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Effects of wind-energy facilities on breeding
grassland bird distributions
Jill A. Shaffer and Deborah A. Buhl
U.S. Geological Survey, Northern Prairie Wildlife Research Center, 8711 37th Street SE, Jamestown, ND 58401, U.S.A.

Abstract: The contribution of renewable energy to meet worldwide demand continues to grow. Wind energy
is one of the fastest growing renewable sectors, but new wind facilities are often placed in prime wildlife
habitat. Long-term studies that incorporate a rigorous statistical design to evaluate the effects of wind facilities
on wildlife are rare. We conducted a before-after-control-impact (BACI) assessment to determine if wind
facilities placed in native mixed-grass prairies displaced breeding grassland birds. During 2003–2012, we
monitored changes in bird density in 3 study areas in North Dakota and South Dakota (U.S.A.). We examined
whether displacement or attraction occurred 1 year after construction (immediate effect) and the average
displacement or attraction 2–5 years after construction (delayed effect). We tested for these effects overall and
within distance bands of 100, 200, 300, and >300 m from turbines. We observed displacement for 7 of 9
species. One species was unaffected by wind facilities and one species exhibited attraction. Displacement and
attraction generally occurred within 100 m and often extended up to 300 m. In a few instances, displacement
extended beyond 300 m. Displacement and attraction occurred 1 year after construction and persisted at
least 5 years. Our research provides a framework for applying a BACI design to displacement studies and
highlights the erroneous conclusions that can be made without the benefit of adopting such a design. More
broadly, species-specific behaviors can be used to inform management decisions about turbine placement
and the potential impact to individual species. Additionally, the avoidance distance metrics we estimated
can facilitate future development of models evaluating impacts of wind facilities under differing land-use
scenarios.

Keywords: avoidance, before-after-control-impact design, climate change, displacement, renewable energy,
upland birds, wind turbine

Efectos de las Instalaciones de Enerǵıa Eólica sobre la Distribución de las Aves de Pastizales en Época Reproductiva

Resumen: La contribución de la enerǵıa renovable para cumplir con las demandas mundiales sigue cre-
ciendo. La enerǵıa eólica es uno de los sectores renovables con mayor crecimiento, pero continuamente se
colocan nuevas instalaciones eólicas en los principales hábitats de fauna silvestre. Los estudios a largo plazo
que incorporan un diseño estadı́stico riguroso para evaluar los efectos de estas instalaciones sobre la fauna
son escasos. Realizamos una evaluación de control de impacto de antes y después (CIAD) para determinar si
las instalaciones eólicas colocadas en praderas de pastos mixtos nativos desplazaron a las aves de pastizales
en época reproductiva. Durante el periodo 2003-2012, monitoreamos los cambios en la densidad de aves en
tres áreas de estudio en Dakota del Norte y del Sur (E.U.A). Examinamos si habı́a ocurrido desplazamiento
o atracción un año después de la construcción (efecto inmediato) y también el promedio de desplazamiento
o atracción 2-5 años después de la construcción (efecto retardado). Analizamos estos efectos en general y
dentro de franjas de distancia de 100, 200, 300 y >300 m de las turbinas. Observamos desplazamiento en
siete de las nueve especies. Una especie no fue afectada por las instalaciones eólicas y una especie mostró
atracción. El desplazamiento y la atracción ocurrieron generalmente dentro de los 100 m y frecuentemente
se extendieron hasta los 300 m. En algunos casos, el desplazamiento se extendió más allá de los 300 m. El
desplazamiento y la atracción ocurrieron un año después de la construcción y continuaron durante por lo
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2 Wind-energy effects on grassland birds

menos cinco años. Nuestra investigación proporciona un marco de trabajo para aplicar el diseño CIAD a los
estudios de desplazamiento y resalta las conclusiones erróneas que pueden hacerse sin el beneficio de adoptar
dicho diseño. En términos más generales, los comportamientos espećıficos de especie pueden usarse para
informar a las decisiones de manejo sobre la colocación de turbinas y el impacto potencial para las especies
individuales. Además, las medidas de distancia de evitación que estimamos pueden facilitar el desarrollo
futuro de los modelos de evaluación de impacto de las instalaciones eólicas bajo escenarios diferentes de uso
de suelo.

Palabras Clave: aves de tierras altas, cambio climático, desplazamiento, diseño de control de impacto de antes
y después, enerǵıa renovable, evitación, turbina de viento

Introduction

Renewable energies will help meet energy demands
while reducing carbon emissions and providing energy
security (IPCC 2012). Globally, the contribution of wind
power to energy demand is anticipated to be 20% by 2050
(IPCC 2011). The United States became the global leader
in new wind capacity in 2012, representing 29% of global
installed capacity due to sustained growth throughout
the interior of the country (i.e., within the Great Plains)
(USDOE 2013).

The Great Plains also supports the last remaining ex-
panses of native temperate grasslands in North America
(Stephens et al. 2008; Rashford et al. 2011; Doherty et al.
2013); thus, the increase in habitat loss and fragmentation
associated with wind development has adverse impacts
on wildlife (McDonald et al. 2009; Kiesecker et al. 2011).
Wildlife are directly affected by wind facilities via colli-
sion mortality (Johnston et al. 2013; Péron et al. 2013)
and indirectly affected through avoidance of turbines
and related infrastructure (i.e., displacement [Drewitt
& Langston 2006]). Per unit energy, wind energy has
a larger terrestrial footprint than other forms of energy
production (Kiesecker et al. 2011). Although the ground
disturbance per turbine is relatively small (about 1.2 ha),
other disturbances such as construction and operation of
the facility, vehicular traffic, maintenance visits, turbine
noise and movement, and changes to predator activity
contribute to the impact of wind facilities (Arnett et al.
2007; Helldin et al. 2012; Gue et al. 2013).

Although displacement research on an international
level has been ongoing for about 2 decades, Drewitt and
Langston (2006) note that few displacement studies are
conclusive, often because of the minimal magnitude of
the effect, poor precision of estimates, and lack of study
design allowing for strong inference assessments. For ob-
servational studies, the before-after-control (reference)-
impact (BACI) design is considered the “optimal impact
study design” (Green 1979) as exemplified by Irons et al.
(2000) and Smucker et al. (2005) and is the preferred
method to determine displacement of wildlife from wind
facilities (Strickland et al. 2011). However, of the numer-
ous displacement studies, most are short-term, are not
BACI designs, and occur on only one wind facility (Sup-

porting Information). Effective conservation strategies
that reduce negative effects of wind facilities to sensitive
wildlife require information from well-designed studies
(Strickland et al. 2011). Preferred characteristics include
a multi-species approach to understand prevalence of dis-
placement behavior, a long-term perspective, and a de-
sign that allows for strong inference (e.g., BACI) (Stewart
et al. 2007; Strickland et al. 2011). Pearce-Higgins et al.
(2012) provide an example of a well-implemented wind-
specific BACI design.

