MONTANA-DAKOTA UTILITIES CO.

Before the South Dakota Public Utilities Commission

Docket No. EL23-____

Direct Testimony

Of

Daryl Anderson

- 1 **Q.** Please state your name and business address.
- 2 A. My name is Daryl Anderson and my business address is 400 North
- 3 Fourth Street, Bismarck, North Dakota 58501.
- 4 Q. By whom are you employed and in what capacity?
- 5 A. I am the Director of Electric Distribution Services for Montana-
- 6 Dakota Utilities Co. (Montana-Dakota).
- 7 Q. Please describe your duties and responsibilities with Montana-
- 8 Dakota.
- 9 A. My responsibilities include oversight and management of the
- 10 electric distribution operations and engineering support services, including
- 11 electric operations systems, metering, engineering systems, and electric
- 12 distribution standards and procedures.

1	Q.	Please outline your educational and professional background.

2	Α.	I hold an Associated Science Degree in Engineering from Minot
3		State College and a Bachelor of Science in Electrical and Electronics
4		Engineering from North Dakota State University. My work experience at
5		Montana-Dakota includes six years as an Electrical Engineer working at
6		various District locations, twelve years working as the Electric
7		Superintendent in the Rocky Mountain Region, and seven years as the
8		Director of Distribution Engineering with both gas and electric utility
9		responsibilities. I assumed my current position in 2015. Prior to my work
10		at Montana-Dakota I worked five and a half years as an Electric Engineer
11		for a combination gas and electric utility located in lowa.
12	Q.	Have you testified in other proceedings before regulatory bodies?
13	Α.	Yes, I have testified before the Wyoming, Montana, and North
14		Dakota Public Service Commissions.
15	Q.	What is the purpose of your testimony?
16	A.	The purpose of my testimony is to provide information regarding
17		Montana-Dakota's Outage Management System (OMS) benefits, planned
18		deployment timeline, and to provide an understanding and support for the
19		increased costs involved to operate an Outage Management System at
20		Montana-Dakota.

Q. Please briefly describe an Outage Management System.

2	Α.	An Outage Management System is a system comprised of
3		hardware and software that is configured and integrated with many data
4		sources that are specifically designed to manage electrical outages for a
5		utility. The overall goal of an OMS is to increase service reliability and
6		safety for customers and employees in Montana-Dakota's service territory.
7	Q.	What has Montana-Dakota done to prepare for the deployment of an
8		Outage Management System?
9	A.	An Outage Management System is dependent on many other
10		system deployments and processes within a utility in order for the system
11		to be functional or even possible. These systems were not specifically
12		installed for the purpose of an OMS, however they have the additional
13		benefit of critical input to an OMS deployment. Critical system
14		deployments necessary for an OMS are as follows at Montana-Dakota:
15		A) GIS – installed in 2003 – a geographical mapping system was
16		deployed at Montana-Dakota and has been diligently improved to a
17		point to provide the necessary input to support an OMS.
18		B) Mobile Order System – installed in 2005 – A Mobile Order
19		system allows for employees to receive outage orders in a real time
20		environment including emergency outage orders.

1	C) Automated Meter Reading (AMR) – installed in 2005 –
2	Automated meter reading and especially the Fixed Network for real
3	time reading is critical in providing meter power loss information to
4	the OMS system. Montana-Dakota electric meters are
5	approximately 95% communicating with the Fixed Network System.
6	D) Distribution SCADA – installed from 2017-2023 - Electric
7	Distribution SCADA is an ongoing project to deploy Supervisory
8	Control and Data Acquisition to the Distribution systems at
9	Montana-Dakota and is expected to be fully deployed in 2024.
10	SCADA provides a real time input to an OMS for confirmation of
11	power loss at various points of the Distribution System Network.
12	E) Distribution Management System (DMS) – installed in 2017 –
13	A Distribution Management System (DMS) was deployed at
14	Montana-Dakota in 2017. This is an essential software platform
15	that is used by an Electric Distribution Dispatcher to manage daily
16	operations of the Electric Distribution System (EDS). This is a
17	critical system deployment for an OMS to work properly.
18	Each of these systems having been deployed are capable of providing the
19	necessary information and support to successfully deploy an OMS.

