OVERVIEW OF Forecasting models

This appendix explains and summarizes the long-term energy and demand forecasting models for Cheyenne Light and Black Hills Power.

Long-term energy forecasts use a combination of its billing data, weather data from the National Oceanic and Atmospheric Administration (NOAA), and economic and demographic data from Woods & Poole. Demand forecasts use a combination of hourly system demand data and the same weather, economic, and demographic data.

Forecasts are based on single sales or on separate use-per-customer sales for residential, commercial, industrial, and municipal models. Included are the formulas employed to develop these forecast models.

Overview of Long-Term Energy and Demand Forecasting Models for Black Hills Power, Inc. and Cheyenne Light Fuel and Power Company

for Black Hills Corporation

by

Christensen Associates Energy Consulting, LLC 800 University Bay Drive, Suite 400 Madison, WI 53705-2299 Voice 608.231.2266 Fax 608.231.2108

April 18, 2021

Table of Contents

1. Introduction	1
2. Overview of the Forecast Development Process	1
3. The Black Hills Power (South Dakota) Forecast	6
3.1 Residential	6
3.2 Commercial	8
3.3 Industrial	9
3.4 Municipal	10
3.5 System Peak Demand	11
4. The Cheyenne Light Fuel and Power (Wyoming) Forecast	12
4.1 Residential	12
4.2 Commercial Non-Demand	15
4.3 Commercial General Service Secondary and Primary	16
4.4 Industrial	18
4.5 System Peak Demand	19
Appendix: Estimated Models	21

Overview of Long-Term Energy and Demand Forecasting Models for Black Hills Power, Inc. and Cheyenne Light Fuel and Power Company

for Black Hills Corporation

by

CHRISTENSEN ASSOCIATES ENERGY CONSULTING, LLC

April 18, 2021

1. INTRODUCTION

Christensen Associates Energy Consulting, LLC (CA Energy Consulting) assisted Black Hills Corporation (Black Hills) in developing long-term energy and demand forecasts for Black Hills Power, Inc. and Cheyenne Light Fuel and Power Company. Black Hills is required to file an Integrated Resource Plan (IRP) in Wyoming and South Dakota before July 1, 2021.

Black Hills develops class-specific sales forecasts using a combination of its billing data, weather data from the National Oceanic and Atmospheric Administration (NOAA), and economic and demographic data from Woods & Poole. System demand is forecast using a combination of hourly system demand data with the weather and economic data listed above.

Section 2 provides a description of the principles we apply when developing forecasts. Section 3 describes the models developed for Black Hills Power, Inc. (BHP). Section 4 describes the models developed for Cheyenne Light Fuel and Power Company (CLFP).

2. OVERVIEW OF THE FORECAST DEVELOPMENT PROCESS

Selecting the dependent variable

Statistical forecast models begin by explaining historical variation in a dependent variable (e.g., class-level sales or use per customer (UPC)) with available explanatory variables.

Forecasts may be based on either a single sales model or separate UPC and customer count models. The latter method may be preferred for mass-market classes (e.g., residential), where intra-class customer differences are expected to be minor compared to, say, a large industrial class. Separately modeling UPC and customer counts for these classes can improve the estimates of the effect of the various explanatory variables. For example, the number of households may be a primary driver of the number of residential customers served, but not be strongly related to residential use per customer.

In each of the models presented here, we take the natural log of the dependent variable and the continuous explanatory variables.¹ This makes it easier interpret and compare the estimated coefficients, as they represent percentage effects. If the models were instead estimated without logging the variables, the estimated coefficients would represent *level* effects whose interpretation is affected by the scale of the variables.

Selecting the explanatory variables

The explanatory variables may include the following categories:

- Weather;
- □ Economic conditions;
- □ Demographics;
- □ Seasonal indicators; or
- □ Time trends or shift variables.

Weather variables are typically based on temperatures and commonly expressed as cooling degree days (CDDs) or heating degree days (HDDs). CDDs are intended to reflect cooling-related usage and are calculated for day *d* as follows:

 $CDD_d = MAX\{0, (MaxTemp_d + MinTemp_d) / 2 - Threshold)\}$

The MAX function ensures that CDD values are always non-negative. $MaxTemp_d$ and $MinTemp_d$ represent the maximum and minimum temperatures for the day, respectively. *Threshold* is the average daily temperature at which cooling load tends to begin (typically around 60°F).

HDDs reflect heating-related loads and are calculated in a similar manner as CDDs, but reversing the order of the average daily temperature and the *Threshold*:

 $HDD_d = MAX\{0, Threshold - (MaxTemp_d + MinTemp_d) / 2\}\}$

Forecasting models often use monthly sales or UPC as the dependent variable, in which case the CDDs and HDDs are summed across the relevant days to form the variables used in the statistical model.

Economic factors reflect the effect of the economy on electricity use or the number of customers served. The relevant variables can vary with the customer class of interest and may include the following variables:

- □ Household income;
- □ Gross regional product (GRP); or
- □ Earnings, sales, or employment (total or by sector).

Demographic variables can reflect changes in the size or makeup of the utility's service territory, and may include the following variables:

□ Number of households; or

¹ The exceptions for continuous variables are CDDs and HDDs, which are frequently zero and therefore drop out when logged.

□ Persons per household.

Seasonal or monthly factors are "indicator" variables (sometimes called "dummy" variables)² that account for seasonal changes in usage that are not accounted for by other included explanatory variables (e.g., lighting-related usage that can vary with the hours of daylight).

Time trend and shift variables are sometimes needed to reflect changes in the dependent variable that are clearly visible in the data but are not explained by any available explanatory variables. For example, this may include changes in the definition of the customer class. Time trend variables reflect the rate of change in the dependent variable over time, while shift variables account for one-time changes in the dependent variable.

Note that any explanatory variable included in the statistical model must have both historical and forecast values to be of use in the development of the forecast. In the case of weather variables, the forecast values typically represent normal weather conditions (e.g., the average value over the previous 20 years). Economic and demographic variables are best employed when external forecasts of them are available. Black Hills uses data from Woods & Poole, which provides historical and forecast values for economic and demographic variables by county.

When evaluating explanatory variables for inclusion in statistical forecast models, we focus on the following factors:

- 1. Whether the included variables make intuitive sense.
- 2. Whether the estimated coefficients on the included variables make intuitive sense.
- 3. Whether the resulting forecast is a reasonable reflection of the past as well as expectations for the future.

Regarding the first point, we consider whether it's plausible that the included economic and/or demographic variables have a causal effect on the dependent variable (e.g., use per customer, sales, or the number of customers). For example, farm employment is probably not going to drive outcomes for a customer class that does not consist of a high share of farm-related customers.

On the second point, the estimates should have the expected sign, a reasonable magnitude, and be statistically significantly different from zero.³ For example, we expect electricity use, use per customer, and the number of customers to increase as economic conditions improve. That would be reflected by a positive sign on the estimated coefficient on the economic variable.⁴

² For example, a March indicator variable would equal 1 for March observations and 0 for all other observations. ³ This is evaluated using the p-value associated with the estimate, which is based on a test that the estimated coefficient equals zero (the "null hypothesis"). If the estimated coefficient equals zero, it means that changes in the variable do not affect the dependent variable (e.g., sales). A point estimate that is not zero may be statistically equivalent to zero if the standard error associated with the estimate is sufficiently large. A low p-value (below 0.10 or 0.05) leads us to reject the null hypothesis that the variable has no effect.

⁴ A negative sign would be expected for economic variables for which higher values represent worsening conditions, such as the unemployment rate.

Demographic changes such as the change in the number of households are also expected to have specific signs. For example, an increase in the number of households should lead to increases in sales and increases in the number of customers served (a positive coefficient). Increases in persons per household may lead to increases in residential use per customer (also a positive coefficient).

Evaluating the magnitude of the coefficient requires some judgment and people may reach different conclusions. Economic variables shouldn't have outsized effects. For example, in models with logged dependent and explanatory variables, estimated coefficients larger than 1.0 mean the percentage change in the dependent variable will be larger than the percentage change in the dependent variable will be larger than the percentage change in the dependent variable will be larger than the percentage change in the dependent variable will be larger than the percentage change in the economic variable (e.g., a 2 percent increase in GRP leads to a greater than 2 percent increase in sales). That threshold is a good starting point for judging the reasonableness of the variable, though the reasonableness of the coefficient may also be apparent in the forecast growth rate (i.e., an economic effect that is too large may lead to a growth rate in electricity sales that appears too high relative to historical rates).

Note that sometimes there are no economic variables that provide an intuitively appealing explanation of the dependent variable. This can arise when sales or use per customer are declining, perhaps due to conservation and improved energy efficiency (whether sponsored by the utility or as part of general economic or regulatory trends). In these cases, a time trend variable can be useful to allow the model to explain changes over time. In some cases, the introduction of a time trend allows the model to be able to estimate a separate and reasonable economic effect, but this is not always the case.

Finally, the model should produce a forecast that is a reasonable reflection of expectations given prior trends and Company information. For example, if sales declined steeply from 8 to 10 years ago but have remained relatively flat in more recent years, one might expect the forecast to place a higher weight on the recent (flat) trend. Applying this criterion involves exercising judgment and isn't necessarily a right vs. wrong issue (in contrast to evaluating the sign of a coefficient).

Accounting for serial correlation

Serial correlation is present when the statistical model's error (the difference between the observed value and the value predicted by the model) in a time period is related to the error in a prior time period. The presence of serial correlation does not produce biased coefficient estimates but may lead to incorrect inferences regarding a coefficient's statistical significance.

The presence of first-order serial correlation (when the current and previous observation's errors are related) is detected using the Durbin-Watson test. If the test indicates that serial correlation is present, we estimate the model using a Prais-Winsten method rather than traditional Ordinary Least Squares (OLS).

4

Developing High and Low Forecast Scenarios

Black Hills requested that we develop an 80 percent confidence interval around the demand and sales forecasts. That is, the forecast represents the sales and demand levels we expect to occur on average. However, considerable uncertainty remains regarding the economic conditions that will occur during the forecast period. For example, a recession could arise, or a period of sustained growth could occur. The confidence interval provides an indication of the extent to which demand and sales can vary due to such uncertainties.

