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ABSTRACT  

SPATIAL AND TEMPORAL PATTERNS OF SYMPATRIC BOBCATS (LYNX 

RUFUS) AND COYOTES (CANIS LATRANS) IN AN AGRICULTURAL LANDSCAPE 

MARLIN M. DART 

2021 

Bobcat (Lynx rufus) populations experienced declines in the Midwest during the 

20th century due to land conversion for agriculture and overexploitation and were 

practically nonexistent in areas by the 1970-80s. Populations have been recovering 

following changes in land-use practices and habitat improvement. Eastern South Dakota 

was closed to bobcat harvest in 1977 but reopened in 2012 to select counties. Bobcats are 

elusive, have large home ranges, and occur at low densities, making monitoring their 

populations difficult. Camera trapping is an effective tool for monitoring elusive 

carnivores but can be burdened by low detection rates. Researchers often employ 

attractants to increase detection, but attractants can unequally influence detection of 

species among different trophic levels. We ran a pilot season in 2019 to evaluate the 

efficacy of an olfactory lure, a non-consumable attractant, as a means of increasing 

detection of bobcats. We expanded our species of interest to include additional species 

(coyote [Canis latrans], raccoon [Procyon lotor], and eastern cottontail [Sylvilagus 

floridanus]) that represented a range of foraging guilds. We evaluated the influence of the 

lure at three temporal scales (i.e., daily probability of detection, sequences per detection, 

and triggers per sequence). The influence of the lure varied between the two most-

carnivorous species, bobcat and coyote. The lure positively influenced detection of 

coyote and raccoon, an intermediate omnivore, and negatively influenced detection of 
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bobcat and eastern cottontail, an herbivorous prey. Bobcats are of management interest in 

South Dakota that are potentially vulnerable to land conversion and may be influenced by 

coyotes. We used occupancy modeling to evaluate the influences of landscape features on 

space use of bobcats and coyotes and generated activity curves to quantify temporal 

overlap between species using remote camera data collected in the summers of 2019 and 

2020. Coyote space use was positively associated with slope, small-scale percent 

agriculture, and edge density. Bobcat space use was limited and positively associated 

with coyote activity, distance to roads, and large-scale percent woodland/shrubland. Our 

results indicate that bobcats are using smaller, less-disturbed woodland/shrubland 

patches, which are associated with higher coyote activity levels. Bobcat and coyote 

temporal activity had high overlap.
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CHAPTER 1: THE IMPACT OF SCENT LURES ON DETECTION IS NOT 

EQUITABLE AMONG SYMPATRIC SPECIES 

 

Abstract 

 Camera trapping is an effective tool for cost-effective monitoring of rare and 

elusive species over large temporal and spatial scales and is becoming an increasingly 

popular method for investigating wildlife communities or species across trophic levels. 

Camera trapping research targeting rare and elusive species can still be hampered by low 

detection rates. Consequently, researchers often employ attractants in an effort to increase 

detection without accounting for how attractants may differentially influence detection of 

species across trophic levels. Therefore, we evaluated the influence of a non-species-

specific olfactory lure (i.e., a non-consumable attractant; sardines) and sampling design 

on detection of four species (i.e., bobcat [Lynx rufus], coyote [Canis latrans], raccoon 

[Procyon lotor], and eastern cottontail [Sylvilagus floridanus]) that represented a range of 

foraging guilds in an agricultural landscape in southcentral South Dakota. We evaluated 

the influence of the lure at three temporal scales of detection (i.e., daily probability of 

detection, independent sequences per detection, and triggers per sequence). The influence 

of the lure on detection varied among trophic levels, including between the two most 

carnivorous species. The lure generally positively influenced detection of coyotes and 

negatively influenced detection of bobcats. The lure also generally positively influenced 

detection of raccoon, an intermediate omnivore, and negatively influenced detection of 

eastern cottontail, an herbivorous prey. We also demonstrated that the influence of the 

lure can vary across temporal scales. 
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Introduction 

Early efforts to use camera traps for mammal research largely centered on 

documenting the presence and distribution of rare and elusive carnivores (Kucera and 

Barrett 1993, Zielinski and Kucera 1995). Advancements in analytical techniques 

employing detection data expanded the role of camera trapping, which has been used to 

evaluate patterns of occurrence (MacKenzie et al. 2002, 2018), quantify patterns of 

reproduction (Fisher et al. 2014), estimate abundance with (Karanth 1995, Heilbrun et al. 

2006, Rich et al. 2019) and without (Moeller et al. 2018) individual identification, and 

evaluate temporal activity patterns (Ridout and Linkie 2009, Wang et al. 2015). Recent 

advancements in approaches for jointly analyzing data from multiple species (Richmond 

et al. 2010, Rota et al. 2016) and the ability to non-invasively monitor a wide range of 

species over large spatial and temporal scales at reduced costs compared to traditional 

monitoring methods (Lesmeister et al. 2015) has made camera trapping an effective tool 

for evaluating communities or species across trophic levels. 

One challenge associated with camera trapping, particularly with rare and elusive 

species, is obtaining a sufficient number of detections; the accuracy and precision of 

estimates from occupancy and capture-recapture methods require a sufficient number of 

detections (White et al. 1982, MacKenzie et al. 2002). The accuracy of occupancy 

estimates is influenced by the number of detections (MacKenzie et al. 2002) and capture-

recapture methods require a sufficient sample size (White et al. 1982). Studies targeting 

species that are rare or occur in low densities often employ baits (i.e., a consumable 

attractant) or lures (i.e., a non-consumable attractant) to increase their probability of 

detection (p; Burton et al. 2015). Some capture-recapture methods also require recaptures 
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of some known individuals (Karanth 1995, du Preez et al. 2014, Braczkowski et al. 

2016). Attractants can entice the animal to remain in front of the camera longer and 

increase the potential for identifying individuals through unique physical features (e.g., 

pelage patterns; du Preez et al. 2014) or applied marks (e.g., ear tags; Jordan et al. 2011). 

Commonly used carnivore attractants include canned fish (Cove et al. 2013, Lesmeister et 

al. 2015, Rocha et al. 2016), carcasses (du Preez et al. 2014, Robinson et al. 2017), 

predator gland or musk scent lures (Holinda et al. 2020), and fatty acid tablets 

(Lesmeister et al. 2015). Studies evaluating the effect of attractants on carnivore detection 

have yielded mixed results, with some finding positive effects (e.g., Thorn et al. 2009, du 

Preez et al. 2014, Mills et al. 2019), whereas others found no effect (Braczkowski et al. 

2016, Rocha et al. 2016). Studies evaluating the influence of attractants on the detection 

of species within and among different trophic levels are limited. For example, olfactory 

attractants specific to carnivores (e.g., scent lures) increased detection of some carnivores 

without impacting prey detection (Holinda et al. 2020). Conversely, a more general 

olfactory attractant (e.g., sardines and egg mixture) did not increase carnivore detections, 

but decreased detection of prey (Rocha et al. 2016). The influence of olfactory attractants 

may change over time as well (Mills et al. 2019). 

The influence of an attractant in an agricultural landscape has not been formally 

assessed and may differ from other systems due to differences in human disturbance and 

pressure from harvest. We evaluated the influence of sardines, a commonly used non-

species-specific attractant, as a non-consumable olfactory attractant (i.e., a lure) on the 

detection of four sympatric mammals including bobcat (Lynx rufus), coyote (Canis 

latrans), raccoon (Procyon lotor), and eastern cottontail (Sylvilagus floridanus) in an 
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agricultural landscape. We selected species that represented a range of foraging guilds in 

southcentral South Dakota. Bobcats are strictly carnivorous (Nomsen 1982, Anderson 

and Lovallo 2003) and a species of management interest due to their value as a furbearer. 

Coyotes are more omnivorous (Kamler et al. 2002, Cepek 2004), are potentially 

dominant to bobcats (Henke and Bryant 1999, Wilson et al. 2010), and are often managed 

through lethal control (Knowlton et al. 1999). Raccoons are mesocarnivores and 

intermediate omnivores with broad and opportunistic diets (Greenwood 1982). Eastern 

cottontails are herbivorous (Chapman and Litvaitis 2003) and are important prey for 

bobcats (Nomsen 1982, Rolley and Warde 1985) and coyotes (Kamler et al. 2002, Cepek 

2004).  

Detection data from camera trapping can be used at multiple scales. For instance, 

studies have used the number of independent photos of a prey species as an index of prey 

availability (Díaz-Ruiz et al. 2016, Santos et al. 2019), however, camera trapping data 

could be used at other temporal scales, such as daily (e.g., days with detection per days 

surveyed). The influence of an attractant could potentially vary across scales. For 

example, an attractant may entice an animal to stay in front of a camera longer, 

increasing the number of photos captured within a 24-hour period, without influencing 

detection at a daily level. Understanding whether or not the influence of an attractant 

varies across different temporal scales would be an important step towards understanding 

how to properly apply or collect camera trapping detection data, particularly for studies 

using cameras to simultaneously survey predators and their prey.  

We quantified the rates of camera-based detections using three approaches: (i) 

daily p given an area is used; (ii) number of independent photo sequences per daily 

Corbin Korzan Exhibit C - Page 17 of 88



detection (hereafter, sequences), and (iii) number of triggers per sequence (hereafter, 

triggers). Fidino et al. (2020) found that attractants can decrease daily p and the number 

of triggers of eastern cottontail, so we predicted that the attractant would decrease eastern 

cottontail daily p, sequences, and triggers. Attractants have been shown to positively 

influence detection of carnivores at multiple scales (Holinda et al. 2020, Fidino et al. 

2020), so we predicted that the attractant would increase daily p, sequences, and triggers 

for bobcat, coyote, and raccoon.  