Our overall goal was to determine if wind facilities in-
fluenced distribution of sensitive and declining grassland-
nesting birds (Supporting Information). Specifically, our
objectives were to assess immediate and delayed effects
of the placement of wind facilities. We assessed poten-
tial changes in bird distribution overall and at varying
distances from wind turbines. We implemented a BACI
design that incorporated multiple years, replicated im-
pact and reference sites within 3 facilities, and 9 species,
making our study one of a few that used a rigorous
optimal impact assessment design (Supporting Informa-
tion). Thus, our research provides a strong foundation
for building a more refined understanding of how wind
facilities influence grassland bird distribution temporally
and spatially.

Methods

Collaboration with wind companies provided locations
of impending construction within North Dakota and
South Dakota (U.S.A.). We selected wind facilities sit-
uated within expanses of native grassland and in land-
scapes characterized by morainic rolling plains inter-
spersed with wetlands, mixed-grass prairie pastures, and
few planted grasslands, hayfields, or cropland (Bluemle
1991). Three wind facilities (hereafter, study areas) met
our criteria: NextEra Energy’s (NEE) South Dakota Wind
Energy Center (SD), Highmore, South Dakota; Acciona’s
Tatanka Wind Farm (TAT), Forbes, North Dakota; and
NEE’s Oliver Wind Energy Center (OL), Oliver County,
North Dakota (Table 1, Fig. 1). The study areas differed
in several anthropogenic features (Table 1). The SD site
was within the most heterogeneous landscape and had
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the highest percentage of lands under row-crop cultiva-
tion and the second most kilometers of roads, whereas
TAT was within the least heterogeneous landscape of
primarily grasslands. During the years we were on each
study area (Table 1), TAT and OL had above-average pre-
cipitation and SD received below-average precipitation
(NOAA 2015).

Because of the short time frame between facility site
selection and construction, we conducted only 1 year
of pre-treatment surveys. Within a study area, we se-
lected turbine strings (i.e., turbines connected by a road)
that would be placed in grazed mixed-grass prairie. We
defined a turbine site as the area encompassing the tur-
bines and extending 0.8 km on all sides of the turbine
string, as long as the land and land cover remained grazed
mixed-grass prairie. Reference sites were selected based
on proximity to paired wind facilities (within 3.2 km)
and similarity of land use and cover, topography, and
elevation to turbine sites. Measures of vegetation struc-
ture were similar between turbine and reference sites
and therefore were excluded as a possible confounding
effect (Supporting Information).

We conducted total-area avian surveys (Stewart &
Kantrud 1972) within a grid system (Shaffer & Thiele
2013) 2 times annually from late May to early July,
from 0.5 hours after sunrise to 1100, on days of good
visibility and good aural detectability (i.e., days with
little or no precipitation and low to moderate winds
[<40 km/hour]). We established avian survey plots with
grids of fiberglass posts arranged in parallel lines spaced
200 m apart. Transect lines were established 100 m
apart perpendicular to the grid lines. Observers recorded
all birds seen and heard within 50 m of transects
established within the grids. Genders of non-dimorphic
species were determined by the presence or absence
of song. For 9 grassland bird species (Table 2; Support-
ing Information), we computed the number of breeding
pairs for each site (turbine and reference), survey, and
year combination. A male and female observed together
was considered a breeding pair; a male or female ob-
served alone was also considered a breeding pair. The
number of pairs was divided by the suitable breeding
area in each turbine and reference site, as determined
by breeding habitat for each species (Supporting Infor-
mation), and multiplied by 100 to determine density per
100 ha (Supporting Information). We used the maximum
of the biannual survey densities for each species-site-year
combination to reflect peak breeding density.

We employed a BACI design (McDonald et al. 2000)
to examine turbine effects on bird density. We used
data from surveys conducted prior to and after turbine
construction at turbine and reference sites. Using
2 different treatment specifications, we conducted
analyses separately for each species and study area. The
first analysis consisted of 2 treatment levels, turbine sites
and reference sites, to assess overall effects of turbines on
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4 Wind-energy effects on grassland birds
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Figure 1. Map of studied
wind-energy facilities in North
Dakota and South Dakota
(U.S.A.) (white polygons,
turbine treatment sites; gray
polygons, reference sites; plus
symbol, turbine locations).

densities of breeding birds. For the second analysis, we
divided turbine sites into 4 100-m distance bands from
turbines (0-100 m, 100–200 m, 200–300 m, and >300 m),
for a total of 5 treatment levels including the reference
sites. We used repeated measures analysis of variance
(RMANOVA) in SAS PROC MIXED (SAS Institute 2012)
to assess effects of treatment and year on bird density
(Verbeke & Molenberghs 2000). In the first treatment
specification, year was the repeated measure and site
within treatment was the experimental unit sampled
each year. For the second treatment specification,
site was included as a random block, year was the
repeated measure, and site-by-treatment combinations
were the experimental units sampled yearly. We
accounted for autocorrelation among years by running
a correlated error model (auto-regressive) (Littell et al.
2006).

Using the BACI design, we conducted planned
contrasts among treatment means (Milliken & John-
son 2009) to estimate turbine effects. The con-
trasts tested whether average density for first

post-treatment year minus average density for pre-
treatment year was equal between turbine and reference
treatments (H0: [densityturbine,1yr-post – densityturbine,pre]
– [densityreference,1yr-post – densityreference,pre] = 0) and if
average 2- to 5-year post-treatment mean density (i.e.,
mean density for the 2 to 5 calendar years following
turbine construction) minus average density for pre-
treatment year was equal between turbine and reference
treatments (H0: [densityturbine,2-5yr-post – densityturbine,pre]
– [densityreference,2-5yr-post – densityreference,pre] = 0). The
former contrast tested for an immediate turbine effect,
whereas the latter contrast tested for a delayed effect.
Immediate effects were not testable at TAT because
1-year post-treatment data were not collected. For the
delayed effects, the span of years in which surveys were
conducted varied among study areas, and surveys were
not done every year within that time span. To achieve a
consistent time frame that could be assessed at all 3 study
areas, we used the average of 2–5 years post-treatment to
assess the delayed effect, rather than assessing effects for
each post-treatment year separately.
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Table 2. Test statistics from the contrasts comparing changes in bird density per 100 ha between reference and turbine sites from pre-treatment year to 1 year post-treatment in South Dakota
(NextEra Energy [NEE] SD Wind Energy Center [SD]) and North Dakota (NEE Oliver Wind Energy Center [OL]), (U.S.A.) 2003–2012.∗