In order to capture a wide range of economic conditions, we base our variability calculations on data beginning in 1969 and ending with the most recent observed data point. The data are provided by Woods & Poole and focus on the variable used in the forecast models. The variability calculation takes a mid- to long-term perspective, based on the average annual percentage change over ten-year period.

Specifically, we calculate the year-to-year percentage changes in the economic variable (e.g., gross regional product, total employment, or personal income) and then calculate 10-year moving averages of those percentage changes. The peak demand model provides us with an estimate of the effect of changes in the economic variable on changes in peak demand, along with a standard error associated with the estimate. These two uncertainties (in economic conditions over time and in the estimated effect of economic conditions on peak demand) are combined to produce the confidence interval around the demand and sales forecasts.

Here is a description of the steps we used to develop the confidence interval:

- Calculate the average annual 10-year percentage change in the economic variable for each 10-year window between 1969 and 2017, producing 39 separate percentage change values.
- 2. Calculate the mean and standard deviation of the percentage changes across these 39 observations.
- 3. From the peak demand model, obtain the estimated coefficient and standard error associated with the included economic variable.
- 4. The mean expected growth rate of demand is estimated as the product of the estimated coefficient and the mean of the 39 percentage change observations.
- 5. The standard deviation of the growth rate of demand is estimated by combining the standard error of the estimated coefficient with the standard deviation of the historical percentage changes in the economic variable.⁵
- 6. The coefficient of variation (CV) of the economic-based variability is calculated as the standard deviation calculated in step 5 divided by the mean expected growth rate calculated in step 4.
- For any given forecast value, the high and low scenarios are simulated as the 90th and 10th percentile values (respectively) from a normal distribution, with a mean equal to

⁵ This calculation is performed as the standard deviation of the product of two random variables, as follows: Var(XY) = Var(X)Var(Y)+Var(X)(E(Y))²+Var(Y)(E(X))²

the "base" forecast growth rate and the standard deviation equal to the absolute value of the base forecast growth rate⁶ multiplied by the CV calculated in Step 6.

8. These high and low percentages are applied to the demand and sales forecasts in each of the forecast months.

3. THE BLACK HILLS POWER (SOUTH DAKOTA) FORECAST

In this section, we describe the forecasting models for each customer class in the Black Hills Power (BHP) service territory. In each case, we show a graph reflecting historical annual sales, use per customer (UPC), and the number of customers over time. Each series is normalized to show a value that is indexed to the average across the time period shown (i.e., a value of 0.9 means that year's value is 90 percent of the average over the time period shown). This normalization facilitates a comparison of trends in the outcomes across years, which naturally occur on different scales. The figures show observed (non-weather normalized) values. The Appendix contains detailed results for each forecast model.

3.1 Residential

Figure 3.1 shows the normalized sales, UPC, and customer counts for BHP's Residential customer class. The upward trend in sales appears to be primarily driven by growth in customers served, while year-to-year variations in total sales are highly correlated with those of UPC. We estimate separate UPC and customer models to better account for these separate effects.

⁶ Taking the absolute value of the forecast growth rate is necessary because standard deviations cannot be negative.

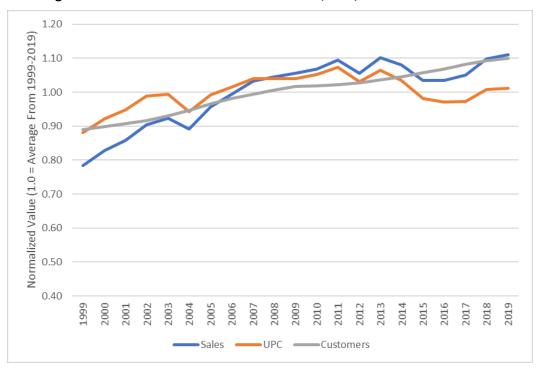


Figure 3.1: BHP Residential Normalized Sales, UPC, and Customer Counts

The Residential UPC model is:

$$\ln(upc_t) = a + b^{CDD} \times CDD_t + b^{HDD} \times HDD_t + b^{Trend} \times Trend_t + \sum_m (b^m \times Month_{m,t}) + e_t$$

In this equation, a and the b's are estimated parameters; e_t is the error term; t indexes time periods; and m indexes months. The explanatory variables are:

- \Box *CDD_t* = CDD using a 60°F threshold
- \Box HDD_t = HDD using a 60°F threshold
- \Box *Trend*_t = Time trend
- \Box *Month_{m,t}* = month dummies⁷

The model is estimated using data from 2007 through 2019 using the Prais-Winsten serial correlation correction. No available economic or demographic variables produced a reasonable coefficient estimate. Data prior to 2007 is excluded due to the high growth in UPC during that period vs. more recent years. The time trend accounts for the slight downward trend in UPC following 2007 (approximately 0.5 percent per year).

⁷ The model includes eleven month-specific dummies, with the January variable omitted to prevent perfect multicollinearity of the month variables. That is, the coefficients for the included months are interpreted as an effect relative to the omitted month.

The Residential customer model is:

$$ln(custs_t) = a + b^{Emp} \times ln(TotEmp_t) + \sum_m (b^m \times Month_{m,t}) + e_t$$

The explanatory variables are:

- \Box In(*TotEmp*_t) = the natural log of total employment (12-month moving average)
- \Box *Month_{m,t}* = month dummies

The model is estimated using data from 2007 through 2019 using the Prais-Winsten serial correlation correction. The estimated coefficient on the total employment variable reflects a positive relationship between economic conditions and the number of customers served.

3.2 Commercial

As Figure 3.2 shows, BHP's Commercial UPC (and as a result, total sales) increased to a higher level beginning around 2014. This upward shift appears to be due to customers changing classes, resulting in an influx of customers that led to a one-time shift in UPC. Class sales, which had been increasing prior to 2014, were largely flat following the class shift.

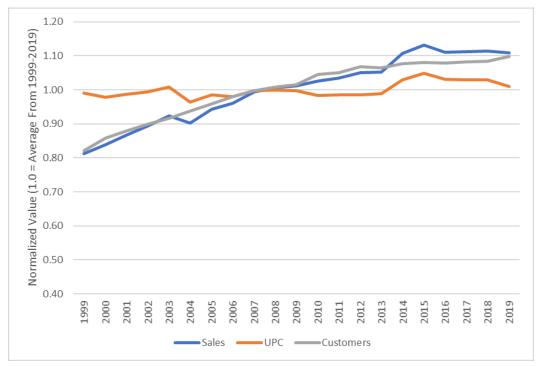


Figure 3.2: BHP Commercial Normalized Sales, UPC, and Customer Counts

The Commercial UPC model is:

 $ln(upc_t) = a + b^{CDD} \times CDD_t + b^{HDD} \times HDD_t + b^{Shift} \times ClassShift_t + b^{Trend} \times Trend_t + b^{Emp} \times ln(TotEmp_t) + \sum_m (b^m \times Month_{m,t}) + e_t$

 8	CA Energy Consulting

The explanatory variables are:

- \Box *CDD*_t = CDD using a 60°F threshold
- \Box HDD_t = HDD using a 60°F threshold
- □ *ClassShift*_t = a "class shift" indicator variable equal to 1 beginning in June 2014 and 0 prior to that month
- $\Box \quad Trend_t = \text{Time trend}$
- \Box In(*TotEmp*_t) = the natural log of total employment (12-month moving average)
- \Box *Month_{m,t}* = month dummies

The model is estimated using data from 1999 through 2019 using the Prais-Winsten serial correlation correction. The estimated coefficients for the employment and time trend variables reflect offsetting effects. Commercial UPC increases with employment, with a separate downward trend of approximately 0.6 percent per year. The estimated coefficient for the class shift variable indicates 6.1 percent higher UPC during the post-June 2014 period.

The Commercial customer model is:

$$ln(custs_t) = a + b^{Emp} \times ln(TotEmp_t) + b^{Emp_Shift} \times (TotEmp_t \times ClassShift_t) + b^{Shift} \times ClassShift_t + \sum_m (b^m \times Month_{m,t}) + e_t$$

The explanatory variables are:

- □ In(*TotEmp*_t) = The natural log of total employment (12-month moving average)
- □ *ClassShift*_t = A "class shift" indicator variable equal to 1 beginning in June 2014 and 0 prior to that month
- □ An interaction between the ln(total employment) variable and the class shift variable
- \Box *Month_{m,t}* = month dummies

The model is estimated using data from 1999 through 2019 using the Prais-Winsten serial correlation correction. The interaction between the class shift variable and the total employment variable allows the effect of employment to differ before and after the class shift occurs. The estimates reflect a much higher employment effect in the pre-shift period.

The forecast produced by this model had a reasonable annual growth rate but some prediction error in the final year that resulted in a forecast that started from a level that appeared to be too high. To remedy this, we applied the forecast percentage growth rate to the last year's weather normalized sales. The weather normalization adjustment was developed as the difference between the model's predicted sales at normal and observed weather. That difference was added to observed sales to arrive at weather-normalized sales.

3.3 Industrial

This class is not forecast using a statistical model, with flat sales (i.e., no growth) assumed during the forecast period. Figure 3.3 shows the reasonableness of this assumption. The class

shift described above for the Commercial class affected this class as well, resulting in a reduction in the number of customers and an increase in UPC. Note that the effect of the shift is more pronounced for this class, as it has fewer customers than the Commercial class (25 to 40 Industrial customers vs. more than 12,000 Commercial customers). Because the shifted customers represented a relatively low share of class sales, the class sales remained relatively flat through the 2014 class-shift period.

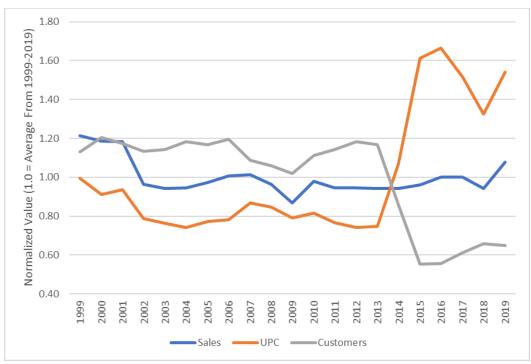


Figure 3.3: BHP Industrial Normalized Sales, UPC, and Customer Counts

3.4 Municipal

Sales to BHP's Municipal class have displayed varying dynamics from 1999 to 2019, with rapid increases through 2007 followed by a plateau and an eventual decline. No economic or demographic variables explain these changes over time. As a result, our forecasting model focuses on following the observed trends and basing the forecast on the post-2007 experience. Note that the Municipal class accounts for a small percentage of BHP's total sales (1.1% in 2019).