2

Q. Specific to Montana-Dakota, what is involved with an Outage

Management System deployment?

3	A.	The deployment plan would include an OMS software/hardware
4		package that would add onto the Company's existing SCADA/DMS
5		software platform. In 2017, Montana-Dakota deployed a SCADA and
6		DMS software/hardware system from Open Systems International (OSI).
7		The new software addition to be implemented, OMS from OSI, is designed
8		to be integrated to the existing SCADA/DMS modular system. The new
9		software provides for the functionality of an Outage Management System.
10		Deployment will require integration into the previously identified systems
11		already in place at the Company, as well as field software deployed for
12		worker interaction and communications with the new OMS system.
13	Q.	Will the OMS deployment require additional staff?
14	A.	Additional staffing will be required to fully utilize the OMS.
15		Additional staffing related to the implementation and ongoing utilization of
16		the OMS are as follows:
17		System Support Engineer: An Operations Technology (OT)
18		position is required to support the software, hardware, and
19		communications within the SCADA/DMS/OMS systems.

1	•	System Administrator: An Information Technology (IT) position is
2		required to support the security, user administration, and
3		maintenance of the SCADA/DMS/OMS systems.
4	•	System Operators: A staff of Distribution Dispatchers is required
5		to operate a 24/7/365 Distribution Dispatch Desk within the
6		existing Montana-Dakota Electric Systems Operations
7		Department. Montana-Dakota has historically had decentralized
8		dispatching within its Field Operation's District work force. A
9		central Dispatcher for Distribution will need to be set up at
10		Montana-Dakota to run the DMS software and interact with
11		workers to keep the Electric Distribution Network real time with
12		switching and Field Operations changes within the network.
13		The Company plans to add four System Operators for this
14		function.
15	•	Business Analyst: This position will manage the daily operation
16		of the OMS system, including daily outage reviews, Quality
17		Assurance/Quality Control, data analysis, and reporting.
18	•	Promotions: The expanded responsibilities of a central OMS
19		deployment and staffing will require supervisory promotions
20		within existing departments.

1		In summary, deployment at Montana-Dakota includes the
2		software/hardware system additions, staff support additions, and a central
3		Distribution Dispatcher incorporated into the existing operations dispatch
4		department.
5	Q.	What are the goals that Montana-Dakota is expecting to meet with
6		this OMS deployment?
7	A.	Montana-Dakota has identified four high level improvements that
8		are expected to be achieved with the deployment of an Outage
9		Management System.
10		1) Provide for an Outage Reliability Statistic and Failure/Cause
11		Database – With the OMS based on a mapping network, the
12		Company can achieve an outage and cause database that allows
13		information on outage reliability down to system level,
14		device/component level, or individual customer level. This data
15		can be used to make better decisions on system maintenance,
16		replacements, and reliability improvements in general.
17		2) Provide for a Field Operations Outage Management Toolset
18		to manage large storm events - Large Storm Events are
19		historically difficult for a utility to manage. The OMS software and
20		maps are expected to provide tools necessary for local Field

1	Operations employees to track system damage, repair, and repair
2	follow-up items in an on-line central map-based interactive format.
3	It is expected that better and more organized response will improve
4	outage response and a more proactive organized follow up with
5	customer damage situations especially in the large storm events.
6	3) Internal Operations Outage Map and Outage Status – The
7	OMS deployment will provide a more real time outage map for use
8	by the Field Operations teams. With the Electric Distribution
9	Network managed real time by a dispatcher and system information
10	integrated into the OMS, along with interaction by Field Operations
11	employees as to device status and outage status, all employees will
12	have better insight into the causes of an outage and will produce a
13	quicker and safer response to emergency and outage events.
14	4) Outage Information for External Customers and Reporting –
15	The OMS will provide for better and more real time maps
16	presenting information on outages to inform the customers involved
17	in a power outage event. Since the OMS interacts with the
18	Company's employees as a real time communications system for
19	response, more information will be known about the current status