Location and Clay- Chestnut-
distance from Grasshopper Western Upland Savannah colored collared Vesper
turbines (m) Sparrow Meadowlark Bobolink Sandpiper Killdeer Sparrow Sparrow Longspur Sparrow

SD
0-100 t76 = –1.84, t77 = –3.90, t57 = –1.25, t83 = –1.33, t92 = 3.21, t69 = 0.62,

p = 0.07 p<0.01 p = 0.22 p = 0.19 p<0.01 p = 0.54

100–200 t76 = –0.31, t77 = –0.73, t57 = –0.26, t83 = 0.38, t92 = 0.70, t69 = –1.09,
p = 0.76 p = 0.47 p = 0.80 p = 0.70 p = 0.49 p = 0.28

200–300 t76 = –0.25, t77 = –0.67, t57 = –1.28, t83 = –1.63, t92 = 1.60, t69 = –0.81,
p = 0.81 p = 0.50 p = 0.20 p = 0.11 p = 0.11 p = 0.42

>300 t76 = 0.21, t77 = –1.23, t57 = –1.65, t83 = –1.07, t92 = 0.88, t69 = 1.10,
p = 0.83 p = 0.22 p = 0.10 p = 0.29 p = 0.38 p = 0.27

Overall t29 = –0.11, t20 = –2.27, t36 = –1.71, t32 = –1.23, t25 = 2.01, t39 = 0.50,
p = 0.91 p = 0.03 p = 0.10 p = 0.23 p = 0.06 p = 0.62

OL
0–100 t20 = –1.80, t14 = 0.46, t18 = –1.21, t18 = –2.39, t27 = 2.85, t21 = –1.43, t22 = –1.79, t20 = 0.58,

p = 0.09 p = 0.65 p = 0.24 p = 0.03 p = 0.01 p = 0.17 p = 0.09 p = 0.57

100–200 t20 = –0.71, t14 = 1.14, t18 = –0.47, t18 = 1.00, t27 = 0.71, t21 = –2.45, t22 = –1.77, t20 = 0.21,
p = 0.49 p = 0.27 p = 0.64 p = 0.33 p = 0.48 p = 0.02 p = 0.09 p = 0.83

200–300 t20 = 0.09, t14 = 1.94, t18 = 2.14, t18 = –0.23, t27 = –0.33, t21 = –3.41, t22 = –0.76, t20 = –1.64,
p = 0.93 p = 0.07 p = 0.05 p = 0.82 p = 0.74 p<0.01 p = 0.46 p = 0.12

>300 t20 = 1.14, t14 = 1.45, t18 = 1.93, t18 = –0.17, t27 = –0.15, t21 = –0.50, t22 = –1.62, t20 = 0.29,
p = 0.27 p = 0.17 p = 0.07 p = 0.87 p = 0.88 p = 0.62 p = 0.12 p = 0.77

Overall t9 = 0.78, t8 = 1.17, t9 = 1.40, t9 = –0.02, t8 = –0.03, t12 = –1.03, t10 = –2.07, t12 = 0.22,
p = 0.46 p = 0.28 p = 0.20 p = 0.99 p = 0.98 p = 0.32 p = 0.06 p = 0.83

∗Cells with no values indicate an analysis for that species was not conducted because of low number of observations.
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6 Wind-energy effects on grassland birds

Figure 2. Difference in change in bird density/100 ha between reference and wind turbine sites from
pre-treatment year to 1 year post-treatment (immediate effect) in South Dakota (NextEra Energy [NEE] SD Wind
Energy Center [SD]) and North Dakota (Acciona Tatanka Wind Farm [TAT] and NEE Oliver Wind Energy Center
[OL]), 2003–2012 for (a) Grasshopper Sparrow, (b) Western Meadowlark, (c) Bobolink, (d) Upland Sandpiper, (e)
Killdeer, (f) Savannah Sparrow, (g) Clay-colored Sparrow, (h) Chestnut-collared Longspur, and (i) Vesper Sparrow
(difference = [densityturbine,1yr-post – densityturbine,pre] – [densityreference,1yr-post – densityreference,pre]; error bars, SE; value
>0, positive effect; value <0, negative effect; asterisk, significant [α = 0.05] difference).

One strength of a BACI design is that it allows
researchers to assume that any naturally occurring
changes occur at both the impact and control sites;
thus, any changes observed at the impact sites can
be attributed to the impact (Manly 2001). Therefore,
we assumed annual variation in bird populations and
weather effects were the same for turbine and reference
sites within a study area. Vegetation structure also
was similar between sites (Supporting Information).
In addition, turbine and reference sites were spatially
replicated within wind facilities; this allowed us to

account for variability among sites and to test if, on
average, changes in density differed between turbine
and reference sites. Therefore, any immediate or delayed
effects were due to the construction of the wind facility.

Results

Immediate Effects

We detected statistically significant immediate (1-year)
displacement behavior for 3 of 9 species (Western
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8 Wind-energy effects on grassland birds

Figure 3. Difference in change in bird density/100 ha between reference and wind turbine site from pre-treatment
year to 2–5 years post-treatment (delayed effect) in South Dakota (NextEra Energy [NEE] SD Wind Energy Center
[SD]) and North Dakota (Acciona Tatanka Wind Farm [TAT] and NEE Oliver Wind Energy Center [OL]),
2003–2012 for (a) Grasshopper Sparrow, (b) Western Meadowlark, (c) Bobolink, (d) Upland Sandpiper, (e)
Killdeer, (f) Savannah Sparrow, (g) Clay-colored Sparrow, (h) Chestnut-collared Longspur, and (i) Vesper Sparrow
(difference = [densityturbine,2-5yr-post – densityturbine,pre] – [densityreference,2-5yr-post – densityreference,pre]; error bars, SE;
value >0, positive effect; value <0, negative effect; asterisk, significant [α = 0.05] difference).