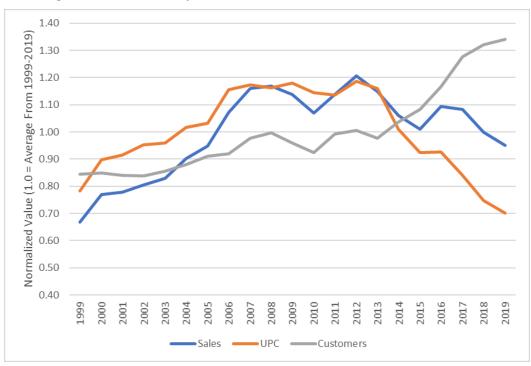


Figure 3.4: BHP Municipal Normalized Sales, UPC, and Customer Counts

The Municipal sales model is:

 $ln(upc_t) = a + b^{CDD} \times CDD_t + b^{D2007} \times D2007_t + b^{Trend} \times Trend_t + b^{Trend07} \times (Trend_t \times D2007_t) + \sum_m (b^m \times Month_{m,t}) + e_t$

The explanatory variables are:

- \Box *CDD_t* = CDD using a 60°F threshold
- □ $D2007_t$ = a2007 indicator variable equal to 1 beginning in January 2007 and 0 prior to that month
- \Box *Trend*_t = Time trend
- $\hfill\square$ An interaction between the 2007 indicator variable and the time trend
- \Box *Month_{m,t}* = month dummies

The model is estimated using data from 1999 through 2019 using the Prais-Winsten serial correlation correction. The estimated time trends show approximately 5.3 percent per year growth through 2006, with a -1.3 percent per year change in sales from 2007 on.

3.5 System Peak Demand

Forecasting system peak demand presents different challenges than forecasting monthly sales. The objective of the statistical model is to explain the factors that contribute to the most extreme observed loads. To increase the sample size of "peak-like" hours, we include all hours that are within 1 percent of each month's peak demand value.

CA Energy Consulting

The system demand model is:

$$ln(MW_t) = a + b^{CDD} \times CDD_t + b^{HDD} \times HDD_t + b^{CDD_d} \times CDD_Day_t + b^{HDD_d} \times HDD_Day_t + b^{Wknd} \times Weekend_t + b^{PI} \times ln(TotPI_t) + \Sigma_m(b^m \times Month_{m,t}) + e_t$$

The explanatory variables are:

- \Box *CDD*_t = the date's CDD using a 60°F threshold
- \Box HDD_t = the date's HDD using a 60°F threshold
- \Box *CDD_Day*_t = average CDD per day during the month
- \Box HDD_Day_t = average HDD per day during the month
- \Box In(*TotPI*_t) = the natural log of total personal income
- \Box Weekend_t = a weekend indicator variable (equal to 1 on weekends and zero on weekdays)
- \Box *Month_{m,t}* = month dummies

The date specific CDD and HDD variables account for the effect of the day's temperatures on the peak day's loads. The monthly average CDD and HDD variables reflect the overall weather conditions (e.g., heat or cold buildup) surrounding the peak day. The personal income variable reflects the effect of economic conditions on peak demand. The weekend indicator variable allows the model to explain the fact that weekend peaks are lower than weekday peaks, all else equal (by approximately 2.3 percent, according to our estimate). The month dummies reflect seasonal patterns in peak demand.

The model is estimated using data from 2010 through 2019. No correction is made for serial correlation.⁸

4. THE CHEYENNE LIGHT FUEL AND POWER (WYOMING) FORECAST

This section contains a description of each CLFP forecast model. The Appendix provides detailed results for each model.

4.1 Residential

Figure 4.1 shows the normalized sales, UPC, and customer counts for CLFP's Residential customer class. The overall upward trend in sales appears to be primarily driven by growth in customers served, while year-to-year variations in total sales are highly correlated with those of UPC. UPC (and therefore sales) drops in the years following 2013 but recovers somewhat in the most recent years. We estimate separate UPC and customer models to better account for these separate effects.

⁸ Unlike the monthly class sales models, the interval between observations can vary in the peak demand model. This makes it difficult to identify and correct for serial correlation.

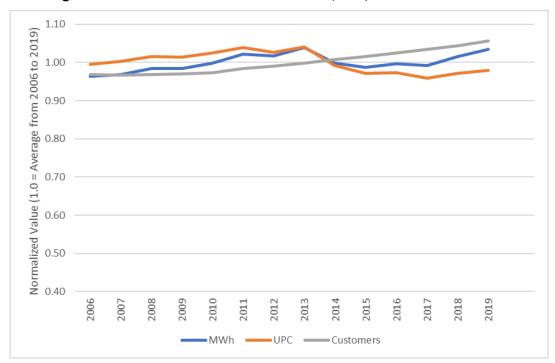


Figure 4.1: CLFP Residential Normalized Sales, UPC, and Customer Counts

We examined weather normalized UPC to test whether the dip in UPC that occurs from 2014 through 2017 was due to mild weather. In Figure 4.2 below, the blue line represents observed UPC while the dashed orange line reflects weather normalized UPC. We conclude from this that some of the reduction in UPC was due to weather, but the decline was still somewhat steady through those years.

Figure 4.2: BHP Residential Observed vs. Weather Normalized UPC

The Residential UPC model is:

$$ln(upc_t) = a + b^{CDD} \times CDD_t + b^{HDD} \times HDD_t + b^{Inc} \times ln(HhldInc_t) + b^{Trend} \times Trend_t + \sum_m (b^m \times Month_{m,t}) + e_t$$

The explanatory variables are:

- \Box *CDD_t* = CDD using a 60°F threshold
- \Box HDD_t = HDD using a 60°F threshold
- \Box In(*HhldInc*_t) = the natural log of real household total personal income (12-month moving average)
- \Box *Trend*_t = Time trend
- \Box *Month_{m,t}* = month dummies

The model is estimated using data from February 2005 through December 2019 using the Prais-Winsten serial correlation correction. The estimated time trend reflects a 0.7 percent per year decline in UPC, which is offset to some extent by the positive relationship between household income and UPC.

The Residential customer model is:

 $ln(custs_t) = a + b^{Hhld_pre} \times \{ln(Hhlds_t) \times Pre2010_t\} + b^{Hhld_ClS} \times \{ln(Hhlds_t) \times ClSplus_t\} + b^{ClS} \times ClSplus_t + \sum_m (b^m \times Month_{m,t}) + e_t$

The explanatory variables are:

□ $ln(Hhlds_t)$ x $Pre2010_t$ = the natural log of the number of households interacted with a pre-2010 indicator variable

CA Energy Consulting

- □ $ln(Hhlds_t) \times ClSplus_t$ = the natural log of the number of households interacted with a 2010+ indicator variable
- \Box *CISplus*_t = a 2010+ indicator variable, reflecting the approximate date that CLFP's new CIS system was implemented (and thus may have affected the recording of customer counts)

The model is estimated using data from February 2005 through December 2019 using the Prais-Winsten serial correlation correction. The number of households is positively related to the number of customers in the 2010+ period, with no statistically significant relationship estimated in the preceding years.

4.2 Commercial Non-Demand

Figure 4.3 shows large changes in sales and UPC for CLFP's Commercial Non-Demand customers during the 2010 to 2013 period, followed by a more stable period through 2019. In contrast, the number of customers increases steadily through the 2010 to 2019 period.

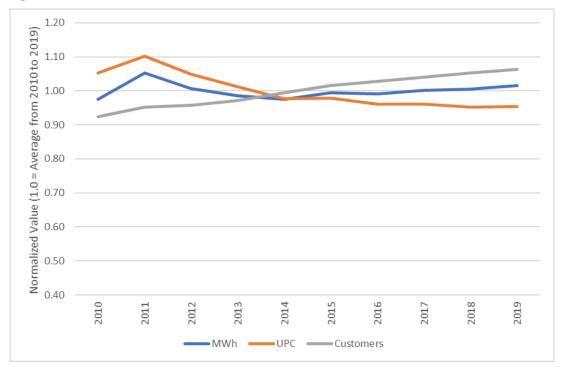


Figure 4.3: CLFP Commercial Non-Demand Normalized Sales, UPC, and Customer Counts

The Commercial Non-Demand UPC model is:

$$\ln(upc_t) = a + b^{CDD} \times CDD_t + b^{HDD} \times HDD_t + b^{Trend} \times Trend_t + \sum_m (b^m \times Month_{m,t}) + e_t$$

The explanatory variables are:

- \Box *CDD_t* = CDD using a 60°F threshold
- \Box HDD_t = HDD using a 60°F threshold
- \Box *Trend*_t = Time trend
- \Box *Month_{m,t}* = month dummies

The model is estimated using data from 2014 through 2019 using the Prais-Winsten serial correlation correction. No available economic or demographic variables produced a reasonable estimate. Data prior to 2014 is excluded due to the unexplained variability in UPC relative to more recent years. The time trend accounts for the slight downward trend in UPC from 2014 through 2019, at approximately 0.7 percent per year.

In the Commercial Non-Demand customer model, the sole explanatory variable is the natural log of total employment (12-month moving average).

$$ln(custs_t) = a + b^{Emp} x ln(TotEmp_t) + e_t$$

We tested monthly indicator variables but found that they were not jointly statistically significant. The estimate on the employment variable indicates a positive relationship between economic conditions and the number of customers served.

4.3 Commercial General Service Secondary and Primary

Because of inter-class customer migrations during recent years, the forecast combines CLFP's General Service Secondary and Primary customers into a single forecast. Figures 4.4 and 4.5 show the changes in sales, UPC, and customer counts for each group. Notice how since 2013 sales have been persistently decreasing in the Secondary class and increasing in the Primary class. Customers re-classifying from Secondary to Primary are at least partially responsible for these trends. Figure 4.6 shows the corresponding values for the two classes combined, revealing a flatter sales trend since 2013.