 

Methods 

Study Area 

The study area was located along the Missouri River in Charles Mix and Brule 

counties in southcentral South Dakota. The study area was ~4,275 km2 and was bound by 

the borders of Charles Mix and Brule counties and by Interstate 90 to the north. The 

majority of the area was dominated by flat, privately-owned rangelands used for domestic 

cattle (Bos taurus) grazing and croplands (primarily corn [Zea mays] and soybean 

[Glycine max]) interspersed with woodland shelterbelts. Conversely, the western extent 

of the study area along the river was characterized by rugged drainages that had been 

impacted by eastern red cedar (Juniperus virginiana) encroachment. Dominant plant 

species included smooth bromegrass (Bromus inermis), Kentucky bluegrass (Poa 

pratensis), big bluestem (Andropogon gerardii), porcupine grass (Hesperostipa spartea), 

eastern red cedar, and green ash (Fraxinus pennsylvanica). The study area experienced 

cold winters and moderate summers with the coldest month being January (average = -
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6.5°C) and the warmest month being July (average = 23.8°C). Average monthly 

precipitation, defined as the liquid equivalent of precipitation not including snowfall 

(Arguez et al. 2012), ranged from 12.7 mm (December) to 98.8 mm (June). Average 

annual precipitation and snowfall of 609 mm and 1054 mm, respectively (National 

Oceanic and Atmospheric Administration [NOAA] 2020). 

 

Camera Trapping Design 

Our sampling design was intended for evaluating occupancy of bobcats. We 

divided our study area into 25 km2 sites (5 km x 5 km), which approximated the home 

range size of female bobcats in South Dakota (Mosby 2011). We randomly selected 60 

sites for surveying, excluding sites where land-access permissions could not be obtained. 

Single cameras within a site can fail to produce reliable assessments of occupancy and 

spatial replication within sites has been recommended (O’Connor et al. 2017, Kolowski 

et al. 2021). We used three cameras (hereafter, stations) to survey each site, which 

ensured that we surveyed a range of conditions within each site. We set stations ≥1.2 km 

from one another (both within and among sites), which represented the approximate 

home range diameter of eastern spotted skunks (Spilogale putorius) reported in the 

Midwest (Lesmeister et al. 2015). Eastern spotted skunks were of management interest in 

South Dakota and were a secondary target species of our initial survey efforts. We 

developed the sampling design to evaluate patterns of occupancy of species with larger 

home ranges (e.g., bobcats, coyote) at the site level and smaller home ranges (e.g., 

eastern spotted skunk, eastern cottontail) at the station level. We surveyed selected sites 
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during a single summer season from May to September 2019. Each station within a site 

was surveyed concurrently.  

We set stations near habitat features frequented by carnivores (e.g., edge habitat, 

fence lines). We set all stations within a site with one of three passive infrared game 

camera models (Browning model BTC-6HDP, Bushnell Trophy Cam No Glow, or 

Moultrie model M-880), keeping models consistent within a site. We set cameras ~1 m 

high with a slight downward angle. We trimmed vegetation within 4 meters in front of 

each camera to increase species detectability, maximize visibility of smaller species, and 

minimize false triggers (Si et al. 2014, Moll et al. 2020). We hung a quarter of an 

aluminum pie tin ~1 m high and ~4 m in front of each camera as a visual lure. Within 

each site, we randomly assigned one of three olfactory lure treatments to each station 

without replacement. Treatments included (i) an olfactory lure, (ii) no olfactory lure, or 

(iii) an olfactory lure only during the latter half of the survey. For treatments including an 

olfactory lure, we used 3.75 ounces of sardines in soybean oil enclosed in a perforated 

polyvinyl chloride pipe (5” length x 2” diameter) to prevent consumption and secured to 

the ground with a rebar stake ~4 m in front of the camera. We set cameras to operate 24 

hours a day and capture 3 photos per trigger with a one-minute delay between triggers. 

Stations were set for ~28 nights. We checked cameras after ~14 nights to replace memory 

cards and batteries (if necessary) and replace or add attractants for sites receiving an 

attractant during the entire survey or the latter half of the survey, respectively.  
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Data Analysis 

 To characterize how an olfactory lure influenced the detection of sympatric 

species with disparate life-history strategies, we identified four target species. Bobcats 

represented a hypercarnivorous predator. Coyotes represented an omnivorous predator 

with more carnivorous tendencies. Raccoons represented an omnivore and eastern 

cottontails represented an herbivorous prey species. For each species, we generated daily 

encounter histories for each camera station with detection (1) or non-detection (0) being 

coded as a binary response. We analyzed encounter histories within an occupancy 

modeling framework to estimate species-specific daily p and evaluate factors influencing 

detection (MacKenzie et al. 2002). We used two covariates to evaluate the influence of an 

olfactory lure on detection: (i) lure, which indicated if the olfactory lure was present at 

the time of the survey; and (ii) lure age, which indicated the number of days since the lure 

was applied or refreshed. 

Cameras set near game trails may influence detection (Tobler et al. 2015, 

Kolowski and Forrester 2017). To account for the influence of game trails, we included a 

covariate for game trail (hereafter, trail) that characterized if the camera was set adjacent 

to a game trail or not. Precipitation and temperature may also influence p (Lesmeister et 

al. 2015). We obtained daily precipitation totals (mm) and maximum temperatures (ºC) 

for 5 NOAA weather stations near the study area (NOAA 2021a) and characterized each 

camera station with data from the nearest reporting weather station. Both predator and 

prey species may alter their nocturnal movement patterns with changes in lunar 

illumination (Rockhill et al. 2013, Prugh and Golden 2014, Melville et al. 2020). We 

generated a daily illumination covariate from recorded moon phase data (NOAA 2021b) 
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by scaling illumination from a range of 0 (new moon) to 100 (full moon). To account for 

unmodeled heterogeneity in detection that resulted from temporal variation, we included 

a covariate for time based on Julian day.  

We tested for correlation (Kendall's τ ≥ 0.7; Dormann et al. 2013) between all 

covariate combinations using a Kendall’s rank correlation test (Robinson et al. 2014, 

Lonsinger et al. 2017). We hypothesized that the effect of time may change over the 

season (i.e., detection increases, then decreases), so we also considered time with a 

quadratic effect (i.e., time + time2). To identify which characterization of time was most 

supported by the data, we fit two global detection models (i.e., including all detection 

covariates) while holding the occupancy submodel as the null model. Each model varied 

only by how time was characterized: time versus quadratic effect of time. We retained the 

most parsimonious characterization of time for each species for subsequent analyses.   

For each species, we developed a candidate model set for detection that included 

all possible additive combinations of detection covariates (Doherty et al. 2012), while 

holding the occupancy model constant at the null (Mills et al. 2019). Relative support for 

competing models was ranked by Akaike’s Information Criterion (AIC) values (Burnham 

and Anderson 2002). We evaluated the importance of covariates on detection by 

considering the structure of the most-supported models, beta coefficients of predictors, 

and cumulative model weights (a measure of relative predictor importance; Burnham and 

Anderson 2002, Arnold 2010, Lonsinger et al. 2017). Covariates with cumulative model 

weights >0.5 were considered significant predictors (Erb et al. 2012). All analyses were 

completed in program MARK (White and Burnham 1999).    
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We estimated the daily p in the presence and absence of the lure from the most-

supported detection model containing the lure covariate for each species; this was the 

most-supported model for all species but coyote (see Results). Daily p was estimated at 

the mean value for continuous covariates and the mode for categorical covariates (trail = 

set adjacent to trail; camera type = Browning). We used daily p estimates to generate 

daily p* curves (p* = 1 – [1 – p]K), where p* was defined as the cumulative probability of 

detecting the species at least once during K surveys given the station was used 

(MacKenzie and Royle 2005).  

For each target species, we defined a trigger as an event leading to the photo 

capture (i.e., observation) of the species in at least one of the three photos taken per 

trigger. We defined an independent photo sequence as ≥1 trigger that captured the 

presence of a specific species and was separated from the next trigger capturing the same 

species by ≥30 minutes (Wang et al. 2015, Iannarilli et al. 2021). A photo containing 

multiple individuals of the same species was recorded as a single observation. A daily 

detection recorded in an encounter history could be the result of a single sequence or 

multiple independent sequences over a 24-hour period. Similarly, a sequence could be the 

result of a single trigger (e.g., an animal quickly passing in front of the camera) or 

multiple triggers (e.g., from an animal remaining in front of the camera for an extended 

period). The presence of an attractant may increase (or decrease) the number of triggers 

per sequence, number of sequences per detection, or both. For each species, we tested (i) 

if the number of triggers per sequence was different when a lure was applied or not, (ii) 

and if the number of sequences per daily detection was different when a lure was applied 

or not. Data were not normally distributed for all comparisons and, therefore, 
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comparisons were completed with nonparametric Mann-Whitney U tests (Mann and 

Whitney 1947).  

 

Results 

From May to September 2019, we surveyed 180 stations for a total of 5,514 

camera days (mean = 30.6 ± 7.5 SD), consisting of 2,692 with a lure and 2,822 days 

without a lure. Time characterized as a linear covariate was more supported than a 

quadratic effect of time for all species except raccoon. However, the raccoon detection 

model with a quadratic effect of time had estimation issues and was not a significant 

improvement over the linear time model (ΔAIC = 0.54). Consequently, we used the linear 

time covariate to model detection for all species. 

We detected bobcats at 24 stations and had more independent photo sequences 

without a lure than with one (Table 1). The most-supported bobcat detection model 

structure included lure and precipitation. Bobcat detection was negatively associated with 

lure (β̂ = −0.96, SÊ = 0.36, 95% CI = −1.66, −0.25) and precipitation (β̂ = −0.03, SÊ = 

0.03, 95% CI = −0.09, 0.02), although the effect of precipitation was not as strong with 

confidence intervals overlapping 0. When considering the full candidate model set, the 

two covariates in the most-supported model, lure and precipitation, and temperature had 

the highest relative importance (Table 2). Lure had the highest relative importance 

followed by precipitation and temperature. Other covariates had lower relative 

importance values (cumulative model weights < 0.5; Table 2). Daily p was lower with a 

lure (0.025, SÊ = 0.008, 95% CI = 0.014, 0.046) than without one (0.063, SÊ = 0.014, 

Corbin Korzan Exhibit C - Page 24 of 88



95% CI = 0.040, 0.098; Fig. 1A). Daily p estimates indicated that 63 survey days were 

required to achieve a p* ≥ 0.8 with a lure compared to 25 days at a station without a lure 

(Fig. 1A). The lure did not significantly influence the number of sequences per detection 

for bobcat, but stations with lure never had >1 sequence for a daily detection (Table 1). 