Meadowlark [Sturnella neglecta], Upland Sandpiper
[Bartramia longicauda], and Savannah Sparrow
[Passerculus sandwichensis]) and attraction for 2
species (Killdeer [Charadrius vociferous] and Bobolink
[Dolichonyx oryzivorus]) (Table 2). For Western
Meadowlark, displacement was detected at SD; effects
were apparent overall and within 100 m (Fig. 2b). For
Upland Sandpiper, displacement was detected at OL,

but only within 100 m (Fig. 2d). Change in density of
Savannah Sparrow was lower 100–300 m from turbines
than at reference sites at OL, the one study area in which
immediate effects could be determined for this species
(Fig. 2f). Killdeer expressed attraction within 100 m of
turbines at both study areas 1 year post-construction
(Fig. 2e, Table 2). Bobolink exhibited a positive
difference 200–300 m at OL (Fig. 2c, Table 2).
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Wind facilities had no significant immediate effect
on Grasshopper Sparrow (Ammodramus savannarum),
Clay-colored Sparrow (Spizella pallida), or Chestnut-
collared Longspur (Calcarius ornatus) (Table 2). How-
ever, the magnitude of differences (�20 birds/100 ha)
between turbine sites and reference sites suggested these
species may have exhibited immediate displacement
(Fig. 2a, 2g, 2h). Vesper Sparrow (Pooecetes gramineus)
appeared unaffected by wind facilities (Fig. 2i).

Delayed Effects

We detected significant displacement behavior beyond 1
year for 7 species (Table 3). For Grasshopper Sparrow,
we detected displacement overall at SD, within 200 m at
all 3 study areas, and within 200–300 m at TAT and OL
(Fig. 3a). Bobolink, Upland Sandpiper, Savannah Spar-
row, and Clay-colored Sparrow exhibited displacement
at 2 study areas each (Fig. 3c, 3d, 3f, 3g). Displacement
occurred overall and at all distances for Bobolink at TAT,
but only within 200 m at OL. Upland Sandpiper exhibited
displacement overall and beyond 300 m at SD, but only
within 100 m at OL. Displacement was observed within
200–300 m for Savannah Sparrow at both TAT and OL and
within 100–200 m at TAT. For Clay-colored Sparrow, sig-
nificant displacement occurred within 200 m at TAT and
>300 m at OL. For Western Meadowlark and Chestnut-
collared Longspur, displacement was detected at SD only.
Effects were apparent overall, within 100 m, and beyond
200 m for Western Meadowlark (Fig. 3b) and overall and
within 300 m for Chestnut-collared Longspur (Fig. 3h).
Killdeer and Vesper Sparrow showed no delayed effects
(Fig. 3e, 3i).

Discussion

The preferred design for testing impacts of energy in-
frastructure on wildlife is the BACI design (Evans 2008;
Strickland et al. 2011), but examples are rare (Supporting
Information). Our work provides a framework for apply-
ing a BACI design to behavioral studies and highlights
the erroneous conclusions that can be made when the
BACI approach is not used. If we had data from only
impact sites (i.e., no reference sites) or had only post-
treatment data (i.e., no pre-treatment monitoring) and
thus not been able to use a BACI design, our conclu-
sions would have been different. Obtaining data from
impact and reference sites allowed us to discern changes
in avian densities due to wind facilities as opposed to
naturally occurring changes. For example, Grasshopper
Sparrow at SD showed a large change in density on the
turbine sites (i.e., a decrease of more than 60 birds/100
ha) from the pre-treatment year to the first year post-
treatment (Supporting Information). Without reference
sites, we may have interpreted this decrease in density

to be due to turbine operation. However, we observed
a similar change in density at reference sites, indicating
the change on the turbine sites was probably due not
to turbine operation but rather to normal annual varia-
tion in avian density. Pre-treatment data were used to
account for differences among the turbine and reference
sites prior to turbine construction, which allowed us to
attribute post-treatment differences to turbine operation.
For example, Grasshopper Sparrows at SD had higher
average density for reference sites (60.1 birds/100 ha)
than for turbine sites (38.3 birds/100 ha) in the first
post-construction year (Supporting Information). With-
out pre-treatment data, this difference might have been
interpreted as a turbine effect. However, pre-treatment
data provided evidence of existing site differences of the
same magnitude (Supporting Information) and therefore
indicates there was no turbine effect.

By collecting data the year following construction and
beyond 1 year post-construction, we were able to assess
whether species exhibited immediate effects, delayed ef-
fects, or sustained effects. Because our turbine and refer-
ence sites were near one another and were similar with
respect to landscape composition, vegetation, topogra-
phy, and weather, the BACI design allowed us to assume
that any naturally occurring changes happen at both the
turbine and reference sites and therefore can be ruled out
as alternative explanations. In addition, spatial replication
of turbine and reference sites within study areas accounts
for inherent variability among sites (Underwood 1992).
Thus, any effects we observed were attributed to the
operation of the wind facility.

Immediate effects were manifested by displacement or
attraction the year following turbine construction. Birds
returning in the spring following construction would en-
counter an altered landscape and would need to decide
whether to settle near a wind facility or move elsewhere.
In our study areas, Vesper Sparrows and Killdeer showed
a high degree of tolerance to newly constructed wind
facilities. Vesper Sparrows are often the first species
to occupy disturbed areas (Jones & Cornely 2002);
therefore, lack of displacement is not surprising given
this life-history characteristic. Moreover, Johnson et al.
(2000) reported attraction of Vesper Sparrows to turbines
1 year post-construction at grassland sites in Minnesota
(U.S.A.). Killdeer prefer gravel substrates for nesting, and
roadsides are preferred habitat (Jackson & Jackson 2000).
Our finding that Killdeer density increased nearest to
newly constructed turbines likely reflects similar habi-
tat selection. Similarly, Johnson et al. (2000) reported
higher than expected use of turbine plots in Minnesota
by Horned Larks (Eremophila alpestris), another species
that prefers disturbed areas. However, Erickson et al.
(2004) found no evidence of attraction (or displacement)
for this species in Oregon (U.S.A.).

Some species in our study areas did not exhibit im-
mediate effects, yet we observed displacement in years

Conservation Biology
Volume 00, No. 0, 2015

Michael Bollweg Exhibit P - Page 9 of 28



10 Wind-energy effects on grassland birds

beyond the first year post-construction (i.e., delayed ef-
fects). Species exhibiting breeding site fidelity might be
more inclined to show delayed effects than immediate
effects. Individuals will return to a turbine site 1 year post-
construction due to site fidelity, but they may not return
in subsequent years because of intolerance of the wind
facility. In addition, new individuals may be unwilling
to settle near turbines. We detected delayed displace-
ment for Grasshopper Sparrow, Western Meadowlark,
Bobolink, Upland Sandpiper, Clay-colored Sparrow, and
Chestnut-collared Longspur, all of which exhibit breed-
ing site fidelity (Hill & Gould 1997; Jones et al. 2007).
Likewise, Johnson et al. (2000) reported delayed effects
for Grasshopper Sparrow, Bobolink, and Savannah Spar-
row, which also shows breeding site fidelity (Fajardo
et al. 2009). On a Scottish wind facility 3 years post-
construction, Douglas et al. (2011) detected delayed ef-
fects for 2 upland species, Red Grouse (Lagopus lagopus
scotica) and European Golden Plover (Pluvialis apri-
caria); these 2 species are also site faithful (Jenkins et al.
1963; Parr 1980).