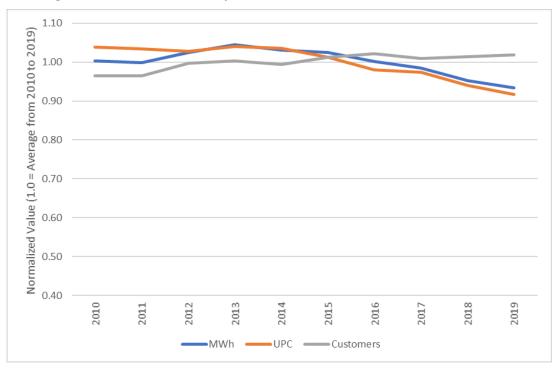
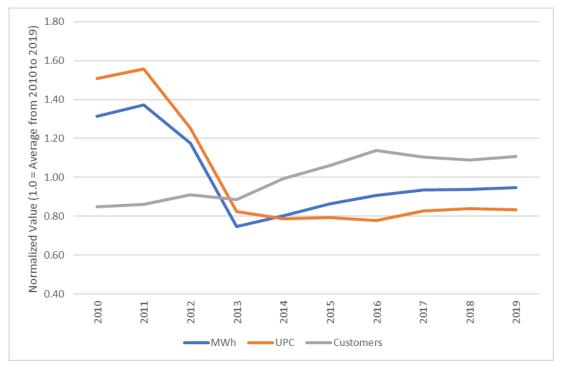



Figure 4.4: CLFP GS Secondary Normalized Sales, UPC, and Customer Counts

Figure 4.5: CLFP GS Primary Normalized Sales, UPC, and Customer Counts

17

CA Energy Consulting

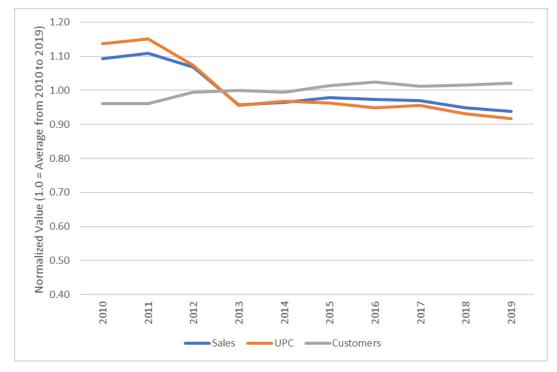


Figure 4.6: CLFP GS Secondary + Primary Normalized Sales, UPC, and Customer Counts

Statistical forecasting models developed for the combined General Service class produced declining sales, particularly in the 2030s and beyond. This contradicts Black Hills's expectations for this class, which is that sales will remain flat during the forecast period. Therefore, for this class Black Hills uses a forecast assumption of flat sales rather than a statistically based forecast.

4.4 Industrial

This class is not forecast using a statistical model, which is appropriate given that it only has two or three customers. With so few customers, variations in sales are likely more due to idiosyncratic effects on individual companies rather than reflections of widespread trends, making them difficult to explain using the data at hand. As Figure 4.7 shows, Industrial sales increase when a customer is added but have remained relatively constant in recent years.

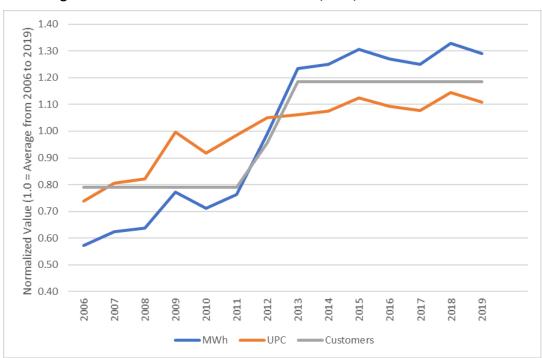


Figure 4.7: CLFP Industrial Normalized Sales, UPC, and Customer Counts

4.5 System Peak Demand

As was the case for the BHP system peak demand model, the CLFP model includes all hours that are within 1 percent of each month's peak demand value.

The system demand model is:

 $ln(MW_t) = a + b^{CDD} \times CDD_t + b^{HDD} \times HDD_t + b^{CDD_d} \times CDD_Day_t + b^{CDH} \times CDH_t + b^{HDH} \times HDH_t + b^{Emp} \times ln(TotEmp_t) + \sum_m (b^m \times Month_{m,t}) + e_t$

The explanatory variables are:

- \Box *CDD*_t = the date's CDD using a 60°F threshold
- \Box HDD_t = the date's HDD using a 60°F threshold
- \Box *CDD_Day*_t = average CDD per day during the month
- \Box *CDH*_t = Cooling degree hours (CDHs) during the peak hour⁹
- \Box HDH_t = Heating degree hours (HDHs) during the peak hour¹⁰
- \Box In(*TotEmp*_t) = The natural log of total employment
- \Box *Month_{m,t}* = month dummies

⁹ *CDH*_{*h*} = MAX{0, *Temp*_{*h*} - 70}, where *h* is the hour in question.

¹⁰ HDH_h = MAX{0, 50 – $Temp_h$ }, where *h* is the hour in question.

The date specific CDD and HDD variables account for the effect of the day's temperatures on the peak day's loads. The CDH and HDH variables reflect temperatures in the peak hour itself. The monthly average CDD variable reflects the overall weather conditions (e.g., heat buildup) surrounding the peak day. The total employment variable reflects the effect of economic conditions on peak demand. The month dummies reflect seasonal patterns in peak demand.

The model is estimated using data from 2008 through 2019. As with the BHP peak demand model, no correction is made for serial correlation.

L-23

APPENDIX: ESTIMATED MODELS

BHP Residential UPC Model

Prais-Winsten AR(1) regression -- iterated estimates

11010 01100000	1mt(1) 1091000	1000 1000	Lacoa obcin				
Source	SS	df	MS		ber of obs	=	156
+				- F(1	4, 141)	=	279.48
Model	6.59638489	14	.47117035	5 Pro	b > F	=	0.0000
Residual	.23771102	141	.001685894	1 R-s	quared	=	0.9652
+				- Adj	R-squared	. =	0.9618
Total	6.83409591	155	.044090941	l Roo	t MSE	=	.04106
lupc	Coef.	Std. Err.	t	P> t	[95% C	onf.	Interval]
cdd60	.0007491	.0000792	9.46	0.000	.00059	2.5	.0009057
hdd60	.0003371	.0000268	12.56	0.000	.0002		.0003901
trend	0053457	.0011228	-4.76	0.000	00756		003126
m2	0809981	.0146294	-5.54	0.000	10991		0520769
m3	0765306	.0176738	-4.33	0.000	11147	0.5	0415906
m4	1715452	.0214173	-8.01	0.000	21388		1292046
m5	2487149	.0261492	-9.51	0.000	30041	-	1970197
m6	2838251	.0317412	-8.94	0.000	34657	53	221075
m7	220695	.0402097	-5.49	0.000	30018	69	1412031
m8	1982313	.0444751	-4.46	0.000	28615	56	1103071
m9	2625503	.0377637	-6.95	0.000	33720	66	187894
m10	3046907	.0290236	-10.50	0.000	36206	84	2473129
m11	2245492	.0227044	-9.89	0.000	26943		1796643
m12	0621735	.0159359	-3.90	0.000	09367		0306693
cons	6.704262	.0353275	189.77	0.000	6.6344		6.774102

Durbin-Watson statistic (original) 1.688659

Durbin-Watson statistic (transformed) 2.075256

BHP Residential Customer Model

rho | .2203338

Prais-Winsten AR(1) regression -- iterated estimates

_	Source	SS	df	MS	Number of ob F(12, 143)	s =	156 99999.00
	Model Residual	11.7509368	12 143	.979244731 4.0973e-06	Prob > F R-squared	=	0.0000
		11.7515227		.075816275	naj n bijaare	=	
	lcust		Std. Err.		P> t [95%	Conf.	Interval]
	lntotemp12			19.42		645	.9732005

	+					
lntotemp12	.8832825	.0454891	19.42	0.000	.7933645	.9732005
m2	0001767	.0005589	-0.32	0.752	0012813	.000928
m3	.0006558	.0007511	0.87	0.384	0008289	.0021405
m 4	.0001208	.0008707	0.14	0.890	0016003	.0018418
m5	.0001964	.0009466	0.21	0.836	- .0016746	.0020675
m6	.0004601	.0009896	0.46	0.643	0014959	.0024161
m7	0002992	.0010043	-0.30	0.766	0022843	.0016859
m8	.001199	.0009921	1.21	0.229	0007621	.00316
m 9	.0015761	.0009518	1.66	0.100	0003053	.0034574
m10	.0011851	.000879	1.35	0.180	- .0005525	.0029226
m11	.0006704	.0007636	0.88	0.381	000839	.0021799
m12	.0014634	.000579	2.53	0.013	.0003189	.0026079
_ ^{cons}	7.853703	.158067	49.69	0.000	7.541253	8.166152
rho	.9162612					

Durbin-Watson statistic (original) 0.198497 Durbin-Watson statistic (transformed) 2.673149

Source	SS	df	MS		01 01 000	= 252 = 152.52
Model Residual	3.2015146 .308297984	16 235	.200094662	2 Prob 6 R-so) > F = = = = = = = = = = = = = = = = = =	= 152.52 = 0.0000 = 0.9122 = 0.9062
Total	3.50981258	251	.013983317	2	-	= .03622
lupc	Coef.	Std. Err.	t	P> t	[95% Conf	. Interval]
cdd60	.0004078	.0000516	7.90	0.000	.0003062	.0005095
hdd60	.0000878	.0000188	4.68	0.000	.0000508	.0001248
m2	0520282	.011984	-4.34	0.000	075638	0284183
m3	0386922	.0118223	-3.27	0.001	0619834	015401
m.4	0847384	.0139929	-6.06	0.000	1123059	0571708
m5	- .0978604	.0170247	-5.75	0.000	- .1314009	0643199
m6	0237413	.0208928	-1.14	0.257	- .0649023	.0174197
m7	.0054528	.0265259	0.21	0.837	0468061	.0577117
m8	.0245937	.0296813	0.83	0.408	- .0338816	.0830691
m9	0073286	.0249257	-0.29	0.769	056435	.0417778
m10	- .0483032	.0188734	-2.56	0.011	- .0854859	0111205
m11	0999738	.0147761	-6.77	0.000	1290844	0708633
m12	0056054	.0123565	-0.45	0.651	029949	.0187383
class_shift	.0605904	.0081693	7.42	0.000	.044496	.0766848
trend	0061663	.0028089	-2.20	0.029	0117	0006325
lntotemp12	.4757653	.236463	2.01	0.045	.0099071	.9416235
_cons	6.844035	.7777653	8.80	0.000	5.311752	8.376318
+						
rho	1303725					