The number of triggers per sequence was marginally lower when a lure was applied 

(Table 1). 

 We detected coyotes at 111 stations and had more independent photo sequences 

with a lure than without (Table 1). Lure age and time were important predictors of coyote 

detection (Table 2) and were the only covariates in the most-supported model of coyote 

detection. Coyote daily p increased with lure age (β̂ = 0.017, SÊ = 0.008, 95% CI = 

0.001, 0.032; Fig. 2) and time (β̂ = 0.003, SÊ = 0.002, 95% CI = −0.001, 0.007), although 

the effect of time was weak with the confidence intervals overlapping 0. Only covariates 

in the most-supported model had cumulative model weights >0.5 (Table 2). The presence 

of a lure did not meaningfully impact the survey effort required to achieve a p* ≥0.8 (Fig. 

1B).  For coyotes, sequences per detection and triggers per sequence were both 

significantly higher when a lure was applied (Table 1). 

 We detected raccoons at 159 stations and had more independent photo sequences 

with a lure than without one (Table 1). The most-supported raccoon detection model 

included lure, camera model, trail, temperature, and time covariates. Daily p of raccoon 

was positively associated with lure (β̂ = 0.35, SÊ = 0.07, 95% CI = 0.21, 0.48). Daily p of 

raccoons was higher when stations were set by game trails (β̂ = 0.31, SÊ = 0.08, 95% CI 

= 0.15, 0.47). Detection increased over time (β̂ = 0.007, SÊ = 0.001, 95% CI = 0.005, 

0.009), and decreased with increasing temperature (β̂ = −0.02, SÊ = 0.01, 95% CI = 
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−0.03, −0.01). Relative to Moultrie cameras (represented by the intercept), raccoon 

detection was higher for Browning (β̂ = 0.28, SÊ = 0.09, 95% CI = 0.10, 0.46) and 

Bushnell (β̂ = 0.92, SÊ = 0.12, 95% CI = 0.68, 1.15) camera models (Fig. 3). Only 

covariates in the most-supported model had cumulative model weights >0.5 (Table 2). 

Daily p of raccoon was higher with a lure than without one (Fig. 1C). However, p was 

sufficiently high for both treatments that lure did not meaningfully impact the survey 

effort required to achieve p* ≥ 0.8 (Fig. 1C). Lure did not significantly influence 

sequences per detection or triggers per sequence for raccoons (Table 1).  

 We detected eastern cottontails at 121 stations and had more independent photo 

sequences without a lure than with one (Table 1). The most-supported detection model 

included lure, lure age, camera model, temperature, and illumination. Eastern cottontail 

detection was negatively associated with lure (β̂ = −0.20, SÊ = 0.11, 95% CI = −0.41, 

0.01), although 95% confidence intervals slightly overlapped 0. Detection was negatively 

associated with lure age (β̂ = −0.02, SÊ = 0.01, 95% CI = −0.04, −0.01) and temperature 

(β̂ = −0.02, SÊ = 0.01, 95% CI = −0.03, −0.005) and positively related to illumination (β̂ 

= 0.002, SÊ = 0.001, 95% CI = 0.00, 0.005), although confidence intervals for 

illumination included 0. Relative to Moultrie cameras, eastern cottontail detection was 

comparable with Browning cameras (β̂ = 0.04, SÊ = 0.10, 95% CI = −0.16, 0.23) and 

higher for Bushnell (β̂ = 0.52, SÊ = 0.13, 95% CI = 0.27, 0.77) camera models (Fig. 3). 

Only covariates in the most-supported model had cumulative model weights >0.5 (Table 

2). Daily p of eastern cottontail was lower with a lure than without one (Fig. 1D). The 

presence of the lure increased the effort required to achieve a p* ≥ 0.8 from 4 days 

without the lure to 6 days (Fig. 1D). For eastern cottontails, the number of sequences was 
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not significantly different for stations with and without a lure, but triggers were 

significantly lower when a lure was applied (Table 1).  

 

Discussion  

The use of an olfactory attractant to increase species-specific detection rates can 

be problematic for multi-species monitoring when the direction and magnitude of the 

effect differs among target species (Holinda et al. 2020). Holdinda et al. (2020) focused 

on guilds (i.e., all predators, large carnivores, small carnivores, all prey, small mammals, 

and ungulates) and four target species and found that lure increased predator detections 

but did not influence prey. We found that the influence of an olfactory lure varied across 

the focal species, even between the two most carnivorous species. The presence of a lure 

largely positively influenced detection of coyotes and generally had a negative influence 

on detection of bobcats. Our results suggest that evaluating the influence of attractants on 

groups or guilds of species can mask differences in detection among species. Studies 

investigating the influence of an olfactory attractant on species-specific detection rates 

focused largely on testing differences in the number of sequences (i.e., presumably 

independent observations; Tobler et al. 2008, Wellington et al. 2014, Holinda et al. 2020) 

or differences in detection probability over a defined sampling occasion (e.g., 1-week 

sampling occasion). The temporal scale at which camera trap data is applied may alter the 

resulting inferences but has received little attention (Fidino et al. 2020). Fidino et al. 

(2020) investigated the influence of a lure on the number of triggers and daily p for 

multiple species, including three species we investigated, and found that the temporal 

scale of inquiry influenced conclusions related to the influence of lure on detection. In 
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addition to triggers and daily p, we also considered the influence of a lure on the 

commonly used scale of sequences. Similar to our results, Fidino et al. (2020) found that 

lure decreased detection of eastern cottontails at both temporal scales but influenced 

coyote detection only at the scale of triggers (not daily p). For raccoons, our results 

indicating no effect of lure aligned with those of Fidino et al. (2020) at the scale of 

triggers, whereas our finding that lure increased daily p was in contrast to the patterns 

reported by Fidino et al. (2020). The different results for raccoons emphasize that 

species-specific responses are context dependent and, therefore, caution should be used 

when extrapolating results from one system to another.  

The most relevant temporal scale of detection depends on the research objectives. 

For occupancy-based studies, the p at the scale of temporal replication (e.g., daily or 

weekly) is often most relevant. In our system, lure influenced the daily p for bobcats, 

raccoons, and eastern cottontails, but only bobcats had a daily p that was low enough 

(with or without a lure) for it to significantly impact the sampling design or survey 

intensity required for occupancy modeling. Studies using cameras to investigate the 

spatial ecology of predators have used the number of prey observations (triggers or 

sequences) detected from the same cameras as a predictor of predator occupancy (Díaz-

Ruiz et al. 2016, Van der Weyde et al. 2018). Although this may be appropriate when all 

camera sets are the same, our results demonstrated that the number of prey triggers may 

be influenced by lures (or camera type) and that careful consideration should be used to 

either select the appropriate scale for prey detections where differences in treatment do 

not influence results or explicitly account for differences in the analyses (e.g., co-

occurrence modeling; Richmond et al. 2010). For camera-based studies interested in 
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identification of individuals through unique pelage markings or tags (Jordan et al. 2011, 

du Preez et al. 2014), the scale of triggers or sequences may be important, as increasing 

the number of images per daily detection may increase the probability of identifying 

distinguishing markings. The presence of an attractant, a carcass, aided in individual 

identification of leopards (Panthera pardus) based on spot patterns by increasing the time 

spent at the camera (du Preez et al. 2014). Similarly, we found lures increased triggers 

per sequence, a measure of time spent at the camera, of coyotes, the most dominant 

carnivore, but had no effect or decreased triggers for subordinate carnivores and prey. 

Results may differ for subordinate carnivores and prey due to increased activity or scent 

making by dominant carnivores because the presence of dominant carnivores has been 

shown to suppress the detection of subordinate carnivores (Lazenby and Dickman 2013, 

Ramesh et al. 2017) and prey (Murphy et al. 2019). Bobcat densities have been estimated 

using cameras and unique pelage markings (Clare et al. 2015, Jacques et al. 2019) and 

our results suggest that an olfactory lure may decrease the number of photos per 

sequence, decreasing the probability of individual identification.  

When developing occupancy studies, researchers are challenged with balancing 

the number of sites surveyed and the duration of the surveys while maximizing detection 

at a site in order to have a sufficient sample size and have the ability to generate accurate 

and precise results (MacKenzie and Royle 2005). Consequentially, researchers often 

employ attractants to increase detection (Burton et al. 2015). We identified two scenarios 

where an olfactory lure did not sufficiently increase detection at the daily detection scale 

to meaningfully reduce effort and facilitate surveying of additional sites. First, when the 

target species did not respond to (i.e., coyote), or negatively responded to (i.e., bobcat), 
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the lure. Second, when the effort required to achieve the desired probability of detecting 

the target species is only marginally reduced because p was sufficiently high with or 

without a lure (i.e., raccoon). 

Camera trapping results may be influenced by the size of target species, the type 

of camera and settings employed, or both (Tobler et al. 2008, Rowcliffe et al. 2011, 

Wellington et al. 2014). Using a single camera type, Tobler et al. (2008) found that 

smaller-bodied mammals had lower detection rates (i.e., photos/1000 days) than larger-

bodied mammals. Similarly, Rowcliffe et al. (2011) suggested smaller mammals (≤4 kg) 

were less likely to be detected than larger mammals (≥8 kg) due to camera sensitivity. 