We considered a species to be exhibiting a sus-
tained effect if displacement continued from 1 year post-
construction into 2–5 years post-construction. In our
study, sustained displacement usually occurred within
100 m (e.g., Western Meadowlark at SD and Upland
Sandpiper at OL). Few other researchers have examined
sustained effects. Pearce-Higgins et al. (2012) detected
positive long-term effects in the United Kingdom for 2 up-
land species and negative effects for 2 waterbird species.

Consistency of behavioral responses to wind facilities
varied across the 9 species of grassland nesting birds we
monitored. Grasshopper Sparrows and Clay-colored Spar-
rows exhibited the most consistent results across study
areas. The Grasshopper Sparrow is an area- and edge-
sensitive species (Grant et al. 2004; Ribic et al. 2009) for
which amount of grassland in the surrounding landscape
is important (Berman 2007; Greer 2009). Wind facilities
appear to be an additional landscape change not tolerated
by Grasshopper Sparrows, and the construction of addi-
tional wind facilities throughout native grasslands could
be detrimental to the species. Clay-colored Sparrows pre-
fer grasslands intermixed with shrubs and woody edges
(Grant & Knapton 2012). We speculate that removal of
woody vegetation during construction of roads and tur-
bines reduced breeding habitat for this species.

Bobolinks, Western Meadowlarks, Upland Sandpipers,
and Savannah Sparrows exhibited inconsistent displace-
ment behavior across study areas. Because we were not al-
ways present on study areas in the same years, we suspect
inconsistencies resulted from habitat differences specific
to study area that may have been influenced by variable
precipitation patterns. The interaction of habitat condi-
tions and species-specific life-history strategies may have
influenced behavior. For example, Bobolinks exhibited
strong displacement at TAT, which was the largest wind

facility with the most intact grasslands and the highest
precipitation. Densities of Bobolinks also were greatest
at TAT (Supporting Information); hence, density depen-
dent effects may arise at these higher densities and may
result from habitat loss (both grassland and wetland) with
construction of turbines. As a result of high precipitation,
grasslands at this site were interspersed with many small
wetlands containing nesting pairs of Red-winged Black-
birds (Agelaius phoeniceus). Red-winged Blackbirds and
Bobolinks are antagonistic. Red-winged Blackbirds may
displace Bobolinks from perches, and Bobolinks appear
to avoid nesting near active blackbird nests (Martin &
Gavin 1995). Thus, displacement of Bobolinks at TAT
could have been more evident because of intra- or inter-
specific competition.

For other species, cumulative effects of wind facilities
and other landscape changes might be the cause of in-
consistent results. Western Meadowlarks are a gregarious
species not reported to be sensitive to habitat area or
habitat edges (Johnson & Igl 2001), and some degree
of anthropogenic activity appears acceptable to them.
However, we speculate that the degree of anthropogenic
disturbance at SD surpassed the species’ threshold of
tolerance to human activity. The sustained displacement
observed at SD could be the species’ response to the ad-
ditive stressors of wind-facility operation and recent land
conversion from grassland to agricultural fields (Wright
& Wimberly 2013). Increasing urbanization had a strong
negative effect on the density of a congeneric species,
Eastern Meadowlark (Sturnella magna), in grasslands
(McLaughlin et al. 2014). Conversely, TAT, where no
displacement effects were observed for Western Mead-
owlarks, has undergone little land conversion, was com-
posed of 92% perennial grasslands (Loesch et al. 2013),
and was located in a remote area rarely traversed by
humans other than personnel associated with the wind
facility. Upland Sandpiper displayed the most inconsis-
tent results and a similar pattern as Western Meadowlark.
The species is highly sensitive to habitat fragmentation
(Ribic et al. 2009), and the strongest displacement effects
occurred on the most fragmented study areas, SD and OL.
No displacement was detected on the least fragmented
study area. As with Western Meadowlarks, Upland Sand-
pipers may have reached a threshold beyond which addi-
tional landscape disturbance could not be tolerated and
displacement behavior became apparent.

Our results for displacement distances for Grasshop-
per Sparrow (300 m), Bobolink (>300 m), Western
Meadowlark (>300 m), Upland Sandpiper (100 m), Clay-
colored Sparrow (200 m), Savannah Sparrow (300 m),
and Chestnut-collared Longspur (300 m) were consis-
tent with those reported by other researchers. In a
literature review of North American grassland birds,
Johnson and Stephens (2011) reported displacement ex-
tending 50–180 m from turbines. Stevens et al. (2013)
found that mean plot occupancy for Le Conte’s Sparrows

Conservation Biology
Volume 00, No. 0, 2015

Michael Bollweg Exhibit P - Page 10 of 28



Shaffer & Buhl 11

(Ammodramus leconteii) wintering in Texas was 4 times
lower in plots <200 m from nearest wind turbine rela-
tive to >400 m from the nearest turbine. In the United
Kingdom, 7 of 12 upland species exhibited displacement
within 500 m (Pearce-Higgins et al. 2009). Winkelman
(1992) found that shorebirds in a Netherlands wind fa-
cility occurred in significantly smaller numbers within
500 m from turbines. Thus, although displacement can
occur as far as 500 m from turbines, most studies show
displacement within 200 m.

Evaluating turbine effects overall and by distance from
turbine allowed us to differentiate between localized dis-
placement and site abandonment. For several species,
immediate or delayed effects occurred by distance at a
site, but there was no significant reduction in density
at that site overall. This may have occurred because
breeding pairs near turbines relocated short distances
from turbines but not off the site completely. For ex-
ample, Grasshopper Sparrow at OL showed an immedi-
ate reduction in density of birds near turbines and an
increased density at distance categories >300 m and
overall. Thus, Grasshopper Sparrows may not abandon
sites completely; rather, they may relocate away from the
turbines and establish territories farther from turbines.
Without examining displacement by distance band, we
would have missed this localized displacement and in-
stead concluded there was no displacement. Niemuth
et al. (2013) also found near-turbine displacement. They
modeled mean occupancy for 4 waterbird species at 2
wind facilities in North Dakota, one of which was TAT,
and found that species occurrences were not substan-
tially reduced overall at either facility post-construction.
However, occupancy was slightly and consistently lower
for 3 of the 4 species at one wind facility. Thus, effects
of wind facilities should be examined overall and by dis-
tance from turbines.