BHP Commercial UPC Model

Prais-Winsten AR(1) regression -- iterated estimates

Durbin-Watson statistic (original) 2.237867 Durbin-Watson statistic (transformed) 1.976362

BHP Commercial Customer Model

Prais-Winsten AR(1) regression -- iterated estimates

Source 	SS 14.0120084 .018034924 14.0300434	237	MS 1.00085775 .000076097 .055896587	Number F(14, 2 Prob > R-squar Adj R-s Root MS	37) F ed quared		252 13152.44 0.0000 0.9987 0.9986 .00872
lcust	Coef.	Std. Err	. t	P> t	[95%	Conf.	Interval]
m2	- .0038088	.0020341	-1.87	0.062	007		.0001983
m3	0015248	.0026583	-0.57	0.567	0067		.0037121
m4	.0036183	.0030146	1.20	0.231	0023		.0095571
m5	.0125077	.003226	3.88	0.000	.0061	525	.0188629
тб	.0186227	.003345	5.57	0.000	.012	033	.0252123
m7	.0214386	.0033801	6.34	0.000	.0147	797	.0280976
m8	.0277128	.0033456	8.28	0.000	.0211	218	.0343038
m9	.0211541	.0032357	6.54	0.000	.0147	796	.0275286
m10	.0148503	.0030301	4.90	0.000	.008	881	.0208197
m11	.0087593	.0026822	3.27	0.001	.0034	752	.0140433
m12	.000228	.0020735	0.11	0.913	003	857	.0043129
lntotemp12	1.490022	.0418228	35.63	0.000	1.407	631	1.572414
lntotemp_shift	-1.292099	.2045018	-6.32	0.000	-1.694	973	- .8892259
class_shift	4.491643	.7154039	6.28	0.000	3.08	228	5.901006
_cons	4.291352	.1422813	30.16	0.000	4.011	054	4.57165
rho	.7318557						

Durbin-Watson statistic (original) 0.548459 Durbin-Watson statistic (transformed) 2.435974