Wellington et al. (2014) compared the performance of two camera types (i.e., Reconyx 

and Cuddeback) and found that detection rates were significantly different between the 

camera types for smaller- and medium-bodied mammals, but not for larger-bodied 

mammals. We observed similar patterns, with camera model influencing daily p for 

smaller-bodied raccoons (average mass ~ 6 kg; Lotze and Anderson 1979) and eastern 

cottontail (average mass ~ 1 kg; Chapman and Ceballos 1990), but not for larger-bodied 

bobcats (average mass ~10 kg; Tycz 2016) and coyotes (average mass ~ 16 kg; Way 

2007). Failure to account for variation in camera model performance and difference in 

detectability by body mass can bias estimates and lead to erroneous conclusions (Meek et 

al. 2015, Anile and Devillard 2016). These patterns highlight the importance of using 

caution when interpreting indices of relative abundance (e.g., among species, for prey of 

a target predator, or across studies employing different cameras for the same species). 

Minimizing variation among cameras (e.g., using a single camera type) could alleviate 

concerns for single species monitoring (Meek et al. 2015), but practitioners often have an 
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assortment of camera models due to limited funding (e.g., borrowing equipment) or 

changing camera availability (e.g., replacing damaged cameras with newer models). 

Alternatively, explicit consideration of camera model in the analyses, as we have done 

here, can produce more robust inferences regarding species-specific detection rates.   

In recent years, camera-based community/citizen science projects have been 

developed for large-scale monitoring of wildlife communities (e.g., Snapshot Wisconsin, 

Locke et al. 2019; Snapshot USA, Cove et al. 2021). Data collected through community 

science camera trapping projects have contributed to peer-reviewed research in recent 

years (Kays et al. 2017, Parsons et al. 2018), highlighting the emerging role of large-scale 

camera trapping in wildlife management and conservation. Furthermore, data generated 

from species-specific camera trapping sampling designs are often used to make 

inferences about prey (e.g., index of prey availability) or wildlife communities. The 

growing prevalence of large-scale community science projects and multi-species analyses 

underscore the importance of understanding how variation in sampling strategies 

influences detection of species at different trophic levels.  

This study is limited in that camera trapping was only conducted during summer 

months when resource availability was presumably the highest. The influence of an 

olfactory attractant may be stronger during winter when resources are more limited. The 

factors that influence detection are likely to vary throughout the year including changes 

in precipitation, weather, and anthropogenic disturbance. Similarly, the factors that drive 

the intensity of interspecific interactions may change with temporal or spatial variability 

in resource availability, reproduction, and rearing of young. Furthermore, we only tested 

an olfactory attractant consisting of sardines in an enclosed container that prevented 
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consumption. A consumable bait that has a reward may have a stronger effect on 

detection. 

 

Management Implications 

 Camera trapping is increasing in popularity as a tool for multi-species, wildlife 

community, and large-scale community/citizen science research. In our study system, the 

factors that could be controlled for in the sampling design (e.g., lure, camera model, trail) 

tended to influence detection more than environmental factors (e.g., precipitation, 

temperature, illumination). We suggest that multi-species camera trapping research 

minimize variation in camera sets, account for camera-set variation in analyses, or both. 

We suggest that multi-species camera trapping research use caution when employing 

attractants and consider potential variation in response among trophic levels or species of 

the same guild (i.e., bobcat and coyote). For occupancy studies, the attractant had limited 

efficacy as a method for increasing detection of carnivores and thus, reducing the survey 

effort. If attractants are used, we recommend pilot studies to evaluate attractant efficacy. 

We stress the importance of identifying the resolution that data will be used at and 

identifying sources of variation at the appropriate temporal scale.  
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Figure 1. Estimated daily probability of detection (p) with 95% confidence intervals (left 

column) and daily p* curves (right column; the cumulative probability of detecting a 

species at least once during K surveys of a used station) with (solid line) and without 

(dotted line) an olfactory lure from 180 camera stations surveyed for (A) bobcat (Lynx 

rufus), (B) coyote (Canis latrans), (C) raccoon (Procyon lotor), and (D) eastern cottontail 

rabbit (Sylvilagus floridanus) in southcentral South Dakota during summer, 2019. 
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Figure 2: Estimated daily probability of detection of coyote (Canis latrans) as a function 

of lure age with 95% confidence interval band from 180 camera stations surveyed in 

southcentral South Dakota during summer, 2019. 
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Figure 3: Daily probability of detection of raccoon (Procyon lotor) and eastern cottontail 

rabbit (Sylvilagus floridanus) by camera model with (●) and without (▲) lure applied 

from 180 camera stations surveyed in southcentral South Dakota during summer, 2019.  
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Table 1: Number of independent photo sequences, mean number of sequences (± SE) per detection, mean number of triggers (± SE) 

per sequence, and p-values for Mann-Whitney U tests at camera stations with and without a sardine lure applied for bobcat (Lynx 

rufus), coyote (Canis latrans), raccoon (Procyon lotor), and eastern cottontail (Sylvilagus floridanus) surveyed in southcentral South 

Dakota during summer, 2019. 

  Independent Sequences   Sequences   Triggers 

Species Lure No lure Total   Lure No lure P-value   Lure No lure P-value 

Bobcat 14 38 52  1.00 ± 0.00 1.23 ± 0.12 0.172  1.07 ± 0.07 1.58 ± 0.27 0.098 

Coyote 229 174 403  1.34 ± 0.06 1.12 ± 0.04 0.003  1.39 ± 0.06 1.09 ± 0.03 <0.001 

Raccoon 878 708 1,586  1.32 ± 0.02 1.35 ± 0.03 0.771  1.41 ± 0.04 1.44 ± 0.06 0.121 

Eastern Cottontail 743 999 1,742   1.71 ± 0.06 1.79 ± 0.06 0.196   1.35 ± 0.04 1.50 ± 0.04 <0.001 

 

  

Corbin Korzan Exhibit C - Page 45 of 88



Table 2: Detection covariate predictor importance based on cumulative model weights from single-species, single-season occupancy 

modeling for bobcat (Lynx rufus), coyote (Canis latrans), raccoon (Procyon lotor), and eastern cottontail (Sylvilagus floridanus) 

surveyed in southcentral South Dakota during summer, 2019. Bold indicates predictors in the most-supported detection model. 

  Species 

Covariate Bobcat Coyote Raccoon Eastern cottontail 

Lure 0.87 0.31 0.98 0.71 

Lure age 0.32 0.77 0.36 0.93 

Trail 0.26 0.27 1.00 0.43 

Camera model 0.27 0.32 1.00 1.00 

Precipitation 0.51 0.36 0.25 0.44 

Temperature 0.51 0.27 0.96 0.92 

Illumination 0.27 0.27 0.40 0.66 

Time 0.39 0.65 1.00 0.27 

 

Notes:  Predictors: Lure = lure applied at time of survey; lure age = days since lure applied; Trail = camera set adjacent to game trail; 

Camera Model = categorical identification of camera model; Precipitation = daily precipitation total (mm) from nearest weather 

station; Temperature = daily max temperature (ºC) from nearest weather station; Illumination = scaled range of moon phase; 0 (new 

moon) to 100 (full moon); Time = Julian day during survey.
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CHAPTER 2: SPATIAL AND TEMPORAL PATTERNS OF SYMPATRIC BOBCATS 

(LYNX RUFUS) AND COYOTES (CANIS LATRANS) IN AN AGRICULTURAL 

LANDSCAPE 

 

Abstract 

In the Northern Great Plains, habitat loss and fragmentation are driven by the 

conversion of grasslands to agricultural land. Bobcats (Lynx rufus) are a species of 

management interest in South Dakota that are potentially vulnerable to habitat loss and 

fragmentation due to their large home ranges, low densities, and low reproductive rates. 

Additionally, bobcats may be influenced by interspecific interactions with coyotes (Canis 

latrans). Coexistence of sympatric carnivores can be facilitated through spatial, temporal, 

or dietary niche partitioning. We evaluated the influences of landscape features on space 

use of bobcats and coyotes using occupancy modeling and generated activity curves to 

quantify species temporal overlap using detection data collected from motion-activated 

cameras during the summers of 2019 and 2020. Coyote space use was high and positively 

related to slope and small-scale percent agriculture in 2019 and positively related to edge 

density in 2020. Bobcat space use was limited and positively associated with coyote 

activity in both years, and distance to roads and large-scale percent woodland/shrubland 

in 2020. We did not find evidence of temporal partitioning. Our results indicate that 

bobcats are using smaller, less-disturbed patches of woodland/shrubland, which are also 

associated with higher levels of coyote activity. 
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Introduction 

Habitat loss and degradation are among the leading causes of mammalian 

biodiversity loss (Schipper et al. 2008, Newbold et al. 2015) and are projected to be the 

primary drivers of biodiversity loss in the future (Sala et al. 2000). Temperate grassland 

ecosystems, including grasslands of the Northern Great Plains, are threatened by high 

levels of conversion coupled with the lowest levels of protection (Hoekstra et al. 2005). 

In the Northern Great Plains, habitat loss is driven by conversion of grasslands to 

agricultural lands (Stephens et al. 2008). The life history characteristics of mammalian 

carnivores including low densities, large home ranges, and low reproductive rates relative 

to other terrestrial mammalian orders and persecution by humans can make them 

susceptible to habitat loss and fragmentation (Woodroffe and Ginsberg 1998, Crooks 

2002). Consequently, carnivore population declines have resulted in the largest range 

contractions among mammalian biodiversity (Di Minin et al. 2016).  

