by the total inventory of
9		the distribution property unit.
10		
11		Step 3: The installed cost per unit for the most common property
12		configurations is multiplied by the inventory of each configuration. The
13		resulting product is then summed for each property unit.
14		
15		Step 4: The result from step 2 is divided by the result from step 3. This ratio
16		is classified as the customer component for each property unit.
17		
18	Q.	How did the Company acquire the information necessary to perform
19		THE MINIMUM SYSTEM AND ZERO INTERCEPT STUDIES?
20	А.	In short, data on the types, configurations, sizes, and quantities of distribution
21		equipment were obtained by querying the Company's GIS data. Data on the
22		installed unit costs for each equipment configuration were obtained by
23		analyzing the costs of distribution work orders that were completed over a 14-
24		year period. The goal in this data-gathering step was to obtain installed costs for
25		equipment configurations that comprise 90 percent of the population for a
26		given property unit (i.e., underground primary conductor). More detail on the
27		specific data sources is provided in Schedule 6.

Q. How was the above-mentioned data utilized to conduct Minimum
 System and Zero Intercept Studies?

A. The methods, data, and results of the Minimum System and Zero Intercept
Studies are shown in Schedule 6 of my testimony. Attachments A through G of
Schedule 6 show the inventory of the different equipment configurations for
each property unit. Attachments H through M of Schedule 6 show the graphical
results of the Zero Intercept linear regression analysis for each property unit.
Attachment N of Schedule 6 shows the detailed Minimum System and Zero
Intercept calculations.

- 10
- 11 Q. ARE YOU PROPOSING ANY CHANGES TO THE MINIMUM SYSTEM AND/OR ZERO
 12 INTERCEPT STUDIES?
- 13 A. Yes. I am proposing to remove the demand adjustment from the Zero Intercept14 Study.
- 15
- 16 Q. Please explain the demand adjustment.
- A. In past rate cases, the Company assumed a 1.5 kW per customer demand
 adjustment for the load carrying capacity of a minimum system and applied this
 1.5 kW per customer to the distribution capacity cost allocation factors.
- 20
- Q. WHY ARE YOU PROPOSING TO REMOVE THE 1.5 KW PER CUSTOMER DEMAND
 ADJUSTMENT FROM THE ZERO INTERCEPT STUDY?
- A. In the Company's 2022-2024 Minnesota Electric Rate Case (Minnesota Public
 Utilities Commission Docket No. E002/GR-21-630), an intervenor proposed
 that the Company remove the demand adjustment from the Zero Intercept
 Study, because this study estimates the cost of a minimum system that has no
 load or capacity, which means the load carrying capacity of this minimum