22

		SS	df	MS		Number F(15,	of obs	=	252 82.04
Model	1	3.5463717	15	.90309144		r(15, Prob >		=	0.0000
Residual	Т	2.5978093	236	.0110076		R-squa		_	0.8391
Residual		2.39/0093	200	.01100/66					
Total		16.144181	251	.06431944		Root M	squared SE	=	0.8289 .10492
lsales		Coef.	Std. Err.	t	P>	t	[95% Cor	nf. I	nterval]
cdd60		.0010164	.0001617	6.29	0.0	00	.0006978		.001335
trend		.0533716	.0061685	8.65	0.0		.0412193		.0655239
trend d2007	-	.0661732	.0068731	-9.63	0.0		0797138		.0526326
		.7528875	.0587961	12.81	0.0		.6370553		.8687198
m2	-	.1061182	.0289156	-3.67	0.0		1630839		.0491526
m3		.0802588	.032359	-2.48	0.0		1440082		.0165094
m4		.0846191	.0331771	-2.55	0.0		1499801		019258
m5		.0232965	.0334686	-0.70	0.4		0892319		.0426389
m6		.1198732	.037011	3.24	0.0		.0469591		.1927873
m7		.1241075	.0616468	2.01	0.0		.0026591		.2455559
m8		.0635651	.0754108	0.84	0.4		0849993		.2121295
m9		.088161	.0548742	1.61	0.1		0199449		.1962669
m10		.0585193	.0343227	1.70	0.0		0090986		.1261372
m11	_	.1457969	.0324917	-4.49	0.0		2098077		.0817861
m12		.0417205	.0292042	-1.43	0.1		0992546		.0158136
cons		6.874499	.0398607	172.46	0.0		6.795971		6.953028
+ rho		.2525515							
1110		.2020010							
BHP System Pea Source +	k [SS	df	MS		Number F(17,	of obs 212)	=	230 137.46
Model	3	3.03781492	17	.17869499	96	Prob >	F	=	0.0000
Residual		275587388	212	.00129994	41	R-squa	red	=	0.9168
+						Adj R-	squared	=	0.9102
Total	Э	3.31340231	229	.01446900	16	Root M	CE		
lmwna					00		.oe	=	.03605
	t	Coef.	Std. E	rr. t		P> t	.эе [95%		.03605
	+				t	P> t	[95%	Conf	.03605 . Interval]
cdd6	+ 0	.0086782	.00095	86 9.0	 L 05	P> t 	[95% 	Conf '885	.03605 . Interval] .0105678
hdd6	+ 0 0	.0086782	.00095	86 9.(93 6.	t 05 77	P> t 0.000 0.000	[95% .0067 .001	Conf 885 965	.03605 . Interval] .0105678 .0035785
hdd6 mnthcdd60perda	+ 0 0 y	.0086782 .0027718 .01034	.00095 .00040 .00203	86 9.(93 6. ⁻ 43 5.(t 05 77 08	P> t 0.000 0.000 0.000	[95% .0067 .001 .0063	Conf 885 965 298	.03605 . Interval] .0105678 .0035785 .0143501
hdd6 mnthcdd60perda mnthhdd60perda	+ 0 0 y y	.0086782 .0027718 .01034 .0042651	.00095 .00040 .00203 .00084	86 9.(93 6. 43 5.(99 5.(t 05 77 08 02	P> t 0.000 0.000 0.000 0.000 0.000	[95% .0067 .001 .0063 .0025	Conf 885 965 298 897	.03605 . Interval] .0105678 .0035785 .0143501 .0059405
hdd6 mnthcdd60perda mnthhdd60perda lntotP	+ 0 y y	.0086782 .0027718 .01034 .0042651 .3380472	.00095 .00040 .00203 .00084 .03848	86 9.(93 6. 43 5.(99 5.(63 8.	t 05 77 08 02 78	P> t 0.000 0.000 0.000 0.000 0.000 0.000	[95% .0067 .001 .0063 .0025 .2621	Conf 885 965 298 897 .824	.03605 . Interval] .01056785 .0143501 .0059405 .4139121
hdd6 mnthcdd60perda mnthhdd60perda lntotP weeken	+ 0 9 9 1 d	.0086782 .0027718 .01034 .0042651 .3380472 0233456	.00095 .00040 .00203 .00084 .03848 .01145	86 9.(93 6. 43 5.(99 5.(63 8. 65 -2.(t 05 77 08 02 78 04	P> t 0.000 0.000 0.000 0.000 0.000 0.000 0.043	[95% .0067 .001 .0063 .0025 .2621 0459	Conf 885 965 298 897 824 288	.03605 . Interval] .01056785 .0143501 .0059405 .4139121 0007625
hdd6 mnthcdd60perda mnthhdd60perda lntotP weeken m	+ 0 9 9 1 1 2	.0086782 .0027718 .01034 .0042651 .3380472 0233456 0523044	.00095 .00040 .00203 .00084 .03848 .01145 .01169	86 9.(93 6. 43 5.(99 5.(63 8. 65 -2.(95 -4.4	t 05 77 08 02 78 04 47	P> t 0.000 0.000 0.000 0.000 0.000 0.000 0.043 0.000	[95% .0067 .001 .0025 .2621 0459 0753	Conf 885 965 298 897 824 288 668	.03605 . Interval] .0105678 .0035785 .0143501 .0059405 .4139121 .0007625 .0292421
hdd6 mnthcdd60perda mnthhdd60perda lntotP weeken m m	+ 0 y y 1 d 2 3	.0086782 .0027718 .01034 .0042651 .3380472 0233456 0523044 0416192	.00095 .00040 .00203 .00084 .03848 .01145 .01169 .01381	86 9.(93 6. 43 5.(99 5.(63 8. 65 -2.(95 -4.4 53 -3.(t 05 77 08 02 78 04 47 01	P> t 0.000 0.000 0.000 0.000 0.000 0.000 0.043 0.000 0.003	[95% .0067 .001 .0063 .0025 .2621 0459 0753 0688	Conf 985 965 298 897 824 288 668 522	.03605 . Interval] .0105678 .0035785 .0143501 .0059405 .4139121 -0007625 -0292421 -0143861
hdd6 mnthcdd60perda mnthhdd60perda lntotP weeken m m m m	+ 0 y y 1 d 2 3 4	.0086782 .0027718 .01034 .03380472 0233456 0523044 0416192 080603	.00095 .00040 .00203 .00084 .03848 .01145 .01169 .01381 .01606	86 9.0 93 6.7 43 5.0 99 5.0 63 8.7 65 -2.0 95 -4.4 53 -3.0 87 -5.0	L 05 77 08 02 78 04 47 01 02	P> t 0.000 0.000 0.000 0.000 0.000 0.043 0.000 0.003 0.000	[95% .0067 .001 .0063 .0025 .2621 0459 0753 0688 1122	Conf 965 298 897 824 288 668 522 778	.03605 . Interval] .0105678 .0035785 .0143501 .0059405 .4139121 -0007625 -0292421 .0143861 -0489281
hdd6 mnthcdd60perda mnthhdd60perda lntotP weeken m m m m m m m	+ 0 y y 1 2 .3 .4 .5	.0086782 .0027718 .01034 .0042651 .3380472 0233456 0523044 0416192 080603 0320146	.00095 .00040 .00203 .00084 .01145 .01169 .01381 .01606 .02039	86 9.0 93 6.7 43 5.0 63 8.7 65 -2.0 95 -4.0 53 -3.0 87 -5.0 71 -1.5	L 05 77 08 02 78 04 47 01 02 57	P> t 0.000 0.000 0.000 0.000 0.000 0.043 0.000 0.043 0.000 0.003 0.000 0.118	[95% .0067 .001 .0025 .2621 0459 0752 0688 1122 0722	Conf 965 965 897 824 288 668 522 778 217	.03605 . Interval] .0105678 .0035785 .0143501 .0059405 .4139121 0007625 0292421 0143861 0489281 .0081925
hdd6 mnthcdd60perda mnthhdd60perda lntotP weeken m m m m m m m m m m m m m m	+ 0 y y 1 2 3 3 4 5 5	.0086782 .0027718 .01034 .0042651 .3380472 0233456 0523044 0416192 080603 0320146 .0932003	.00095 .00040 .00203 .00084 .01145 .01169 .01381 .0166 .02039 .02731	86 9. 93 6. 43 5. 63 8. 65 -2. 95 -4. 53 -3. 87 -5. 71 -1. 89 3.	t 05 77 08 02 78 04 47 01 02 57 41	P> t 0.000 0.000 0.000 0.000 0.043 0.000 0.003 0.000 0.118 0.001	[95% .0067 .001 .005 .2621 0459 0753 0688 1122 0722 .0393	Conf 885 965 298 897 824 288 668 522 778 217 488	.03605 . Interval] .01056785 .0143501 .0059405 .4139121 0007625 .0292421 0143861 0143861 .0489281 .0081925 .1470519
hdd6 mnthcdd60perda mnthhdd60perda lntotP weeken m m m m m m m m m m m m m m m m m m m	+ 0 0 y y 1 2 2 3 4 5 5 5 5 7	.0086782 .0027718 .01034 .0042651 .3380472 0233456 0523044 0416192 08063 .0320146 .0932003 .0802717	.00095 .00040 .00203 .00084 .03848 .01145 .01169 .01381 .01606 .02039 .02731 .032	86 9.0 93 6.7 43 5.0 99 5.0 63 8.7 65 -2.0 95 -4. 53 -3.0 87 -5.0 71 -1.2 89 3.2 24 2.4	t 05 77 08 02 78 04 47 01 02 57 41 49	P> t 0.000 0.000 0.000 0.000 0.043 0.000 0.043 0.000 0.003 0.000 0.118 0.001 0.014	[95% .0067 .001 .0053 .2621 0459 0753 0688 1122 0722 .0393 .0167	Conf 885 965 298 897 824 288 668 522 778 217 488 197	.03605 . Interval] .0105678 .0035785 .0143501 .0059405 .4139121 -0007625 -0292421 -0143861 -0489281 .0081925 .1470519 .1438237
hdd6 mnthcdd60perda mnthhdd60perda lntotP weeken m m m m m m m m m m m m m m m m m m m	++ 0 y y y 1 2 3 4 5 6 7 8	.0086782 .0027718 .0042651 .3380472 0233456 0523044 0416192 080603 .0320146 .0320146 .0932003 .0802717 .0892537	.00095 .00040 .00203 .00084 .03848 .01145 .01169 .01381 .01606 .02039 .02731 .032 .02295	86 9.0 93 6.7 43 5.0 99 5.0 63 8.7 65 -2.0 95 -4.4 53 -3.3 87 -5.0 71 -1.3 89 3.4 24 2.4 65 2.5	t 05 77 08 02 78 04 47 01 02 57 41 49 98	P> t 	[95% .0067 .001 .0063 .0025 .2621 0459 0753 0688 1122 .0393 .0167 .0302	Conf 885 965 298 897 824 288 668 522 778 217 488 197 2028	.03605 . Interval] .0105678 .0035785 .0143501 .0059405 .4139121 -0007625 -0292421 -0143861 -0489281 .0081925 .1470519 .1438237 .1483045
hdd6 mnthcdd60perda mnthhdd60perda lntotP weeken m m m m m m m m m m m m m m m m m m m	++ 0 y y 1 2 3 4 5 6 7 8 9	.0086782 .0027718 .01034 .0042651 .3380472 0233456 0523044 0416192 080603 .0932003 .0802717 .0892537 .0623604	.00095 .00040 .00203 .00084 .03848 .01145 .01169 .01381 .01606 .02039 .02731 .032 .02295 .0258	86 9.0 93 6.7 43 5.0 99 5.0 63 8.7 65 -2.0 95 -4.4 53 -3.0 87 -5.0 71 -1.5 89 3.4 24 2.4 25 2.4 59 2.4	t 05 77 08 02 78 04 47 01 02 57 41 49 98 41	P> t 0.000 0.000 0.000 0.000 0.003 0.000 0.118 0.001 0.014 0.001 0.003 0.017	[95% .0067 .001 .0025 .2621 -0459 -0753 -0688 -1122 -0722 .0393 .0167 .0302 .0113	Conf 885 965 298 897 824 2288 668 522 778 2217 488 217 488 2197 2028 867	.03605 . Interval] .0105678 .0035785 .0143501 .0059405 .4139121 -0007625 -0292421 -0143861 -0489281 .0081925 .1470519 .1438237 .1483045 .113334
hdd6 mnthcdd60perda mnthhdd60perda lntotP weeken m m m m m m m m m m m m m m m m m m m	++ 0 y y 1 2 3 4 5 .6 .7 .8 .9 0	.0086782 .0027718 .01034 .0042651 .3380472 0233456 0523044 0416192 080603 0320146 .0932003 .0802717 .0892537 .0623604 0339564	.00095 .00040 .00203 .00084 .03848 .01145 .01169 .01381 .01606 .02039 .02731 .032 .02995 .0258 .01897	86 9.0 93 6.7 43 5.0 99 5.0 63 8.7 53 -3.0 87 -5.0 71 -1.5 89 3.0 24 2.0 25 2.3 59 2.4 31 -1.7	t 05 77 08 02 78 04 47 01 02 57 41 49 98 41 79	P> t 0.000 0.000 0.000 0.000 0.000 0.003 0.000 0.118 0.001 0.013 0.001 0.003 0.001 0.003 0.007 0.075	[95% .0067 .001 .0025 .2621 0459 0753 0688 1122 0722 .0393 .0167 .0302 .0113 .0107	Conf 885 965 298 897 824 288 662 288 652 217 217 217 2197 2028 867 565	.03605 . Interval] .0105678 .0035785 .0143501 .0059405 .4139121 -0007625 -0292421 .0143861 -0489281 .0081925 .1470519 .1438237 .1483045 .113334 .0034436
hdd6 mnthcdd60perda mnthhdd60perda lntotP weeken m m m m m m m m m m m m m m m m m m m	++ 0 0 y y 1 2 3 4 5 6 7 8 9 0 1	.0086782 .0027718 .01034 .0042651 .3380472 0233456 0523044 080603 .0802717 .0802717 .0892537 .0623604 0339564 0216245	.00095 .00040 .00203 .00084 .01145 .01169 .01381 .0160 .02039 .02731 .032 .02995 .0258 .01897 .01553	86 9. 93 6. 43 5.0 63 8.7 65 -2.0 99 5.4 53 -3.0 71 -1.5 89 3.4 24 2.0 55 2.5 50 3.4 51 -1.5 52 -1.5	L 05 77 08 02 78 04 47 01 02 57 41 02 57 41 98 41 79 83 9	P> t 0.000 0.000 0.000 0.000 0.000 0.003 0.000 0.118 0.001 0.014 0.014 0.017 0.017 0.075 0.165	[95% .0067 .001 .0025 .2621 0459 0752 0688 1122 0722 .0393 .0167 .0302 .0113 0713 0522	Conf 885 965 298 8897 824 228 668 5522 2778 2217 4488 197 028 8867 555 5481	.03605 . Interval] .0105678 .0035785 .0143501 .0059405 .4139121 -0007625 0292421 0143861 0489281 .0081925 .1470519 .1438045 .113334 .0034436 .008999
hdd6 mnthcdd60perda mnthhdd60perda lntotP weeken m m m m m m m m m m m m m m m m m m m	++ 0 0 y y 1 2 3 4 5 3 4 5 5 5 5 1 2 0 1 2	.0086782 .0027718 .01034 .0042651 .3380472 0233456 0523044 0416192 08063 .0320146 .0932003 .0802717 .0822537 .0623604 0339564 0216245 027556	.00095 .00040 .00203 .00084 .01145 .01169 .01381 .0166 .02039 .02731 .032 .02995 .0258 .01897 .01553 .0116	86 9.0 93 6.1 43 5.0 63 8.7 65 -2.0 99 5.3 53 -3.0 87 -5.0 71 -1.5 89 3.4 24 2.4 259 2.4 559 2.4 54 -1.2 54 -1.2 48 -2.2	L 05 77 08 02 78 04 47 01 02 57 41 49 98 41 79 39 37	<pre>P> t 0.000 0.000 0.000 0.000 0.043 0.000 0.043 0.000 0.014 0.001 0.014 0.001 0.014 0.007 0.075 0.015 0.019</pre>	[95% .0067 .001 .005 .2621 0459 0753 0688 1122 .0393 .0167 .0302 .0113 0713 0522 0555	Conf 885 965 298 897 824 228 668 522 778 2277 824 197 028 867 5028 867 5028 867 5028 867 5028	.03605 . Interval] .0105678 .0035785 .0143501 .0059405 .4139121 -0007625 -0292421 -0143861 -0489281 .0081925 .1470519 .1438237 .1483045 .113334 .003436 .008999 0045953
hdd6 mnthcdd60perda mnthhdd60perda lntotP weeken m m m m m m m m m m m m m m m m m m m	++ 0 0 y y 1 2 3 4 5 3 4 5 5 5 5 1 2 0 1 2	.0086782 .0027718 .01034 .0042651 .3380472 0233456 0523044 0416192 08063 .0320146 .0932003 .0802717 .0822537 .0623604 0339564 0216245 027556	.00095 .00040 .00203 .00084 .01145 .01169 .01381 .0166 .02039 .02731 .032 .02995 .0258 .01897 .01553 .0116	86 9.0 93 6.1 43 5.0 63 8.7 65 -2.0 95 -4.0 53 -3.0 87 -5.0 71 -1.5 89 3.0 24 2.0 55 2.1 55 2.1 55 2.1 55 2.1 54 -1.2 48 -2.2	L 05 77 08 02 78 04 47 01 02 57 41 49 98 41 79 39 37	P> t 0.000 0.000 0.000 0.000 0.000 0.003 0.000 0.118 0.001 0.014 0.014 0.017 0.017 0.075 0.165	[95% .0067 .001 .0025 .2621 0459 0752 0688 1122 0722 .0393 .0167 .0302 .0113 0713 0522	Conf 885 965 298 897 824 228 668 522 778 2277 824 197 028 867 5028 867 5028 867 5028 867 5028	.03605 . Interval] .0105678 .0035785 .0143501 .0059405 .4139121 -0007625 0292421 0143861 0489281 .0081925 .1470519 .1438045 .113334 .0034436 .008999