Carnivores are an essential component of the environment that influences 

ecosystem structure and function through regulating prey and their impact on vegetative 

communities (Ripple et al. 2014). Declines in populations of large carnivores can result 

in mesocarnivore population growth (i.e., “mesopredator release”), which can impact 

prey and vegetative communities through trophic cascades (Crooks and Soulé 1999, 

Berger et al. 2008, Prugh et al. 2009). Sympatric carnivore coexistence can be facilitated 

through spatial, temporal, or dietary niche partitioning (Schoener 1974). Habitat loss and 

fragmentation can reduce the potential for spatial partitioning by restricting movement 

and use to smaller, more-isolated patches of habitat (Hanski 2008, Šálek et al. 2014).  

With reduced opportunity for spatial partitioning, coexistence of carnivores may be 
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facilitated through temporal partitioning (Schoener 1974). Temporal partitioning may be 

more restricted in landscapes with greater anthropogenic disturbances as carnivores 

decrease diurnal activity in response to anthropogenic disturbance (Riley et al. 2003, 

George and Crooks 2006, Wang et al. 2015). 

  Bobcats (Lynx rufus) are a species of management interest in South Dakota due 

to their value as a furbearer and vulnerability to overharvest (Knick 1990). Bobcats are 

listed in Appendix II of the Convention on International Trade in Endangered Species of 

Wild Flora and Fauna (CITES), which requires that management agencies demonstrate 

that harvest and exportation is not detrimental to the survival of the species (Anderson 

and Lovallo 2003). Bobcats may be influenced by sympatric coyotes (Canis latrans) 

through interference competition including interspecific killing (Knick 1990, Fedriani et 

al. 2000, Gipson and Kamler 2002) or exploitative competition (Litvaitis and Harrison 

1989, Henke and Bryant 1999). Bobcats have relatively large home ranges, tend to be 

solitary as adults, and are elusive, making monitoring their populations difficult (Sargeant 

et al. 1998, Ruell and Crooks 2007). Motion-activated camera traps have improved 

monitoring of elusive carnivores by enabling monitoring over large spatial and temporal 

scales and can be used to evaluate patterns of occurrence (Burton et al. 2015, Lesmeister 

et al. 2015). 

 Habitat conservation is improved through a better understanding of how habitat 

characteristics influence the spatial dynamics of species (Mackenzie et al. 2018). 

Evaluating patterns of use and occurrence without accounting for imperfect detection 

(Mackenzie et al. 2018), the influence of interspecific interactions (McLoughlin et al. 

2010), or both can lead to biased inferences of factors associated with use. Occupancy 
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modeling uses detection-nondetection data to estimate and examine the factors that 

influence probability of detection (p) and occupancy while accounting for imperfect 

detection (MacKenzie et al. 2002). 

We combined detection data from camera traps with occupancy modeling 

(MacKenzie et al. 2002) and activity curves (Wang et al. 2015, Lashley et al. 2018) to 

investigate patterns of space use and temporal activity, respectively, for bobcats and 

coyotes (a potential intraguild predator) in an agriculturally-dominated landscape in 

southcentral South Dakota. Consistent with previous research (Tucker et al. 2008, Clare 

et al. 2015, Wait et al. 2018), we predicted that bobcat use would be positively associated 

with woodland/shrubland (WS) cover due to their reliance on cover as ambush predators 

(Rollings 1945, Anderson and Lovallo 2003). We also predicted that bobcat space use 

would be positively associated with terrain ruggedness (Mosby 2011, Reed et al. 2017) 

and positively associated with distance from paved roads due to sensitivity to 

anthropogenic disturbance (Poessel et al. 2014, Lesmeister et al. 2015). We also predicted 

that bobcat space use would be negatively associated with coyote activity because bobcat 

space use has been shown to be influenced by the intensity of coyote activity (Wilson et 

al. 2010). Consistent with previous research (Theberge and Wedeles 1989, Lesmeister et 

al. 2015, Ellington et al. 2020) and cursorial hunting techniques, we predicted that coyote 

space use would be positively associated with edge density and distance from paved 

roads due to increased persecution in an agriculturally-dominated landscape (Lesmeister 

et al. 2015). Lastly, we predicted that bobcats and coyotes would temporally partition 

resources if space use of both species was limited to the same areas.  
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Methods 

Study Area 

The study area was located along the Missouri River in Charles Mix and Brule 

counties in southcentral South Dakota. The study area was ~4,275 km2 and was bound by 

the borders of Charles Mix and Brule counties and by Interstate 90 to the north. The 

majority of the area was dominated by flat, privately-owned rangelands used for domestic 

cattle (Bos taurus) grazing and croplands (primarily corn [Zea mays] and soybean 

[Glycine max]) interspersed with woodland shelterbelts. Conversely, the western extent 

of the study area along the river was characterized by rugged drainages that had been 

impacted by eastern red cedar (Juniperus virginiana) encroachment. Dominant plant 

species included smooth bromegrass (Bromus inermis), Kentucky bluegrass (Poa 

pratensis), big bluestem (Andropogon gerardii), porcupine grass (Hesperostipa spartea), 

eastern red cedar, and green ash (Fraxinus pennsylvanica). The study area experienced 

cold winters and moderate summers with the coldest month being January (average = -

6.5°C) and the warmest month being July (average = 23.8°C). Average monthly 

precipitation, defined as the liquid equivalent of precipitation not including snowfall 

(Arguez et al. 2012), ranged from 12.7 mm (December) to 98.8 mm (June). Average 

annual precipitation and snowfall of 609 mm and 1054 mm, respectively (National 

Oceanic and Atmospheric Administration [NOAA] 2020). 
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Camera Trapping Design 

Our sampling design was primarily intended to evaluate occupancy of bobcats. 

We divided the study area into 25 km2 sites (5 km x 5 km), which approximated the home 

range size of female bobcats in South Dakota (Mosby 2011). We randomly selected 60 

sites for surveying, excluding sites where land-access permissions could not be obtained. 

Single cameras within a site can fail to produce reliable assessments of occupancy and 

spatial replication within sites has been recommended (O’Connor et al. 2017, Kolowski 

et al. 2021). We used three cameras (hereafter, stations) to survey each site, which 

ensured that we surveyed a range of conditions within each site. We set stations ≥1.2 km 

from one another (both within and among sites), which represented the approximate 

home range diameter of eastern spotted skunks (Spilogale putorius) in the Midwest 

(Lesmeister et al. 2015). Eastern spotted skunks were of management interest in South 

Dakota and were a secondary target of our broader survey efforts. We surveyed selected 

sites over two summer field seasons from May to September in 2019 and May to August 

in 2020. Each station within a site was surveyed concurrently.  

We set stations near habitat features frequented by carnivores (e.g., edge habitat, 

fence lines). We set all stations within a site with one of three passive infrared game 

camera models (Browning model BTC-6HDP, Bushnell Trophy Cam No Glow, or 

Moultrie model M-880), keeping models consistent within a site. We set cameras ~1 m 

high with a slight downward angle and trimmed vegetation within 4 m in front of each 

camera to increase visibility of smaller species and minimize false triggers (Si et al. 

2014). We hung a quarter of an aluminum pie tin ~1 m high and ~4 m in front of each 

camera as a visual lure. In 2019, we ran a pilot study to test the influence of an olfactory 
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lure on p of bobcats by randomly assigning one of three olfactory lure treatments to each 

station within a site without replacement; details of this pilot study are described in 

Chapter 1. Briefly, treatments included (i) an olfactory lure, (ii) no olfactory lure, or (iii) 

an olfactory lure only during only the latter half of the survey. For treatments with an 

olfactory lure, we used 3.75 ounces of sardines in soybean oil enclosed in a perforated 

polyvinyl chloride pipe (5” length x 2” diameter) to prevent consumption and secured to 

the ground with a rebar stake ~4 m in front of the camera. Based on our pilot study (see 

Chapter 1), olfactory lures were not applied in 2020. We set cameras to operate 24 hours 

a day and capture three photos per trigger with a one-minute delay between triggers. 

Stations were set for ~28 nights. In 2019, we checked cameras after ~14 nights to replace 

memory cards and batteries (if necessary) and replace or add attractants for sites 

receiving an attractant during the entire survey or latter half of the survey, respectively. 

Cameras were not checked in 2020. 

 

Habitat Sampling 

We used line-point intercept sampling to characterize vegetation cover at each 

station (Herrick et al. 2005). We cleared vegetation and selected camera locations to 

maximize visibility; therefore, habitat sampling was conducted at randomly generated 

sampling cores using random bearings (0−359°) and distances (<100 m) from which 

three 100 m transects were conducted at randomly generated angles spaced equally apart 

by 120°. We used sampling core distances <100 m to ensure that the circular area 

sampled by the transects included the camera. We dropped a pin at 5 m increments along 

the transect and recorded the functional group (i.e., grass, forbs, sub-shrub [height <1 m], 
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shrub [1 m – 2 m], and tree [ >2 m]) of every species that intercepted a line extending 

vertically from the pin (Herrick et al. 2005). We recorded four measurements of both 

visual obstruction (VO) using a Robel Pole (Harris et al. 2020) and concealment using a 

concealment board (Camp et al. 2012, McMahon et al. 2017) from a viewing height of 1 

m and distance of 4 m in the four cardinal directions from the sampling core. 

Concealment was measured using a 39 x 30 cm concealment board with 3 x 3 cm 

checkerboarded squares and was recorded as the percentage of squares concealed by 

vegetation (Camp et al. 2012). We averaged the four directional measures to get a single 

measurement for both visual obstruction and concealment for each station. 