1		syste	m would be zero. The Con	npany agreed with	this proposal and is theref	ore	
2		proposing to remove the demand adjustment from the Zero Intercept Study.					
3							
4	Q.	How do the results of the Zero Intercept and Minimum System					
5		APPROACHES COMPARE?					
6	А.	For e	each property unit, the tabl	e below shows th	e percent of costs that we	uld	
7		be cl	assified as customer-related	l using the Zero I	ntercept Method compared	1 to	
8		the N	Minimum System Method.	As shown in Tab	le 6 below, for five of the	six	
9		prop	erty units the Zero Int	ercept Method	provides a lower custor	ner	
10		com	ponent, while one of the si	x have a lower cu	istomer component using	the	
11		Mini	mum System Method.				
12							
13		Pe	rcent of Distribution Inv	I able 6 estment Classifi	ed as Customer-Related		
14			Zero Intercept Meth	od vs. Minimun	n System Method		
15			Property Unit	% of Costs Cla	ssified as Customer- Related		
16				Zero Intercept Method	Minimum System Method		
1/			Overhead Primary	24.01%	63.15%		
18			Overhead Secondary	79.89%	95.97%		
19				69.09%	77.97%		
20			Overhead Transformers	07.0770			
-			Underground Primary	34.68%	63.81%		
21			Underground Primary Underground Secondary	34.68% 58.55%	63.81% 100%		
21 22			Underground Primary Underground Secondary Underground Transformers	34.68% 58.55% 70.18%	63.81% 100% 66.72%		
21 22 23			Underground Primary Underground Secondary Underground Transformers	34.68% 58.55% 70.18%	63.81% 100% 66.72%		
21 22 23 24	Q.	WHI	Overhead Transformers Underground Primary Underground Secondary Underground Transformers	34.68% 58.55% 70.18%	63.81% 100% 66.72% PROPOSED CCOSS?		
21 22 23 24 25	Q. A.	WHIG For a	Underground Primary Underground Secondary Underground Transformers CH RESULTS WERE USED IN a given property unit a "hy	34.68% 58.55% 70.18% THE COMPANY'S P brid" of the two p	63.81% 100% 66.72% PROPOSED CCOSS? methods was used, in that	the	
 21 22 23 24 25 26 	Q. A.	WHI For a Com	Underground Primary Underground Secondary Underground Transformers CH RESULTS WERE USED IN a given property unit a "hy pany used the method tha	34.68% 58.55% 70.18% THE COMPANY'S I brid" of the two r .t provided the lo	63.81% 100% 66.72% PROPOSED CCOSS? methods was used, in that wer customer component	the , as	

1 Q. WHY IS IT REASONABLE TO CLASSIFY THE CUSTOMER/CAPACITY COMPONENT 2 OF DISTRIBUTION COSTS BASED ON A HYBRID OF APPROACHES?

3 The purpose of the study is to establish the cost of a minimally-sized А. 4 distribution property unit, and then classify that minimum cost as customer 5 related. Evaluating the two separate studies, and selecting the result which 6 provided the lowest minimum cost, provides a conservative estimate of 7 customer-related costs to ensure we are not overstating the customer 8 classification.

- 9
- 10
- 11

Т	Т	

l able 7
Customer versus Capacity Classification Applied to Distribution Plant
Investment

12	Property Unit	% Classified as Customer-Related	% Classified as Capacity- Related
13	Overhead Primary (used Zero Intercept result)	24.01%	75.99%
14	Overhead Secondary (used Zero Intercept result)	79.89%	20.11%
15	Underground Primary (used Zero Intercept result)	34.68%	65.32%
16	Underground Secondary (used Zero Intercept result)	58.55%	41.45%
17	Weighted Average for Overhead and Underground Transformers*	68.05%	31.95%
1 /			

18

* used Zero Intercept for OH Transformers; used Minimum System for UG Transformers

19 How are the results of this analysis used to classify customer and Q. 20 CAPACITY COSTS BY SUB-FUNCTION?

21 А. Attachment O of Schedule 6 shows how the results of the Minimum System 22 and Zero Intercept analyses are used to separate distribution plant investment 23 into customer- and capacity-related costs. The results as shown in column 7 of Attachment O are the inputs to the CCOSS model for the 2024 test year as 24 25 shown in Schedule 4, page 4, column 1, lines 19 - 42.

1

4. Classification and Allocation of Other Production Odr Costs

- 2 Q. DID THE COMPANY ANALYZE THE NATURE OF OTHER PRODUCTION O&M 3 COSTS AS PART OF THIS CASE?

4 Yes. Based on our analysis, the only Other Production O&M costs that vary А. 5 directly with energy output (*i.e.*, increase or decrease based on energy output) 6 are chemicals and water use costs. In the case of chemicals, which are used for 7 pollution control purposes, as generator energy output increases, chemical use 8 increases in direct proportion. Similarly, with water usage, which is used to 9 control both boiler water quality and replace lost steam, such as for soot 10 blowing, usage changes proportionally to energy output. Total chemical and 11 water use costs for the 2024 test year are \$0.339 million and make up only 0.9 12 percent of total Other Production O&M costs. The remaining \$35.5 million of 13 Other Production O&M does not vary directly with energy output.