BHP Municipal Sales Model

Prais-Winsten AR(1) regression -- iterated estimates

Source	SS	df	MS		er of obs = , 163) =	179 114.28
Model	2.06797158	15	.137864772	2 Prob) > F =	0.0000
Residual	.196636554	163	.001206359		uared =	
Total	2.26460814	178	.012722518	2	R-squared = MSE =	
lupc	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
cdd60	.0006874	.0000816	8.42	0.000	.0005263	.0008485
hdd60	.0002053	.0000278	7.39	0.000	.0001504	.0002602
lnincome12	.4358274	.0999293	4.36	0.000	.2385045	.6331504
trend	0067252	.001048	-6.42	0.000	0087946	0046559
m2	1014795	.0126135	-8.05	0.000	1263864	0765726
m3	1002444	.014534	-6.90	0.000	1289436	0715453
m4	1743273	.017176	-10.15	0.000	2082435	1404111
m5	2145596	.0207049	-10.36	0.000	255444	1736752
m6	2040182	.0272919	-7.48	0.000	2579095	1501269
m7	1671883	.0341282	-4.90	0.000	2345787	0997979
m8	1762289	.0372566	-4.73	0.000	2497967	1026611
m9	2100186	.0318326	-6.60	0.000	272876	1471612
m10	- .2242816	.0248828	-9.01	0.000	2734158	1751474
m11	184847	.0182471	-10.13	0.000	2208783	1488158
m12	0530595	.013202	-4.02	0.000	0791285	0269905
_cons	-5.518172	1.151543	-4.79	0.000	-7.792037	-3.244308
+ rho	.0804959					

CLFP Residential UPC Model

Prais-Winsten AR(1) regression -- iterated estimates

rho | .0804959

Durbin-Watson statistic (original) 1.873708 Durbin-Watson statistic (transformed) 2.014441

CLFP Residential Customer Model

Prais-Winsten AR(1) regression -- iterated estimates

Source	SS	df	MS	Number of obs F(3, 175)		179 99999.00
Model Residual		3 175	5.92801885 5.2670e-06	Prob > F R-squared	=	0.0000 0.9999
Total	17.7849783	178	.099915608	Adj R-squared Root MSE	=	.00229
	Coef.			P> t [95% C	Conf.	Interval]
lhhld_pre10 lhhld_CISplus	0812966 .6734902 2.733243		-1.44 30.22 -11.43 53.01	0.152192 0.000 .62950 0.000 -3.205 0.000 10.360)31 511	
rho	.7863497					
Durbin-Watson	statistic (ori	ginal)	0.433740			

Durbin-Watson statistic (transformed) 2.368500

Source	SS	df	MS		er of obs , 57)	= 72 = 26.09
Model Residual	.382507485 .05968656	14 57	.02732196	3 Prob 3 R-sq	> F uared	= 0.0000 = 0.8650
+ Total	.442194045	71	.00622808	2	R-squared MSE	= 0.8319 = .03236
lupc	Coef.	Std. Err.	t	P> t	[95% Con	f. Interval]
cdd60 hdd60 trend m2 m3 m4 m5 m6 m7 m8 m9 m10 m11 m12 _cons	.0004083 .0001288 0487067 0487067 1510517 1510517 1560555 1050686 0874926 1392 1530321 1492752 0318684 .0584828	.0001487 .000395 .0027641 .0179134 .0209113 .0258481 .0305823 .0386278 .0509712 .0572705 .0479274 .0363063 .0271702 .0196828 .0505365	2.75 3.26 -2.67 -2.72 -3.15 -4.63 -4.94 -4.04 -2.06 -1.53 -2.90 -4.22 -5.49 -1.62 1.16	0.008 0.002 0.010 0.009 0.003 0.000 0.000 0.000 0.044 0.132 0.005 0.000 0.000 0.000 0.000 0.111 0.252	.0001105 .0000496 0129226 0845777 1714476 2122917 2334063 2021747 235173 2257342 2036827 0712825 0427147	.0002079 0128327 0128357 0240913 0679279 0898118 0787047 0030006 .0271895 0432271 0803299 0948678 .0075456
+ rho	.184152					

CLFP Commercial Non-Demand UPC Model

Prais-Winsten AR(1) regression -- iterated estimates

Durbin-Watson statistic (original) 1.680528

Durbin-Watson statistic (transformed) 1.996436

CLFP Commercial Non-Demand Customer Model

rais-Winsten AR(1) regression -- iterated estimates

Source	SS	df	MS	Number of o		72
Model Residual	.050031725 .01507069	1 70	.050031725 .000215296	Prob > F R-squared	= = ed =	0.7685
Total			.000916935	2 1	=	
	Coef.				Conf.	Interval]
	1.224647 3.202115	.0962394 .4055417	12.73		2703 3288	1.41659 4.010943
rho	0108025					

Durbin-Watson statistic (original) 2.021164 Durbin-Watson statistic (transformed) 1.993565