 

Occupancy Modeling Covariates 

We identified covariates expected to influence detection of carnivores. Cameras 

set near game trails may influence detection (Tobler et al. 2015, Kolowski and Forrester 

2017), so we included a covariate (trail) to indicate if the camera was set adjacent to a 

game trail or not. Detection can be influenced by precipitation and temperature 

(Lesmeister et al. 2015). We obtained daily precipitation totals (mm) and maximum 

temperatures (ºC) for 5 NOAA weather stations near the study area (NOAA 2021a) and 

characterized each camera station with weather data from the nearest reporting weather 

station. Predators may alter movement patterns with changes in lunar illumination 

(Rockhill et al. 2013, Prugh and Golden 2014, Melville et al. 2020). We generated a daily 

illumination covariate from recorded moon phase data (NOAA 2021b) by scaling 

illumination from a range of 0 (new moon) to 100 (full moon). We included a covariate 

for time based on Julian day to account for temporal variation in detection. The effect that 
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time has on detection may change within a season (i.e., detection increases, then 

decreases), so we also considered time with a quadratic effect (i.e., time + time2). For 

analysis of 2019 detection data, we included two covariates, lure and lure age, to 

characterize the influence of the olfactory lure on detection. Lure indicated if a lure was 

present at the time of the survey and lure age characterized the number of days since the 

lure was applied or refreshed because the influence of an attractant can change over time 

(Mills et al. 2019). 

We identified covariates expected to influence space use of bobcats and coyotes. 

Bobcats are ambush predators that rely on the dense cover and increased prey availability 

associated with WS cover (Rollings 1945). Previous research has found that bobcat space 

use and occupancy was positively associated with WS cover (Tucker et al. 2008, Clare et 

al. 2015, Wait et al. 2018), edge (Clare et al. 2015, Wait et al. 2018), and terrain 

ruggedness (Mosby 2011, Reed et al. 2017), and negatively associated with human 

disturbance (Lesmeister et al. 2015, Wang et al. 2015) and agriculture landcover (Reed et 

al. 2017). Similarly, coyotes have been found to be associated with WS habitats in some 

systems (Gese et al. 1988, Lonsinger et al. 2017), terrain ruggedness (Bender et al. 2017), 

edge density (Theberge and Wedeles 1989, Lesmeister et al. 2015) and may avoid areas 

with higher human disturbance in some systems (Lesmeister et al. 2015, Wait et al. 

2018).  

We used ArcMap 10.8 (Environmental System Research Institute [ESRI], 

Redlands, CA, USA) to calculate a distance to the nearest paved road, which tends to 

reflect areas with greater human activity. We also used ArcMap and a digital elevation 

model (https://www.landfire.gov, accessed 18 Nov 2020) to calculate two covariates that 
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characterize terrain ruggedness at each station, slope and terrain ruggedness index (TRI), 

defined as the standard deviation of the slope (Riley et al. 1999). We used FRAGSTATS 

4.2 (University of Massachusetts, Amherst, MA, USA) and a National Vegetation 

Classification (NVC) land cover layer (https://www.landfire.gov, accessed 17 Nov 2020) 

to calculate two covariates to characterize fragmentation for each station, mean patch size 

and edge density, and to calculate large-scale percent WS cover and percent agriculture 

(row crop). All FRAGSTATS landscape metrics were calculated within a 600-m buffer. 

We used line-point intercept habitat sampling data to calculate small-scale percent WS 

cover and percent agriculture by dividing the number of transect points with WS (tree, 

shrub, and sub-shrub) or agriculture functional groups by the total number of points 

(Lonsinger et al. 2015). We also used habitat sampling data to generate VO (Harris et al. 

2020) and concealment (McMahon et al. 2017) covariates for each station. Because we 

were unable to use co-occurrence models, we characterized relative coyote activity at 

each camera station as the proportion of survey days with a coyote detection and included 

relative coyote activity as a covariate on bobcat space use (Lonsinger et al. 2017, Wait et 

al. 2018).  

 

Occupancy Modeling 

We intended to evaluate species-specific patterns of detection, occupancy, and 

spatial dynamics using multi-season single-species occupancy models for bobcats and 

coyotes, and then combine results of species-specific analyses into a multi-season 

conditional two-species analysis to investigate the influence of coyotes on bobcat patterns 

of occurrence (MacKenzie et al. 2002, 2003, Richmond et al. 2010). Preliminary site-
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level analyses revealed that coyote occupancy was high and prevented us from formally 

assessing patterns of co-occurrence. Insufficient variation in the occurrence of coyotes, 

the dominant species, limited our ability to evaluate their influence on patterns of 

occurrence of bobcat, the subordinate species. High occurrence of coyote at the site level 

also limited our ability to evaluate how environmental predictors influenced coyote 

occurrence. Station-level patterns of detection suggested coyote occurrence was lower at 

the station-level scale. Although we were unlikely to satisfy the closure assumption of 

occupancy modeling at the station level, occupancy results can be interpreted as the 

probability of use when the closure assumption is not met and movement between sites is 

random (Mackenzie 2006, Gould et al. 2019). Consequently, we performed the analyses 

at the station-level scale to facilitate identification of factors driving coyote space use and 

interpreted results as the probability of use. Very few stations that were used by bobcats 

in 2019 were not used in 2020. This limited our ability to generate reliable estimates of 

extinction which can lead to erroneous use estimates in year 2 and prevented multi-

season occupancy modeling. Consequently, we evaluated the factors influencing space 

use of bobcats and coyotes separately for 2019 and 2020 using daily encounter histories 

and single-species, single-season occupancy models (MacKenzie et al. 2002). 

We used a sequential-by-sub-model modeling approach (Lonsinger et al. 2017, 

Morin et al. 2020). We tested for correlations between all pairwise covariate 

combinations using a Kendall’s rank correlation test (Robinson et al. 2014, Lonsinger et 

al. 2017). Covariates with a Kendall's |τ| ≥ 0.7 were not included in the same model 

(Dormann et al. 2013).  For each species, we first identified the most-supported global 

models for detection and occupancy. We fit two global detection models (i.e., including 
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all detection covariates), which varied only by how time was characterized (i.e., time 

versus quadratic effect of time), while holding the occupancy model for occupancy at the 

null model. We retained the most parsimonious characterization of time for each species 

for subsequent analyses. We fit eight competing global occupancy models that compared 

support for covariates that were correlated (i.e., slope vs. TRI, mean patch size vs. edge 

density, and VO vs. concealment), including all possible combinations of 

characterizations for these covariates along with all other occupancy covariates. We 

retained the characterization of each covariate in the most parsimonious global model for 

subsequent analyses. Finally, we developed a candidate model set for occupancy that 

included all possible additive combinations of occupancy covariates (Doherty et al. 

2012), while holding the model for detection at the most-supported model (Lonsinger et 

al. 2017). Relative support for competing models was ranked using an information-

theoretic approach with Akaike’s Information Criterion (AIC; Burnham and Anderson 

2002). We estimated daily p and use, and inferred the influence of covariates, based on 

the structure of the most-supported models. Detection and use were estimated at the mean 

value for continuous covariates and the mode for categorical covariates (i.e., trail = 

adjacent to trail; camera type = Browning). To account for model-selection uncertainty, 

we also reported covariate predictor importance based on cumulative model weights. 

Analyses were completed separately for each species and each year. 

The influence of mean patch size on bobcat space use (see Results) contradicted 

patterns observed in other studies (Nielsen and Woolf 2002, Crooks 2002). Consequently, 

we conducted a post-hoc analysis to assess the relationship between patch size and WS 

cover using a Spearman’s rank correlation test. Additionally, we replaced mean patch 
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size with edge density in the top model to ensure that we had identified the most-

parsimonious model. 

 

Temporal Activity Curves 

We evaluated temporal activity patterns separately for 2019 and 2020 using a 

non-parametric kernel density approach (Ridout and Linkie 2009). Photo sequences of 

the same species separated by ≥30 minutes were considered independent (Wang et al. 

2015, Iannarilli et al. 2021). We converted detection times to radians, generated a 

probability density distribution using a kernel density estimation, and calculated a 

coefficient of overlap between bobcats and coyotes (∆̂; Ridout and Linkie 2009, Wang et 

al. 2015, Lashley et al. 2018). Ridout and Linkie (2009) suggested using ∆̂1 if the number 

of independent photo sequences of the smaller sample was <50 and ∆̂4 if >75. We used ∆̂1 

because bobcat had <75 photo sequences for both years (2019: 52 and 2020: 45). Using 

program R (R Core Team 2020), we estimated ∆̂ 95% confidence intervals from 10,000 

bootstrap samples with overlap package (Ridout and Linkie 2009; Wang et al. 2015, 

Lashley et al. 2018) and conducted a Watson’s two-sample test of homogeneity in the 

CircStats package (Lund and Agostinelli 2018) to test for homogeneity between samples, 

(i.e., if the two samples come from the same population). We interpreted results to 

evaluate for evidence of temporal partitioning (Lashley et al. 2018).  
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Results 

We surveyed 180 stations for a total of 5,514 camera days (mean = 30.6 ± 7.5 SD) 

from May to September 2019, and 174 stations for a total of 5000 camera days (mean = 

27.8 ± 6.2 SD) from May to August 2020. Six stations from 2019 were not resurveyed in 

2020 due to camera failure or changes in land-access permission. Coyotes had more 

independent photo sequences, days with ≥1 sequence, and were detected at more stations 

than bobcats (Table 1). Coyote independent photo sequences and days with ≥1 sequence 

decreased from 2019 and 2020, while those of bobcat were comparable between years 

(Table 1).  

 Time characterized as a linear covariate was more supported than a quadratic 

effect of time for bobcats and coyotes for both years. Only covariates that characterized 

the same habitat characteristics were correlated either year, including TRI and slope 

(Kendall's |τ| = 0.81), VO and concealment (|τ| = 0.70), and mean patch size and edge 

density (|τ| ≥ 0.72), which were not included in the same model. 

 

Bobcat 

 The most-supported models of bobcat detection suggested that detection was 

negatively associated with lure in 2019 (Table 2). The most-supported models also 

suggested that bobcat detection may have been influenced by precipitation in 2019 and 

trail, illumination, and time in 2020, however, the influence of these predictors was not 

different from 0 (Table 2). When considering the full candidate model set, only lure, 

precipitation, and temperature in 2019 and only trail and time in 2020 had cumulative 
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model weights >0.5, with lure having the highest relative importance (Table 3). Daily p 

was higher in 2019 (daily 𝑝̂ without lure, 0.063, SÊ = 0.014, 95% CI = 0.040, 0.097) than 

in 2020 (0.027, SÊ = 0.007, 95% CI = 0.017, 0.044).  