14

15 HOW DOES THE COMPANY CLASSIFY OTHER PRODUCTION O&M COSTS THAT Q. 16 VARY DIRECTLY WITH ENERGY?

- 17 The Company has classified the Other Production O&M costs that vary directly А. 18 with energy usage as energy-related. This is consistent with the Company's 19 approach in the last rate case.
- 20

21 Q. How does the Company classify the remaining Other Production 22 O&M COSTS?

23 Consistent with the Company's approach in the last rate case, Other Production А. 24 O&M costs that originate from a specific generator are classified as capacity- or 25 energy-related based on the Production plant investment (excluding nuclear 26 fuel) split from the Company's Plant Stratification analysis, as shown on lines 3 27 and 4 on page 4 of Schedule 4. For those production expenses that do not apply 1 to a particular generation type, the Company applies the weighted average 2 Capacity versus Energy percentage splits. I note that there are \$1.091 million in 3 costs that are not specific to a generator type and \$0.798 million of Regional Markets expenses that are split into demand and energy components based on 4 5 the total plant-specific expense split. Table 8 below shows the resulting classification of Other Production O&M expenses. As shown below, 77.40 6 7 percent of costs are classified as energy-related while 22.60 percent of costs are 8 classified as capacity-related.

- 9
- 10

11

Table 8
Classification of Other Production O&M Costs
NSPM-South Dakota Jurisdiction

12	Plant Type or Expense	2024 Other	Percent	Percent	Energy-	Capacity-
	Туре	Prod O&M	Energy	Capacity	Related	Related
13	Variable (Chemicals & Water Use)	\$339,377	100.00%	0.00%	\$339,377	\$0.0
14	Combined Cycle	\$1,110,275	33.59%	66.41%	\$372,887	\$737,388
15	Combustion Turbine	\$179,932	0.00%	100.00%	\$0	\$179,932
	Fossil	\$2,979,461	63.32%	36.68%	\$1,886,620	\$1,092,841
16	Hydro	\$48,771	80.82%	19.18%	\$39,417	\$9,354
17	Nuclear	\$22,961,687	78.78%	21.22%	\$18,089,084	\$4,872,602
1 /	Wind	\$6,317,496	87.68%	12.32%	\$5,539,065	\$778,431
18	Total Generation-Related Other Production O&M	\$33,936,998			\$26,266,450	\$7,670,548
19 20 21	Corporate Other Production O&M not Assigned to Generation Type	\$1,091,218	77.40%	22.60%	\$844,577	\$246,641
22	Regional Market Expense (FERC Codes 575.1 – 575.8)	\$797,774	77.40%	22.60%	\$617,458	\$180,315
23 24	Total Other Production O&M	\$35,825,990	77.40%	22.60%	\$27,728,486	\$8,097,504

25

III. TARIFF CHANGES: SECTION NO. 6 GENERAL RULES AND REGULATIONS

1 2

3					
4	Q.	WHAT REVISIONS ARE BEING PROPO	SED IN THE	Company	's General Rules
5		AND REGULATIONS TARIFFS IN THE	South Dak	OTA ELECI	TRIC RATE BOOK?
6	А.	In addition to those revisions to the	Rate Book o	discussed by	y Company witness
7		Paluck, the Company is proposing to	o update cert	tain constru	action charges to be
8		more in line with current costs. The	ese proposed	l tariff upda	ates are included in
9		Schedule 11 to Company witness Pa	luck's Direc	t Testimon	y and include:
10		• Excess Footage Charges – Se	ction 6.5.1.A	.1	
11		Winter Construction Charges	– Section 6.	5.1.A2	
12		Dedicated Switching – Section	n 6.1.8		
13					
14		A. Excess Footage Charges—	Section 6.5.	.1.A1	
15	Q.	WHAT REVISIONS ARE PROPOSED IN	THE EXCESS	5 FOOTAGE	CHARGES?
16	А.	There are three Excess Footage Ch	arges specifi	ied on Nor	thern States Power
17		Company's South Dakota Electric	Rate Book,	Tariff She	et No. 6-23 of the
18		General Rules and Regulations. Base	d on current	material, la	bor, and equipment
19		costs, the Company is proposing inc	reases in eac	ch, as shown	n in Table 9 below.
20		۲	ble 0		
21		Excess Footage	Charges (P	er Foot)	
22		Туре	Present	Proposed	
23		Service Line	\$7.90	\$10.00	
24		Single Phase Sec or Pr	rim \$8.00	\$10.50	
25		Three Phase Sec or Pr	tim \$13.90	\$17.00	
26					
27		The cost analysis supporting these increases in charges is provided on page 2 of			
28		Exhibit(CJB-1), Schedule 7.			