Our identification of species-specific behaviors to wind
facilities can be used to inform management decisions
about turbine placement in grasslands and the potential
impact at an individual species level. Metrics of displace-
ment distances can be used to parameterize models that
quantify the potential loss of habitat under scenarios of
differing land uses and corresponding avian community
composition. Output from these models may help drive
conservation planning, such as prioritizing landscapes of
highest value for preservation or restoration.
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Supporting Information - Appendix S1.

Table S1.1.  Studies of avian and mammal displacement from onshore wind facilities that used impact assessment designs of Before-

After Control-Impact (BACI), Control-Impact (CI), Before-After (BA), and Impact-Gradient (IG) (Manly 2001).

Source Country 
Taxonomic 

group 
Variable of

interest
Season

No. wind 
Facilities

Impact
assessment 

design

No. Yrs.
Pre-

Treatment

No. Yrs.
Post-

Treatmenta

Winkelman 1992 Netherlands 
multiple 

avian
abundance year-round 1 IG, BACI 1-3 1

Osborn et al. 1998 USA
multiple 

avian
abundance 

flight height
breeding 
migration

1 CI 0 2

Leddy et al. 1999 USA passerine density breeding 1 CI 0 1

Johnson et al. 
2000a

USA
multiple 

avian
avian use

breeding
migration

1 BACI 2 2

Johnson et al. 
2000b 

USA
multiple 

avian and 
mammal

abundance 
distribution 

use
year-round 1 BACI 2 1

Larsen and Madsen 
2000

Denmark waterbird
field 

utilization
winter 2 IG 0 1

Barrios and 
Rodriguez 2004

Spain raptor 
flight 

behavior
year-round 2 IG 0 1

de Lucas et al. 2004 Spain
passerine

raptor 

abundance
productivity 

flight 
behavior

year-round 1 CI 0 2

Erickson et al. 2004 USA passerine avian use breeding 1 BA, IG 1 1

de Lucas et al. 2005 Spain
multiple 

avian and 
mammal

abundance
flight 

behavior
breeding 1 BACI, IG 1 1

Rabin et al. 2006 USA
ground 
squirrel

antipredator 
behavior

breeding 1 CI 0 1
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Walter et al. 2006 USA elk
distance

home range
year-round 1 BA 1 2

Devereaux et al. 
2008

UK
multiple 

avian
occurrence winter 2 IG 0 1

Madsen and 
Boertmann 2008

Denmark waterbird
field 

utilization
migration 3 IG 0 2

Pearce-Higgins et 
al. 2009

UK
multiple 

avian
occurrence

flight height
breeding 12 CI 0 1

Douglas et al. 2011 UK
game bird
waterbird

abundance
occurrence

breeding 1 CI 0 2

Garvin et al. 2011 USA raptor 
abundance

flight height
breeding 1 BA, CI 1 2

Jain et al.  2011 USA bats activity
migration
breeding

1 CI 0 2

Pearce-Higgins et 
al. 2012

UK
game bird
passerine
waterbird

density breeding 18 BACI 1 1-5 

Rubenstahl et al. 
2012

USA passerine productivity breeding 1 IG 0 1

Hatchett et al. 2013 USA passerine productivity breeding 1 IG 0 2

Loesch et al. 2013 USA waterbird density breeding 2 CI 0 3

Niemuth et al. 2013 USA waterbird occurrence breeding 2 CI 0 3

Stevens et al. 2013 USA passerine occupancy winter 1 IG 0 2

Bennett et al. 2014 USA passerine productivity breeding 1 IG 0 1

LeBeau et al. 2014 USA game bird 
fitness

productivity
breeding 1 IG 0 2

McNew et al. 2014 USA game bird site selection 
productivity

breeding 1 BA, IG 2 3

Winder et al. 2014a USA game bird fitness year-round 1 BA, IG 2 3
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Winder et al. 2014b USA game bird home range 
distribution

year-round 1 BA, IG 2 3

Shaffer and Buhl, 
this paper

USA
passerine
waterbird

density breeding 3 BACI 1 3-4b

aConstruction years were not included. 
bWe had 3-4 post-treatment years of data over the 5-year post-treatment time frame (i.e., 5 calendar years) used for analyses.
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Supporting Information - Appendix S2.

Table S2.1.  Habitat classification, population trend, and conservation status of avian species that 

were sufficiently abundant to include in analyses examining the effects of wind energy 

development on avian density in South Dakota (NextEra Energy [NEE] SD Wind Energy Center

[SD], U.S.A.) and North Dakota (Acciona Tatanka Wind Farm [TAT] and NEE Oliver Wind 

Energy Center [OL], U.S.A.), 2003-2012.

Species Habitat
classificationa

Population trend
(%)b

Species of 
concernb

Grasshopper sparrow 
Ammodramus savannarum

grassland obligate -2.5 no

Bobolink  
Dolichonyx oryzivorus

grassland obligate -2.1 yes

Western meadowlark 
Sturnella neglecta

grassland obligate -1.3 no

Killdeer 
Charadrius vociferous

generalist -1.2 no

Upland sandpiper  
Bartramia longicauda

grassland obligate 0.5 yes

Clay-colored sparrow 
Spizella pallida

grassland/shrubland -1.4 no

Vesper sparrow 
Pooecetes gramineus

grassland obligate -0.9 no

Savannah sparrow  
Passerculus sandwichensis

grassland obligate -1.2 no

Chestnut-collared longspur  
Calcarius ornatus

grassland obligate -4.3 yes

aHabitat classification and concern rankings from NABCI (2014). 

bBreeding Bird Survey population trends from Sauer et al. (2013). 
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Supporting Information 

Appendix S3. Description of vegetation surveys and analysis for the study on effects of wind 

energy facilities on grassland birds in South Dakota (NextEra Energy [NEE] SD Wind Energy 

Center [SD], U.S.A.) and North Dakota (Acciona Tatanka Wind Farm [TAT] and NEE Oliver 

Wind Energy Center (OL), U.S.A.), 2003-2012. 