Eight of the 512 bobcat space use models for 2020 were removed from the model 

set due to convergence issues. The most-supported models of bobcat space use suggested 

space use was positively associated with coyote activity (Table 2; Fig. 1) and negatively 

associated with patch size in both years, but the influence of patch size was not different 

from 0 in 2020 (Table 2). Cumulative model weights supported the importance of coyote 

activity and patch size in both years (Table 3). Bobcat space use in 2020 was also 

positively associated with distance to the nearest paved road and the large-scale percent 

WS cover (Table 2), both of which had high cumulative model weights (Table 3). 

Although the most-supported models also suggested that bobcat space use may have been 

influenced by concealment in 2019 and the large-scale proportion of agriculture in 2020, 

the influence of these predictors was not different from 0 (Table 2) and both had 

relatively low cumulative model weights (Table 3). Estimates of bobcat space use were 

similar across years (Fig. 2).  

A post-hoc analysis found that mean patch size was negatively correlated with 

large-scale percent WS (Spearman’s rho = –0.69, p < 0.001). The model with mean patch 

size was more supported than the model with edge density, and the 95% confidence 

intervals for the estimated beta coefficient of edge density overlapped 0 in 2020.  
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Coyote 

The most-supported models of coyote detection suggested that detection was 

positively associated with lure age in 2019 and precipitation and varied across camera 

models in 2020 (Table 2). Relative to Moultrie cameras (represented by the intercept), 

detection was higher for Browning and Bushnell camera models (Table 2). Cumulative 

model weights supported the importance of lure age in 2019 and camera model and 

precipitation in 2020 (Table 3). Although the most-supported models also suggested that 

coyote detection may have been influenced by time in 2019, the influence of this 

predictor was not different from 0 (Table 2) and had a lower cumulative model weight 

than lure age in 2019 (Table 3). Daily p was similar between 2019 (0.070, SÊ = 0.005, 

95% CI = 0.061, 0.080) and 2020 (0.074, SÊ = 0.007, 95% CI = 0.062, 0.088). 

The most-supported models of coyote occupancy suggested space use was 

positively associated with slope and small-scale percent agriculture in 2019 and edge 

density in 2020 (Table 2). The most-supported models also suggested that coyote space 

use may have been influenced by large-scale percent WS cover in 2019, however, the 

influence of this predictor was not different from 0 (Table 2). When considering the full 

candidate model set, only slope, small-scale percent agriculture, and large-scale percent 

WS cover in 2019 and edge density and concealment in 2020 had cumulative model 

weights >0.5, with slope and edge density having the highest relative importance in 2019 

and 2020, respectively (Table 3). Estimates of coyote space use were similar across years 

and significantly higher than bobcat space use (Fig. 2). 
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Temporal overlap  

 Bobcats and coyotes had marginally higher levels of activity during nocturnal and 

crepuscular periods with more detections (bobcat: 2019 = 56%, 2020 = 58%; coyote: 

2019 = 61%, 2020 = 62%) occurring between sunrise and sunset than during diurnal 

periods. Bobcat activity was similar between years (∆̂1 = 0.89, 95% CI = 0.77, 0.99) and 

was not significantly different (p-value > 0.10). Coyote activity was similar between 

years (∆̂4 = 0.92, 95% CI = 0.86, 0.96) and was not significantly different (p-value > 

0.10). Seasonal bobcat activity had high temporal overlap with coyote activity in both 

years, ∆̂1 = 0.91 (95% CI = 0.81, 0.98) in 2019 and ∆̂1 = 0.86 (95% CI = 0.76, 0.94; Fig 

3) in 2020. We did not find evidence of temporal partitioning between bobcats and 

coyotes in either year (2019: p-value > 0.10; 2020: p-value > 0.10).  

 

Discussion 

 Previous research investigating bobcat space use in habitats similar to 

southcentral South Dakota (Iowa, Tucker et al. 2008; Wisconsin, Clare et al. 2015; 

Kansas, Wait et al. 2018) found that landcover type influenced bobcat space use. Bobcat 

space use is often positively associated with natural landcover types such as woodlands 

and shrublands (Tucker et al. 2008, Clare et al. 2015, Wait et al. 2018) and can be 

negatively associated with agricultural land (Tucker et al. 2008). Based on telemetry data 

and habitat selection ratios, Tucker et al. (2008) found that bobcats were almost twice as 

likely to select for woodland than other habitat types and avoided agricultural land. Clare 

et al. (2015) found that bobcat space use was positively associated with the proportion of 
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wooded cover (forest, shrubland, and wooded wetland combined) and that neither the 

proportion of cropland or urban were significant predictors of space use. As we predicted, 

we found that large-scale percent WS was a significant predictor of bobcat space use in 

2020. Percent agriculture was not a significant predictor either year. These results 

highlight the importance of WS cover to bobcats in an agricultural landscape. 

 Roads and anthropogenic disturbances can negatively influence the spatial 

dynamics of bobcats. Roads can be a direct source of mortality (Litvaitis et al. 1987, 

Knick 1990, Chamberlain et al. 1999, Riley et al. 2003) and can contribute to increased 

harvest mortality of carnivores (Basille et al. 2013). Bobcat home ranges in California 

had lower road densities than the overall road density in the study extent (Poessel et al. 

2014). Likewise, Reed et al. (2017) found that collared bobcats avoided areas with high 

road densities. Riley et al. (2003) found that bobcat home ranges consisted primarily of 

natural areas, but most particularly adult females had the lowest percentage of urban 

landcover and hypothesized that females perceived disturbed areas as unsafe for rearing 

young. Occupancy of bobcat in southern Illinois was most influenced by anthropogenic 

disturbances, including negative associations with distance to paved roads and 

anthropogenetic structures (Lesmeister et al. 2015). We observed similar patterns. As we 

predicted, space use was greater in areas that were farther from roads, but only in 2020. 

These results highlight the importance of conserving undisturbed remote habitat. 

Undisturbed habitat may be important for females rearing young and may provide refugia 

from human-related disturbance and mortality.  

 Both edge density and patch size have been used to investigate bobcat space use 

or occupancy. Clare et al. (2015) found that bobcat use was positively associated with 
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wetland edge density (but not forest edge density) and suggested that wetland edge 

density had increased foraging value. Similarly, Wait et al. (2018) found that bobcat 

occupancy was positively associated with edge density. Nielsen and Woolf (2002) found 

that bobcat core areas had similarly high levels of mean patch size in comparison to the 

rest of the study area. Crooks (2002) found that the probability of occurrence of bobcats 

was positively related to fragment area. Our results that bobcat space use was negatively 

associated with mean patch size contradicts previous results (Nielsen and Woolf 2002, 

Crooks 2002). However, this is likely a consequence of landcover patterns in our study 

area and the scale of our mean patch size covariate. In our study area, relatively small, 

and presumably higher-quality, WS patches were interspersed among larger agricultural 

patches. This highlights the importance of understanding how covariate selection can 

influence the interpretation of results and how covariates and their influence can be scale 

and context dependent. 

 Ubiquitous use of study areas by coyotes has been found in other regions 

(Lesmeister et al. 2015, Lonsinger et al. 2017). Despite being able to exploit 

anthropogenically-dominated landscapes (Grinder and Krausman 2001, Gehrt et al. 

2009), coyote space use and occupancy can still be negatively influenced by 

anthropogenic disturbance (Lesmeister et al. 2015, Wait et al. 2018). Our results did not 

indicate that coyote space use was influenced by anthropogenic disturbance. Rather, 

coyote space use was positively associated with slope and large-scale percent agriculture 

in 2019 and edge density in 2020. Coyotes in North Carolina selected for agricultural 

fields over woodland but territories normally consisted of core areas dominated by 

agricultural land with woodland more prevalent on the periphery (Hinton et al. 2015). In 
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2019, we found that coyote space use was positively associated with small-scale percent 

agriculture with large-scale percent WS potentially having a weak effect on coyote space 

use. Similar to other studies examining coyote space use (Theberge and Wedeles 1989, 

Lesmeister et al. 2015, Ellington et al. 2020), we found that space use was positively 

associated with edge density, which has been attributed to their cursorial hunting 

technique and increased prey availability in edge habitats (Theberge and Wedeles 1989).  

 The competitive exclusion principle suggests that two sympatric species 

competing for the same resources cannot coexist (Hardin 1960). Coyotes have been 

shown to influence bobcat space use (Wilson et al. 2010), influence bobcats through 

interference competition (Knick 1990, Fedriani et al. 2000, Gipson and Kamler 2002), 

and suppress bobcat populations through exploitative competition (Litvaitis and Harrison 

1989, Henke and Bryant 1999). Coexistence of sympatric carnivores can be facilitated 

through dietary, spatial, or temporal niche partitioning (Schoener 1974, Di Bitetti et al. 

2010). Despite evidence of competition between bobcat and coyote, previous research 

examining the spatial dynamic of bobcats and coyotes has generated mixed results on 

spatial partitioning. Wilson et al. (2010) found that bobcat space use was most influenced 

by the intensity of coyote activity. Bobcats avoided areas with high coyote activity when 

prey was abundant, but were more likely to use areas with high coyote activity when prey 

availability was low (Wilson et al. 2010). Bobcat space use or occurrence has been shown 

to not be influenced by (Lesmeister et al. 2015, Wait et al. 2018) or even be positively 

associated with coyote occupancy (Wang et al. 2015, Bender et al. 2017, Lombardi et al. 