Β. Winter Construction Charges—Section 6.5.1.A2 1 2 WHAT REVISIONS ARE PROPOSED FOR WINTER CONSTRUCTION CHARGES? Q. 3 There are two components to the Winter Construction Charges, as indicated on А. 4 Tariff Sheet No. 6-24 of the General Rules and Regulations. The Company is 5 proposing an increase in each as shown in Table 10 below. 6 Table 10 7 Winter Construction Charges 8 Type Present Proposed 9 Thawing (Per Frost Burner) \$640.00 \$870.00 10 Trenching (Per Foot) \$8.90 \$18.00 11 12 The cost analysis supporting these proposed rate charges is based on current 13 material, labor and equipment costs, and is provided on page 3 of 14 Exhibit___(CJB-1), Schedule 7. 15 С. 16 Dedicated Switching—Section 6.1.8 17 Q. WHAT IS DEDICATED SWITCHING? 18 Dedicated Switching is a service requested by a few large C&I customers. It А. 19 typically occurs when a customer needs to perform work on their own facilities 20 and where doing so requires that the electric service be de-energized. This 21 service takes place at a customer-specified date and time, which is often outside 22 normal business hours. Providing service requires taking a service crew off of 23 normal work activities and dispatching them to de-energize the service so the 24 customer can do their internal work. The Company's crew then restores the 25 customer's service as soon as the customer completes their work. 26

1 Q. WHAT IS THE PROPOSED CHANGE TO THE DEDICATED SWITCHING TARIFF?

2 The Dedicated Switching tariff provides two hourly rates for this service. Based А. 3 on increases in labor and equipment costs, the Company is proposing to revise 4 these rates to reflect current costs. For Dedicated Switching Service provided 5 on Monday through Saturday, the current rate is \$300.00 per hour and the 6 proposed rate is \$800.00 per hour. The current rate for this service provided on 7 Sundays or holidays is \$400.00 per hour and the proposed rate is \$1,000.00 per 8 hour. The cost analysis supporting these increases in charges is provided on 9 Page 4 of Schedule 7.

10

11

12

D. Revenue Impact of the Proposed Excess Footage, Winter Construction, and Dedicated Switching Rate Increases

Q. WHAT IS THE NET REVENUE IMPACT DUE TO THE PROPOSED INCREASES IN
EXCESS FOOTAGE, WINTER CONSTRUCTION, AND DEDICATED SWITCHING
CHARGES?

A. The net annual revenue impact from the increase in these rates is \$57,827, as
shown on page 1 of Exhibit___(CJB-1), Schedule 7. This increase in revenues
is shown on lines 2 and 12 of Schedule 3 to my testimony. It is also shown on
page 7, row 21 of Schedule 4 to my testimony. The proposed increase in these
charges reduces the proposed increase in retail revenues, as discussed further by
Company witness Paluck in his Direct Testimony.

- 22
- 23
- 24

IV. CONCLUSION

- 25 Q. Does this conclude your pre-filed Direct Testimony?
- 26 A. Yes.