The mixed-grass prairie biome in North Dakota and South Dakota (U.S.A.) is a heterogeneous 

landscape of wetland complexes embedded within grasslands of highly scattered patches of low-

growing trees and shrubs, such as Symphoricarpos occidentalis (Hook) and Prunus virginiana

(L.).  Non-grassland habitats within sites were mapped using GPS units and digital photography 

because our focal species did not breed within all available habitat types within any particular 

site.  For example, grasshopper sparrows were never detected within wetlands or colonies of 

black-tailed prairie dogs Cynomys ludovicianus (Ord).  We accounted for the fact that some of 

our focal species have particular breeding habitat preferences by mapping area of wetlands (open 

water), woodlands, colonies of black-tailed prairie dogs, and exceptionally lush grass and 

deleting these areas from total area of each site, as applicable, so as to calculate suitable breeding 

area at a species level.  Wetland area was removed for all nine of our focal species, woodland 

area was removed for all species except clay-colored sparrow, area of prairie-dog colony was 

removed for grasshopper sparrow (JAS, personal observation), and area of lush grass was 

removed for chestnut-collared longspur (Hill & Gould 1997).  

Vegetation measurements were taken within the 50 m by 200 m cells formed by the avian 

survey grids.  Cells were systematically chosen and sampling was conducted along 1-2 sampling 

lines.   Percent composition of six basic life forms, bare ground (e.g., bare ground, cow pie, 
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rock), grass, forb, shrub, standing residual, and lying litter, was estimated using a step-point 

sampler (Owensby 1973).  Height-density (i.e., visual obstruction) was measured with a Robel 

pole (Robel et al. 1970).  Vegetation height and litter depth were measured with a meter stick.  

Measurements were averaged to characterize each site. 

 To examine the similarity in vegetation metrics (e.g., vegetation height, proportion bare 

ground) between turbine and reference sites, a repeated measures analysis of variance was 

conducted to estimate and compare mean habitat features between turbine and reference sites and 

among years.   

Vegetation characteristics did not significantly vary between reference and turbine sites 

except for VOR at TAT, where the difference was still quite small (see Appendix Table S2.1).  

As expected, yearly differences did occur for most vegetation characteristics.  Therefore, the 

habitat was similar between reference and turbine sites and can be excluded as a possible 

confounding factor. 
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Table S3.1. Least squares means of each vegetation variable for reference and turbine sites, at SD Wind Energy Center (SD) in 
Highmore, South Dakota (2003-2012); Acciona’s Tatanka Wind Farm (TAT) in Forbes, North Dakota (2007-2012); and Oliver Wind 
Energy Center (OL) in Oliver Co., North Dakota (2006-2011), U.S.A.  Sig. column indicates significance at a significance level of 
0.05, t indicates significant difference between reference and turbine sites, y indicates significant difference among years, and t*y 
indicates a significant turbine*year interaction.

SD TAT OL

Reference Turbine Sig. a Reference Turbine Sig. Reference Turbine Sig. a

VOR 0.97 (0.16) 0.74 (0.12) y 0.93 (0.05) 1.33 (0.07) t 1.09 (0.07) 0.77 (0.07) t*y

Litter Depth 2.58 (0.41) 2.11 (0.32) t*y 3.05 (0.28) 3.71 (0.38) y 2.92 (0.34) 2.48 (0.34) y 

Veg Height 26.47 (2.32) 23.48 (1.81) y 29.30 (1.90) 33.67 (2.65) y 29.76 (2.05) 23.41 (2.05) t*y

Bare Ground 0.03 (0.01) 0.03 (0.01) y 0.02 (0.00) 0.01 (0.01) 0.01 (0.01) 0.04 (0.01)

Forbs 0.11 (0.02) 0.10 (0.02) t*y 0.17 (0.01) 0.21 (0.02) y 0.12 (0.02) 0.15 (0.02) y 

Grass 0.64 (0.02) 0.65 (0.01) y 0.62 (0.03) 0.58 (0.04) y 0.68 (0.03) 0.59 (0.03)

Lying Litter 0.16 (0.02) 0.17 (0.02) t*y 0.08 (0.01) 0.05 (0.01) y 0.09 (0.02) 0.09 (0.02)

Res. Litter 0.05 (0.01) 0.05 (0.01) y 0.04 (0.01) 0.05 (0.01) y 0.08 (0.01) 0.07 (0.01) y 

Shrubs --- --- 0.07 (0.02) 0.09 (0.03) 0.02 (0.02) 0.05 (0.02) y 

a
Most interaction effects were significant due to year differences rather than to differences between reference and turbine sites.  
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Supporting Information 

Appendix S4.  Least squares means (SE) of density / 100 ha for reference and turbine sites for 3 

study sites in North Dakota and South Dakota (U.S.A.), 2003-2012. 

Table S4.1. Least squares means (SE) of density/100 ha for reference and turbine sites each year 

at SD Wind Energy Center (SD) in Highmore, South Dakota. 

Year
Grasshopper 

Sparrow

Chestnut-
collared 

Longspur

Western
Meadowlark

Bobolink
Upland 

Sandpiper
Killdeer

R
ef

er
en

ce
 S

it
es

2003 124.3 (11.2) 56.7 (10.4) 22.0 (3.2) 8.5 (5.2) 2.3 (1.9) 3.2 (1.3)

2004 60.1 (11.2) 42.3 (10.4) 22.0 (3.2) 12.9 (5.2) 1.5 (1.9) 0.0 (1.3)

2005 62.1 (11.2) 36.2 (10.4) 15.5 (3.2) 6.6 (5.2) 2.9 (1.9) 0.7 (1.3)

2006 100.6 (11.2) 65.8 (10.4) 30.3 (3.2) 5.2 (5.2) 3.7 (1.9) 2.2 (1.3)

2008 130.7 (11.2) 120.6 (10.4) 37.6 (3.2) 14.8 (5.2) 1.8 (1.9) 0.8 (1.3)

2010 87.4 (11.2) 39.8 (10.4) 23.2 (3.2) 18.2 (5.2) 5.1 (1.9) 0.0 (1.3)

2012 79.4 (11.2) 60.3 (10.4) 15.5 (3.2) 42.4 (5.2) 2.6 (1.9) 1.7 (1.3)

T
u

rb
in

e 
S

it
es

2003 104.6 (8.6) 47.3 (8.1) 36.6 (2.5) 7.2 (4.0) 9.8 (1.5) 4.7 (1.0)

2004 38.3 (8.6) 37.5 (8.1) 24.6 (2.5) 1.3 (4.0) 5.3 (1.5) 7.1 (1.0)

2005 31.6 (8.6) 23.7 (8.1) 16.5 (2.5) 3.1 (4.0) 2.2 (1.5) 1.8 (1.0)

2006 52.0 (8.6) 38.4 (8.1) 28.3 (2.5) 5.6 (4.0) 3.2 (1.5) 4.2 (1.0)