1		of an outage and expected outage repair times that can be relayed
2		to customers.
3	Q.	What additional benefits are expected with the deployment of the
4		Outage Management System including those specific to the
5		customers?
6	Α.	There are many benefits to the Outage Management System
7		deployment in addition to the previously stated goals. Additional benefits
8		to the Company include:
9		1) Providing a real time Distribution System Map to Company
10		employees as an additional safety benefit for system operations.
11		2) Provide 24/7/365 monitoring of the Distribution SCADA system
12		by a system Dispatcher will provide quicker response times for
13		abnormal events and outages.
14		3) Outage and reliability data can provide for better prioritization
15		and determination of future resources to improve reliability and
16		safety.
17		4) Monitoring of crew locations in an after-hours setting helps
18		support the safety of the workers at Montana-Dakota, especially in
19		storm related events.
20		More specific to the customer:

1		5) Improvement in overall power reliability and outage response
2		times to customers in general.
3		6) Improvement in localized power reliability and outage response
4		times due to a network, location, and individual customer level
5		database that can be used to look beyond general response and
6		reliability numbers to identify and address localized issues.
7		7) Improvement in customer communications of electric outage
8		events. This can be in the form of maps, outage status, expected
9		response times, IVR, news reports, social media, etc. Information
10		will be available to customers and employees for existing outage
11		events in a more timely and efficient manner.
12		8) Better information will provide the Company the opportunity to
13		prioritize costs and resources.
14	Q.	How would an Outage Management System assist Montana-Dakota
15		during ice storms or other periodic large storm events that affect
16		South Dakota customers?
17	Α.	The Outage Management System will provide an electronic patrol
18		toolset for Montana-Dakota's Field Operations Group that allows for the
19		central OMS system to track damages and damage repair from the line
20		patrols. All employees at the Company would see the same map-based

1		tracking of damages, damage repair, reporting, and resolution of outages
2		in a real time environment. This system also allows for employee's in
3		other areas of the Company the ability to help manage a large outage
4		event from a remote location not affected by the outage event. Customer
5		outages would be tracked in real time and with less confusion since
6		interactive outages would be seen in real time on one mapping system.
7		Customer outage numbers would be real time and seen by all operating
8		employees. Confusion over what areas or certain customers without
9		power should be eliminated or greatly reduced. Follow-up work for
10		customers with damaged facilities or after storm follow-up maintenance
11		damages would be available to be tracked and managed after the storm
12		event. The customer based outage map would be more accurate with less
13		confusion over the existing outage map display. Finally, the Outage
14		Management System would have all reliability statistics and outage
15		information available for further review and reporting after the event.
16	Q.	What is the expected schedule for deploying an Outage Management
17		System at Montana-Dakota?
18	A.	The OMS system, including the hardware and software
19		deployment, within the third quarter of 2023. The additional supporting
20		staff and Electric Distribution Dispatchers will also be in operation by the

1		fall of 2023 to support the operations deployment of the system. It is
2		expected that each Field Operations District will be trained and start
3		interacting with the software and dispatcher in staged time periods. Full
4		deployment of the system to be in full operation across the Montana-
5		Dakota Districts will be completed by the end of the year 2023.
6	Q.	What are the costs of the project?
7	A.	The cost of the Outage Management System allocated to the South
8		Dakota Electric jurisdiction is \$3,965 for the hardware (FP-322075) and
9		\$115,404 for the system software (FP-316300) and is shown in Rule
10		20:10:13:56, Schedule D-2, page 4 and 5. The costs related to the
11		additional positions needed for the OMS are \$37,757. This is comprised
12		of \$33,134 of labor found on Rule 20:10:13:81, Schedule H-1, page 5,
13		and benefit increases of \$5,623 found on Rule 20:10:13:81, Schedule H-
14		1, page 10.
15	Q.	Does this complete your direct testimony?

16 A. Yes, it does.