BEFORE THE PUBLIC UTILITIES COMMISSION OF THE STATE OF SOUTH DAKOTA

IN THE MATTER OF THE APPLICATION BY NORTH BEND WIND PROJECT, LLC FOR A PERMIT TO CONSTRUCT AND OPERATE THE NORTH BEND WIND PROJECT IN HYDE COUNTY AND HUGHES COUNTY, SOUTH DAKOTA

SD PUC DOCKET EL21-018

Q. State your name.

A. My name is Dr. Cody Christensen.
Q. State your employer.
A. South Dakota State University.
Q. State your specific job at South Dakota State University.
A. I am the program coordinator for aviation at South Dakota State University. I am the only tenured professor at South Dakota State University in that capacity. My job involves teaching pilots, service, and research related to aviation education. My resume is attached as Exhibit A.

Q. Explain the range of duties you perform.

A. My job includes preparing future commercial pilots to be able to safely handle many types of airplanes, including airline aircraft. Safety, complying with federal aviation regulations, and airplane operating limits is essential to these occupations. There is little room for error in handling airplanes.
Q. On whose behalf was this testimony prepared.
A. This testimony was prepared on behalf of Michael Bollweg, Judi Bollweg, Bollweg Family, LLLP, and Tumbleweed Lodge.
Q. What were you asked to do.
A. I was asked to review and render a professional opinion concerning agricultural flight operations around wind turbines, specifically around T112N, Ro74W section 10 and 11 in Hughes County, South Dakota.
Q. What did you conclude.
A. There are three main considerations when addressing the pilot perspective of operations around obstacles. The three factors include margin of safety, operation of aircraft, and aircraft performance factors associations with the flight.

- The first main consideration when evaluating an operating area, whether that be a field to spray or a ground-based maneuver designated by the Federal Aviation Administration (FAA) for training such as an Eight on Pylon, is the margin of safety. The margin of safety when obstacles are present in a field decreases options in the event of an emergency such as a powerplant failure or stall/spin situation. From personal experience I know that operating directly behind or in between wind turbines creates considerable turbulence that can lead to loss of control events- a leading cause of aircraft accidents in the United States. Additionally, flying with known obstacles increases workload because the operator must evaluate the proper course of action with little to no room for error. The margin of safety decreases as the height and number of obstacles increases.
- It should be noted that the calculations in the pilot's operating handbook assume standard conditions of 29.92 barometric pressure setting, 59° and sea level. Higher temperatures and altitudes diminish performance. Harrold, South Dakota, is just under 2,000 feet above sea level.
- The second consideration when operating around obstacles that are unavoidable is that of pilot training and pilot response. Professional agricultural pilots knowingly take considerable, calculated risks related to obstacles other pilots do not take. They are responsible for flying between 3-12 feet above the ground, making multiple low
passes, multiple takeoff and landings, and operating at the max capacity of the aircraft. Doing this operation on a zero wind, cool day, with no elevation or obstacles take precision and professional skills few possess. Adding additional obstacles that decrease the margin of safety and decrease the reaction time a pilot has to deal with unforeseen situations such as mechanical issues, bird strikes, wire strikes, wind changes, and product issues decreases the safety of the operation.
- The final major concern when operating around obstacles is the aircraft performance, including climb rate, turn radius, and environmental conditions. The climb rate of a standard Air Tractor 502, a common midlevel agricultural application aircraft, is 664 feet per minute and a typical working speed of 135 mph . Every second the airplane is traveling approximately 198 feet per second while on target. At the end of a field the pilot would turn off the spray and begin a climb, followed shortly by a climbing turn usually away from the spray pass to complete a course reversal to realign for the next spray pass. In a normal situation with no obstacles, ending the spray and the initial climb out might all occur within five to eight seconds, resulting in a straightline distance of almost $1 / 4$ mile. The turnaround for ag operators, generally considered a 45° downwind turn, followed by a 225 -course reversal to come back on target requires a $30-45^{\circ}$ turn to do a back-to-back turn. The time of the course reversal is approximately 25 seconds, resulting in close to one mile of total distance traveled per swath. Assuming a 30° bank, the calculated turn radius of an aircraft going 135 mph is 2,119 feet and the diameter of the turn is 0.8 miles. It should be noted that for an Air Tractor 502, it is close to one mile to make a turn, but for an Air Tractor 802,
currently the largest single engine commercially used ag application airplane, that distance increases to 1.82 miles to complete a turn.
- As early discussed, an Air Tractor 502 climb rate is 664 feet per minute or approximately 11 feet per second (fps) climb rate. Considering at the end of the field, an applicator pulls up into a climb, it would take 18 seconds ($200 \mathrm{ft} / 11 \mathrm{fps}$) to clear a 200 feet obstacle located at the end of a field. Using a working speed of 135 MPH or 198 fps the aircraft would travel forward $3,564 \mathrm{ft}(198 \mathrm{fps} * 18 \mathrm{sec}$ to climb) to clear a 200 ft obstacle. If a 600 -foot obstacle was considered, it would take 54 seconds to outclimb the obstacle and would travel forward over two miles $(198 \mathrm{fps} * 54 \mathrm{sec}=$ $10,800 \mathrm{ft}$). Even assuming the pilot slowed to 111 mph (best rate of climb at max weight) the distance covered is still 1.6 miles ($162 \mathrm{fps} * 54 \mathrm{sec}$). This assumes the pilot adds max power, performs a perfect climb, the airplane performs perfect, and the field conditions were conducive to a climb (sea level, standard atmosphere, low humidity, calm or head winds prevailing). Anything less than perfect conditions would decrease the climb rate.
- The other option would be instead of pulling up to climb over an obstacle to fly around it, below it, or through the blade arc or guy-wire, all of which are not prudent options, especially considering any abnormal operations. Additionally, the turbulence created by the wind turbines would have a direct and immediate impact on the pilot operating downwind of the turbine.
- In reviewing the plat map of $112 \mathrm{~N}, \mathrm{R} 074 \mathrm{~W}$, section 10 and 11 in Hughes County, SD I am most concerned about the placement of towers $8,9,14, \& 15$ within the
sections and any towers that are adjacent such as \#20-22 as they are well within a normal margin of safety for a typical pilot to safety spray that area. Based on the map and field layout, an east/west swath pattern would prevail and the presence of wind turbines or any obstacle at the end of those fields, especially on two sides, would be detrimental to safety. In my opinion, I would advise against a pilot maneuvering in the field presented with obstacles in the placement suggested.