2008 51.4 (8.6) 48.2 (8.1) 23.9 (2.5) 6.1 (4.0) 2.1 (1.5) 2.8 (1.0)

2010 34.5 (8.6) 35.3 (8.1) 20.3 (2.5) 2.3 (4.0) 3.7 (1.5) 4.3 (1.0)

2012 53.9 (9.7) 43.7 (8.8) 27.7 (2.8) 9.7 (4.5) 5.3 (1.6) 4.3 (1.2)

Reference 
Average

92.1 (4.6) 60.2 (7.1) 23.7 (1.2) 15.5 (2.9) 2.9 (0.8) 1.2 (0.5)

Turbine 
Average

52.3 (3.6) 39.1 (5.5) 25.4 (1.0) 5.0 (2.3) 4.5 (0.6) 4.2 (0.4)

Overall 
Average

72.2 (2.9) 49.7 (4.5) 24.6 (0.8) 10.3 (1.8) 3.7 (0.5) 2.7 (0.3)
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Table S4.2. Least squares means (SE) of density/100 ha for reference and turbine sites each year at Acciona’s 

Tatanka Wind Farm (TAT) in Forbes, North Dakota. 

Year
Grasshopper 

Sparrow

Clay-
colored 
Sparrow

Western
Meadowlark

Bobolink
Upland 

Sandpiper
Killdeer

Savannah
Sparrow

Vesper 
Sparrow

R
ef

er
en

ce
 S

it
es

2007 67.6 (8.8) 27.1 (11.6) 13.8 (2.0) 39.0 (3.6) 8.8 (1.9) 0.2 (0.6) 5.2 (1.4) 6.4 (1.7)

2009 55.1 (8.8) 31.9 (11.6) 13.1 (2.0) 22.1 (3.6) 10.3 (1.9) 1.4 (0.6) 3.0 (1.4) 4.6 (1.7)

2010 84.4 (8.8) 30.6 (11.6) 17.2 (2.0) 31.0 (3.6) 11.5 (1.9) 1.2 (0.6) 4.3 (1.4) 1.9 (1.7)

2012 93.7 (10.2) 92.4 (12.6) 10.8 (2.3) 31.4 (4.2) 4.1 (2.1) 2.9 (0.7) 10.5 (1.5) 5.7 (1.9)

T
u

rb
in

e 
S

it
es

2007 87.8 (12.5) 47.1 (16.4) 10.6 (2.9) 70.9 (5.1) 3.9 (2.7) 1.2 (0.9) 6.6 (1.9) 2.7 (2.4)

2009 47.3 (12.5) 35.3 (16.4) 12.1 (2.9) 24.8 (5.1) 3.2 (2.7) 3.1 (0.9) 4.8 (1.9) 2.4 (2.4)

2010 89.6 (12.5) 30.3 (16.4) 9.8 (2.9) 25.0 (5.1) 4.3 (2.7) 5.3 (0.9) 3.7 (1.9) 1.2 (2.4)

2012 65.6 (12.5) 80.8 (16.4) 11.8 (2.9) 28.9 (5.1) 2.0 (2.7) 5.6 (0.9) 6.7 (1.9) 1.5 (2.4)

Reference 
Average

75.2 (4.6) 45.5 (10.0) 13.7 (1.0) 30.9 (2.0) 8.7 (1.4) 1.4 (0.3) 5.8 (1.0) 4.7 (0.8)

Turbine 
Average

72.6 (6.3) 48.4 (14.1) 11.1 (1.4) 37.4 (2.7) 3.3 (1.9) 3.8 (0.4) 5.4 (1.4) 2.0 (1.1)

Overall 
Average

73.9 (3.9) 46.9 (8.6) 12.4 (0.8) 34.1 (1.7) 6.0 (1.2) 2.6 (0.3) 5.6 (0.9) 3.3 (0.7)
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Table S4.3. Least squares means (SE) of density/100 ha for reference and turbine sites each year at Oliver Wind 

Energy Center (OL) in Oliver County, North Dakota. 

Year
Grasshopper 

Sparrow

Clay-
colored 
Sparrow

Western 
Meadowlark

Bobolink
Upland 

Sandpiper
Killdeer

Savannah 
Sparrow

Vesper 
Sparrow

R
ef

er
en

ce
 S

it
es

2006 105.2 (10.2) 25.6 (6.8) 28.0 (6.6) 42.0 (4.3) 7.7 (1.2) 1.3 (1.0) 2.5 (3.1) 1.3 (2.2)

2007 65.6 (10.2) 21.2 (6.8) 10.0 (6.6) 19.0 (4.3) 4.9 (1.2) 1.3 (1.0) 7.9 (3.1) 2.4 (2.2)

2009 133.6 (10.2) 33.4 (6.8) 49.3 (6.6) 16.1 (4.3) 8.0 (1.2) 2.7 (1.0) 8.0 (3.1) 0.0 (2.2)

2011 56.3 (10.2) 13.7 (6.8) 31.5 (6.6) 49.5 (4.3) 6.9 (1.2) 1.4 (1.0) 1.4 (3.1) 0.0 (2.2)

T
u

rb
in

e 
S

it
es

2006 84.4 (10.2) 55.3 (6.8) 17.3 (6.6) 21.2 (4.3) 6.5 (1.2) 4.0 (1.0) 3.5 (3.1) 6.3 (2.2)

2007 62.9 (10.2) 33.5 (6.8) 14.7 (6.6) 9.0 (4.3) 3.6 (1.2) 4.0 (1.0) 5.5 (3.1) 7.8 (2.2)

2009 47.1 (10.2) 44.1 (6.8) 25.1 (6.6) 5.2 (4.3) 4.8 (1.2) 2.4 (1.0) 3.4 (3.1) 5.3 (2.2)

2011 39.5 (10.2) 20.4 (6.8) 22.4 (6.6) 13.7 (4.3) 3.6 (1.2) 2.7 (1.0) 1.5 (3.1) 3.9 (2.2)

Reference 
Average

90.2 (4.7) 23.5 (4.6) 29.7 (3.1) 31.6 (2.2) 6.9 (0.8) 1.7 (0.5) 4.9 (2.3) 0.9 (1.8)

Turbine 
Average

58.5 (4.7) 38.3 (4.6) 19.9 (3.1) 12.3 (2.2) 4.6 (0.8) 3.3 (0.5) 3.5 (2.3) 5.8 (1.8)

Overall 
Average

74.3 (3.4) 30.9 (3.3) 24.8 (2.2) 22.0 (1.5) 5.7 (0.5) 2.5 (0.3) 4.2 (1.6) 3.4 (1.2)
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