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	CLFP System Pe	ak	Demand Model						
Model 2.7075761 17 .159269182 Prob > F = 0.000 Residual .223080505 364 .000612859 R-squared = 0.9233 Adj R-squared = 0.9203 Rotal 2.9306566 381 .007692012 Root MSE = .02476 IMWwoMS Coef. Std. Err. t P> t [95% Conf. Interval] cdh .0019791 .0007083 2.79 0.005 .0005862 .0033719 cdd60 .0048258 .0009546 5.06 0.000 .0029485 .0067031 hdd60 .0006511 .0003301 2.16 0.032 .0000628 .0013728 hdd60 .007178 .0003301 2.16 0.032 .0000628 .0013728 hdd60 .0006511 .0003106 2.10 0.037 .000402 .001262 mnthcdd60perday .0078491 .0016518 4.75 0.000 .6120712 .7288603 m2 0104943 .0068803 -1.53 0.128 .0240245 .0030359 m3 0561029 .0074336 -7.55 0.000 .01721 .0414847	Source		SS	df	MS			=	
Residual .223080505 364 .000612859 R-squared = 0.9239 Adj R-squared = 0.9203 Root MSE = .02476 IMWwoMS Coef. Std. Err. t P> t [95% Conf. Interval] cdh .0019791 .0007083 2.79 0.005 .0005862 .0033719 cdd60 .0048258 .0009546 5.06 0.000 .0029485 .001728 hdd60 .0006511 .0003311 2.16 0.032 .0000628 .001262 mnthcdd60perday .0078491 .0016518 4.75 0.000 .0046009 .0110973 lntotemp .6704658 .0296946 22.58 0.000 .6120712 .7288603 m2 0104943 .0068803 -1.53 0.128 0240245 .0030359 m3 0561029 .0074336 -755 0.000 .017266 .0890689 m5 1075987 .0081318 -13.23 0.000 .1172686 .0924954 m6 0583115 .0121855 -4.79	+								
Adj R-squared = 0.9203 Total 2.9306566 381 .007692012 Root MSE = .02476 IMWwoMS Coef. Std. Err. t P> t [95% Conf. Interval] cdh .0019791 .0007083 2.79 0.005 .0005862 .0033719 cda60 .0048258 .009546 5.06 0.000 .0029485 .0067031 hdd60 .0006511 .0003106 2.10 0.037 .0000402 .001262 mnthcdd60perday .0078491 .0016518 4.75 0.000 .0046009 .0110973 lntotemp .6704658 .0296946 22.58 0.000 .6120712 .7288603 m2 0104943 .0068803 -1.53 0.128 0240245 .0030399 m3 0561029 .0074336 -7.55 0.000 .1172686 .0890689 m5 1075987 .0081318 -13.23 0.000 .1123589 .0916074 m6 0583115 .0121855 -4.79 0.000 .082743 .0343486 m7 0386051 .0172689 -2.24 0.026 .0725645 .0046456 m8 0577883 .0147434 -3.92 <td< td=""><td colspan="2" rowspan="2"></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>									
Total 2.9306566 381 .007692012 Root MSE = .02476 IMWwoMS Coef. Std. Err. t P> t [95% Conf. Interval] cdh .0019791 .0007083 2.79 0.005 .0005862 .003719 cdd60 .0048258 .0009546 5.06 0.000 .0029485 .0067031 hdh .0007178 .0003331 2.16 0.032 .0000628 .0013728 hdd60 .0006511 .0003106 2.10 0.037 .0000402 .001262 mnthcdd60perday .0078491 .0016518 4.75 0.000 .6120712 .7288603 m2 0104943 .0068803 -1.53 0.128 0240245 .0030359 m3 0561029 .0074336 -7.55 0.000 01721 .0414847 m4 1031688 .00717 -14.39 0.000 1172686 .0890689 m5 1075987 .0081318 -13.23 0.000 01235899 .0916074 m6 0583115 .0121855			.223080505	364 .	000612859	1			
IMWwoMS Coef. Std. Err. t P> t [95% Conf. Interval] cdh .0019791 .0007083 2.79 0.005 .0005862 .0033719 cdd60 .0048258 .0009546 5.06 0.000 .0029485 .0067031 hdh .0007178 .0003331 2.16 0.032 .0000628 .0013728 hdd60 .0006511 .0003106 2.10 0.037 .0000402 .001262 mnthcdd60perday .0078491 .0016518 4.75 0.000 .0146009 .0110973 lntotemp .6704658 .0296946 22.58 0.000 .6120712 .7288603 m2 0104943 .0068803 -153 0.128 0240245 .0030359 m3 0561029 .0074336 -7.55 0.000 1172686 .0890689 m5 1075987 .0081318 -13.23 0.000 1235899 .0916074 m6 0583115 .0121855 -4.79 0.000 .0	+ Total					2 1			
cdh .0019791 .0007083 2.79 0.005 .0005862 .0033719 cdd60 .0048258 .009546 5.06 0.000 .0029485 .0067031 hdh .0007178 .0003331 2.16 0.032 .0000628 .001728 hdd60 .0006511 .003106 2.10 0.037 .0000402 .001262 mnthcdd60perday .0078491 .0016518 4.75 0.000 .0046009 .0110973 lntotemp .6704658 .0296946 22.58 0.000 .6120712 .7288603 m2 0104943 .0068803 -1.53 0.128 0240245 .0030359 m3 0561029 .0074336 -755 0.000 1172686 0890689 m5 1075987 .0081318 -13.23 0.000 1172686 0890689 m5 1075987 .0081318 -13.23 0.000 1235899 0916074 m6 0583115 .0121855 -4.79 0.000 0822743 0343486 m7 0386051 .0172689 -2.24 0.026 0725645 .0046456 m8 0577883 .01474			2.9306566	381 .	007692012			=	.02476
cdh .0019791 .0007083 2.79 0.005 .0005862 .0033719 cdd60 .0048258 .009546 5.06 0.000 .0029485 .0067031 hdh .0007178 .0003331 2.16 0.032 .0000628 .001728 hdd60 .0006511 .003106 2.10 0.037 .0000402 .001262 mnthcdd60perday .0078491 .0016518 4.75 0.000 .0046009 .0110973 lntotemp .6704658 .0296946 22.58 0.000 .6120712 .7288603 m2 0104943 .0068803 -1.53 0.128 0240245 .0030359 m3 0561029 .0074336 -755 0.000 1172686 0890689 m5 1075987 .0081318 -13.23 0.000 1172686 0890689 m5 1075987 .0081318 -13.23 0.000 1235899 0916074 m6 0583115 .0121855 -4.79 0.000 0822743 0343486 m7 0386051 .0172689 -2.24 0.026 0725645 .0046456 m8 0577883 .01474									
cdd60 .0048258 .0009546 5.06 0.000 .0029485 .0067031 hdh .0007178 .0003331 2.16 0.032 .0000628 .0013728 hdd60 .0006511 .0003106 2.10 0.037 .000402 .001262 mnthcdd60perday .0078491 .0016518 4.75 0.000 .6120712 .7288603 m2 0104943 .0068803 -1.53 0.128 0240245 .0030359 m3 0561029 .0074336 -7.55 0.000 01721 .0414847 m4 1031688 .00717 -14.39 0.000 1172686 0890689 m5 1075987 .0081318 -13.23 0.000 1235899 0916074 m6 0583115 .0121855 -4.79 0.000 0822743 0343486 m7 0386051 .0172689 -2.24 0.026 0725645 0046456 m8 0577883 .0147434 -3.92 0.000 0887812 0287954 m9 066601 .0111045	lMWwoM	IS	Coef.	Std. Err	. t	P> t	[95%	Conf.	Interval]
hdh.0007178.00033312.160.032.0000628.0013728hdd60.0006511.00031062.100.037.0000402.001262mnthcdd60perday.0078491.00165184.750.000.0046009.0110973lntotemp.6704658.029694622.580.000.6120712.7288603m20104943.0068803-1.530.1280240245.0030359m30561029.0074336-7.550.0000707210414847m41031688.00717-14.390.00011726860890689m51075987.0081318-13.230.00012358990916074m60583115.0121855-4.790.00008227430343486m70386051.0172689-2.240.02607256450046456m80577883.0147434-3.920.00008878120287954m9066601.0111045-6.000.00008843810447638m100840245.0082962-10.130.000100338906771m110293447.006979-4.200.00004306880156205	cd	lh	.0019791	.0007083	2.79	0.005	.0005	862	.0033719
hdd60.0006511.00031062.100.037.000402.001262mnthcdd60perday.0078491.00165184.750.000.0046009.0110973lntotemp.6704658.029694622.580.000.6120712.7288603m20104943.0068803-1.530.1280240245.0030359m30561029.0074336-7.550.0000707210414847m41031688.00717-14.390.00011726860890689m51075987.0081318-13.230.00012358990916074m60583115.0121855-4.790.00008227430343486m70386051.0172689-2.240.02607256450046456m80577883.0147434-3.920.00008878120287954m9066601.0111045-6.000.00008843810447638m100840245.0082962-10.130.000100338906771m110293447.006979-4.200.00004306880156205	cdd6	0 0	.0048258	.0009546	5.06	0.000	.0029	485	.0067031
mnthcdd60perday.0078491.00165184.750.000.0046009.0110973lntotemp.6704658.029694622.580.000.6120712.7288603m20104943.0068803-1.530.1280240245.003359m30561029.0074336-7.550.00011726860890689m51075987.0081318-13.230.00011726860890689m50583115.0121855-4.790.00008227430343486m70386051.0172689-2.240.02607256450046456m80577883.0147434-3.920.00008678120287954m9066601.0111045-6.000.00008843810447638m100840245.0082962-10.130.000100338906771m110293447.006979-4.200.00004306880156205	hd	lh	.0007178	.0003331	2.16	0.032	.0000	628	.0013728
Intotemp .6704658 .0296946 22.58 0.000 .6120712 .7288603 m2 0104943 .0068803 -1.53 0.128 0240245 .0030359 m3 0561029 .0074336 -7.55 0.000 070721 0414847 m4 1031688 .00717 -14.39 0.000 1172686 0890689 m5 1075987 .0081318 -13.23 0.000 1235899 0916074 m6 0583115 .0121855 -4.79 0.002 072645 0343486 m7 0386051 .0172689 -2.24 0.026 0725645 0046456 m8 0577883 .0147434 -3.92 0.000 0867812 0287954 m9 066601 .0111045 -6.00 0.000 0884381 0447638 m10 0293447 .0082962 -10.13 0.000 0430688 0156205	hdd6	50 I	.0006511	.0003106	2.10	0.037	.0000	402	.001262
m20104943.0068803-1.530.1280240245.0030359m30561029.0074336-7.550.0000707210414847m41031688.00717-14.390.00011726860890689m51075987.0081318-13.230.00012358990916074m60583115.0121855-4.790.00008227430343486m70386051.0172689-2.240.02607256450046456m80577883.0147434-3.920.00008678120287954m9066601.0111045-6.000.00008843810447638m100840245.0082962-10.130.000100338906771m110293447.006979-4.200.00004306880156205	mnthcdd60perda	y I	.0078491	.0016518	4.75	0.000	.0046	009	.0110973
m3 0561029.0074336-7.550.0000707210414847m4 1031688.00717-14.390.00011726860890689m5 1075987.0081318-13.230.00012358990916074m6 0583115.0121855-4.790.00008227430343486m7 0386051.0172689-2.240.02607256450046456m8 0577883.0147434-3.920.00008878120287954m9 066601.0111045-6.000.00008843810447638m10 0840245.0082962-10.130.000100338906771m11 0293447.006979-4.200.00004306880156205	lntotem	ıp	.6704658	.0296946	22.58	0.000	.6120	712	.7288603
m41031688.00717-14.390.00011726860890689m51075987.0081318-13.230.00012358990916074m60583115.0121855-4.790.00008227430343486m70386051.0172689-2.240.02607256450046456m80577883.0147434-3.920.00008878120287954m9066601.0111045-6.000.00008843810447638m100840245.0082962-10.130.000100338906771m110293447.006979-4.200.00004306880156205	m	ı2	0104943	.0068803	-1.53	0.128	0240	245	.0030359
m51075987.0081318-13.230.00012358990916074m60583115.0121855-4.790.00008227430343486m70386051.0172689-2.240.02607256450046456m80577883.0147434-3.920.00008678120287954m9066601.0111045-6.000.00008843810447638m100840245.0082962-10.130.000100338906771m110293447.006979-4.200.00004306880156205	m	ι3	0561029	.0074336	-7.55	0.000	070	721	0414847
m6 0583115.0121855-4.790.00008227430343486m7 0386051.0172689-2.240.02607256450046456m8 0577883.0147434-3.920.00008678120287954m9 066601.0111045-6.000.00008843810447638m10 0840245.0082962-10.130.000100338906771m11 0293447.006979-4.200.00004306880156205	m	14	1031688	.00717	-14.39	0.000	1172	686	0890689
m70386051.0172689-2.240.02607256450046456m80577883.0147434-3.920.00008678120287954m9066601.0111045-6.000.00008843810447638m100840245.0082962-10.130.000100338906771m110293447.006979-4.200.00004306880156205	m	ι5	1075987	.0081318	-13.23	0.000	1235	899	0916074
m80577883.0147434-3.920.00008678120287954m9066601.0111045-6.000.00008843810447638m100840245.0082962-10.130.000100338906771m110293447.006979-4.200.00004306880156205	m	16	0583115	.0121855	-4.79	0.000	0822	743	0343486
m9066601.0111045-6.000.00008843810447638m100840245.0082962-10.130.000100338906771m110293447.006979-4.200.00004306880156205	m	ι7	0386051	.0172689	-2.24	0.026	0725	645	0046456
m10 0840245 .0082962 -10.13 0.000100338906771 m11 0293447 .006979 -4.20 0.00004306880156205	m	18	0577883	.0147434	-3.92	0.000	0867	812	0287954
m11 0293447 .006979 -4.20 0.00004306880156205	m	ι9	066601	.0111045	-6.00	0.000	0884	381	0447638
	m1	0	0840245	.0082962	-10.13	0.000	1003	389	06771
	m1	1	0293447	.006979	-4.20	0.000	0430	688	0156205
	m1	2	.0229512	.0067193	3.42	0.001			.0361648
_cons 2.265582 .1232518 18.38 0.000 2.023208 2.507957	_con	IS	2.265582	.1232518	18.38	0.000	2.023	208	2.507957