Q. Did the PUC ask you any follow up questions.

A. The staff of the PUC asked me certain follow up questions.

- First, they asked where I obtained my calculations and numbers for aircraft performance. That reply is attached and dated $11 / 3 / 21$. Those numbers were taken off the specifications for the airplanes that are spraying the Bollweg fields currently. Those are hard numbers from which deviations are illegal and dangerous. My calculations are conservative, and are minimum clearance distances for safe operations. There may be pilots that deviate from these calculations. That does not mean that they are safe operations and the thin margins of safety may eventually catch up with them; mistakes in aviation are unforgiving.
- The PUC asked if I maintain that a pilot cannot safely fly around a turbine that is shut down and not moving as ordered for the Crowned Ridge Wind II Project, and I do not maintain that. If the wind towers were not in operation, it would substantial decrease the turbulence created by the wind turbines. As long as the distance from the field to the obstacle can be maintained, pilots could safety operate around a wind turbine.
- The PUC asked me to explain how flying around a wind turbine that is shut down is different than flying around stationary obstacles, such as a power line, grain bin, house, trees, or cell tower. My response to them was that as a professional pilot and flight instructor, I do not see a major difference between obstacles when height and circumference are adequately considered. I would not try to outmaneuver an obstacle without proper setback clearances for any stationary obstacles such as a wind turbine, powerline, grain bin, house, trees, or cell tower. The height and size of the obstacle must be taken into consideration when operating an aircraft in the vicinity of known obstacles. I would recommend if a 100 ft grain bin was located within the area of operation, it would be considered much like a 100 -foot shut down wind turbine would be except that a wind turbine can rotate so the orientation of the blades in relation to the aircraft turn would have to be taken into consideration. An operator could fly closer to a 100 ft grain bin because the climb required to clear a 100 ft bin is less than a taller obstacle. A 600-foot-tall grain bin with the same circumference as a 600 -foot- tall wind turbine would be treated with equal caution. I have yet to encounter a 600-foot-tall grain bin so the best description would be trying to operate in downtown Manhattan with 60 story buildings on multiple sides. It would be possible to operate around them, but the distance between the building (wind turbine/grain bin/obstacle) would need to be sufficiently away to allow for a proper turn. The margin of error decreases and safety margins virtually disappear. If the PUC request was to evaluate a new tower that was 600 ft tall with known guy wires, I would treat it the same as a 600 -foot wind turbine using the height and
circumference of the obstacle. The tower along with the guywires constitute an obstacle that is not able to be flow through. Yes, it is possible to fly under, over, or through guy wires but the margin of safety decreases with each pass. Flying under or through stopped wind turbine blades is much like guy wires. As a professional pilot I would not fly under shut down wind turbine blades, nor would I teach that maneuver to any student.
- Finally, the PUC asked me if I was aware of any governmental entity that has ordered a similar setback for wind turbines from a property line to facilitate aerial spraying. I am not aware of any governmental entity that has ordered a similar setback for wind turbines from property line to facilitate aerial spraying. My job was to evaluate the threats to safety to agricultural spray aircraft posed by the turbines. That analysis had to do with the hard science of physics as it applied to aircraft and pilot performance. No political considerations were evaluated. Governmental agencies sometimes take other factors into consideration.

Dated this \qquad of $\xrightarrow{1 / 7 / 2022 \text { | } 10: 08 \text { PST }}, 2022$. Cody Clerristensen
-336A5E8F802F492.
DR. CODY CHRISTENSEN