2020). Wang et al. (2015) and Wait et al. (2018) did not account for prey availability. The 

spatial patterns that they observed may have been influenced by underlying resource 
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availability that was not accounted for. Lombardi et al. (2020) did not include prey 

availability in analyses but suggested that prey availability in the study area was high due 

to no harvest and limited habitat manipulation. Bender et al. (2017) found that bobcat and 

coyote were more likely to co-occur than would be expected under a hypothesis of 

independence (Richmond et al. 2010) but that space use of each species was influenced 

by different-sized prey. Lesmeister et al. (2015) accounted for prey availability and found 

no effect for bobcat but found that coyote occupancy was higher in hardwood forest 

stands and suggested that hardwood forests had higher prey abundance than conifer 

stands. Contradicting our prediction, we found that bobcat space use was positively 

associated with coyote activity. These results suggest that bobcats are more likely to use 

areas that have more coyote activity. This may suggest that prey resources are sufficiently 

low in our study area (Wilson et al. 2010) or that landscape patterns in our agriculturally-

dominated landscape concentrate prey in areas and results in increased interactions at the 

spatial scale between bobcats and coyotes. We were unable to include prey availability in 

our modeling of space use because detection of eastern cottontail, presumably one of the 

primary prey of bobcats in South Dakota (Nomsen 1982), was influenced by differences 

across camera sets (e.g., camera model and lure) that would have invalidated any relative 

measure of prey availability.  

Consistent with our results that bobcats and coyotes do not spatially partition 

resources, our results aligned with previous research findings that activity of bobcats and 

coyotes have high levels of temporal overlap (Witmer and DeCalesta 1986, Neale and 

Sacks 2001, Lesmeister et al. 2015). This may be a consequence of decreased diurnal 

activity of carnivores in response to anthropogenic disturbance (Riley et al. 2003, George 
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and Crooks 2006, Wang et al. 2015) in our agriculturally-dominated landscape. In the 

absence of spatial and temporal partitioning, co-occurrence can still be facilitated through 

dietary niche partitioning (Schoener 1974), but we were unable to evaluate dietary 

patterns between bobcats and coyotes in our study system. Neale and Sacks (2001) found 

slight differences in diets between bobcat and coyote and no evidence of spatial or 

temporal partitioning. Bobcat diets consisted primarily of small mammals, while coyotes 

diets consisted primarily of ungulates (Neale and Sacks 2001). Bender et al. (2017) found 

that bobcat and coyote space use was influenced by different-sized prey. Lesmeister et al. 

(2015) and Bender et al. (2017) suggested that despite high spatial overlap, that co-

occurrence can be facilitated through differences in hunting techniques between cursorial 

predators and ambush predators. Beyond dietary niche partitioning, Lombardi et al. 

(2020) hypothesized that co-occurrence was facilitated by an abundance of suitable cover 

with high prey availability and fine-scale avoidance was facilitated through olfactory 

cues. 

We found that the factors that influenced patterns of use varied between years. 

Our study area experienced major flooding before and during our 2019 field season. 

Flooding altered human activity by limiting farming and altering human movement and 

access. In our study area, most WS cover is adjacent to rivers, creeks, and drainages. 

Flooding may have altered prey availability or displaced bobcats in these areas.  Our 

2020 field season took place during the SARS-CoV-2 (coronavirus disease 2019) 

outbreak, which likely had impacts on human activity and road traffic around recreation 

areas and campgrounds in the study area. 
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Our study was restricted to spatial and temporal patterns of bobcats and coyotes 

during summer months. The factors that potentially influence space use and interspecific 

interactions (e.g., resource availability, weather, harvest, reproduction, and anthropogenic 

disturbance) are likely to vary throughout the year. Summer is important for 

understanding bobcat and coyote space use because abundance should be highest due to 

reproductive pulses. Harvest in winter months complicates using occupancy modeling to 

investigate space use because harvest mortality likely violates the closer assumption 

required for occupancy modeling. Furthermore, trapping activity is difficult to quantify 

and is likely to influence space use of bobcats and coyotes. 

 

Management Implications 

This research adds to the growing body of evidence of the importance of remnant, 

undisturbed WS cover for bobcat space use in an agricultural landscape. Eastern red 

cedar encroachment could benefit bobcat populations and management of encroachment 

is likely to influence bobcat populations in the Northern Great Plains. Managers should 

consider conserving and limiting the development of undisturbed WS habitats because it 

may provide refugia from human-related disturbance and mortality. Our results also 

provide insight into patterns of spatial and temporal resource partitioning between 

competing sympatric carnivores in agricultural landscapes. Agricultural landscapes may 

limit the availability of high-quality habitat, which may concentrate or suppress prey 

availability, and increase spatial overlap of sympatric carnivores. Wildlife managers 

should consider limiting further conversion of natural habitats to agriculture to limit 
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further concentration or reduction of prey availability which could further decrease 

opportunities for resource partitioning between bobcats and coyotes. 
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Figure 1. Estimated space use (Ψ̂) of bobcats (Lynx rufus) as a function of relative coyote 

(Canis latrans) activity (i.e., the proportion of survey days with a coyote detection) with 

95% confidence intervals in southcentral South Dakota during summer, 2019 and 2020. 
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Figure 2. Estimated space use (Ψ̂) of bobcats (Lynx rufus) and coyotes (Canis latrans) 

with 95% confidence intervals for summer 2019 (●) and 2020 (▲) in southcentral South 

Dakota.  
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Figure 3. Kernel density estimates of summer daily activity patterns of bobcat (Lynx 

rufus) and coyote (Canis latrans) in southcentral South Dakota, 2019 and 2020.  

 

Notes: independent photo sequence totals: 2019: bobcat = 52, coyote = 403; 2020: bobcat 

= 45; coyote = 302. 
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Table 1. The number of independent photo sequences, number of days with ≥1 photo sequence, and number of unique stations with 

detections of bobcat (Lynx rufus) and coyote (Canis latrans) surveyed in southcentral South Dakota during summer, 2019 and 2020.  

 Independent sequences  Days with ≥1 sequence  Unique stations 

 2019 2020  2019 2020  2019 2020 Both years 

Bobcat 52 45  45 44  24 30 43 

Coyote 403 302  326 262  111 108 153 
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Table 2. Estimated beta coefficients (𝛽̂), standard error (SE), and 95% confidence interval lower (LCL) and upper (UCL) confidence 

limits for the most-supported models of detection (p) and space use (Ψ) for bobcats (Lynx rufus) and coyotes (Canis latrans) surveyed 

in southcentral South Dakota during summer, 2019 and 2020. 

Notes:  Predictors: Lure = lure applied at time of survey; lure age = days since lure applied; Trail =  camera set adjacent to game trail; 

Camera Model = categorical identification of camera model; Precipitation = daily precipitation total (mm) from nearest weather 

station; Temperature = daily max temperature (ºC) from nearest weather station;  Illumination = scaled range of moon phase; 0 (new 

 Parameter  𝜷̂ SE  LCL  UCL   Parameter  𝜷̂ SE  LCL  UCL 

Bobcat 2019       Coyote 2019      

p Intercept −2.548 0.243 −3.025 −2.071  p Intercept −3.080 0.376 −3.817 −2.343 

      Lure −1.011 0.357 −1.710 −0.311        Lure Age   0.022 0.008   0.006   0.037 

      Precipitation −0.033 0.027 −0.086   0.019        Time   0.003 0.002 −0.001   0.006 

Ψ Intercept   0.403 0.808 −1.180   1.987  Ψ Intercept −1.276 0.481 −2.218 −0.334 

      Coyote Act.  10.989 3.995   3.158  18.820        Slope   0.594 0.237   0.129   1.058 

      Concealment −0.018 0.010 −0.037   0.001        LS_%WS   0.116 0.071 −0.023   0.255 

      Patch −0.374 0.162 −0.692 −0.056        SS_%Ag   0.019 0.008   0.003   0.035 

             

Bobcat 2020       Coyote 2020      

p Intercept −1.306 1.769 −4.773   2.160  p Intercept −3.223 0.212 −3.639 −2.806 

      Trail   0.896 0.686 −0.450   2.241        Cam Model           

      Illumination −0.008 0.005 −0.019   0.002             Browning   0.629 0.229   0.179   1.079 

      Time −0.015 0.009 −0.033   0.002             Bushnell   0.818 0.243   0.342   1.293 

Ψ Intercept −3.307 1.283 −5.821 −0.793        Precipitation   0.015 0.004   0.007   0.023 

      Coyote Act.  12.442 5.083   2.480 22.404  Ψ Intercept −0.621 0.572 −1.742   0.500 

      Patch −0.415 0.218 −0.843   0.012        Edge Density   0.018 0.007   0.004   0.031 

      Road Dist.   0.599 0.248   0.114   1.085        

      LS_%WS   0.108 0.033   0.044   0.173        

      LS_%Ag   0.031 0.018 −0.004   0.067        
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moon) to 100 (full moon); Time = Julian day during survey; Slope =  slope at station; TRI = Terrain ruggedness index at station; 

concealment =  visual cover measured as percent of  39 x 30 cm concealed by vegetation at ground level;  VO = vertical density of 

vegetation measured from ground level (cm);  Edge Density  = total edge (m) per hectare within 600-m buffer; Patch = mean patch 

size within 600-m buffer; coyote act =  proportion of survey days with a coyote detection; Road Dist = distance to nearest paved road 

(km);  LS_%WS = percent woodland/shrubland cover within 600-m buffer; LS_%Ag = percent agriculture cover within 600-m buffer, 

SS_%WS = percent woodland/shrubland cover within 100-m buffer, SS_%Ag  = percent agriculture cover within 600-m buffer.
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Table 3. Detection (p) and space use (Ψ) covariate predictor importance based on cumulative model weights from single-species, 

single-season occupancy modeling for bobcat (Lynx rufus) and coyote (Canis latrans) surveyed in southcentral South Dakota during 

summer, 2019 and 2020. Bold indicates predictors in the most-supported detection model. Dash indicates that the covariate was not 

considered in the model set.  

 

 

 

 

 

 

 

 

 

  Bobcat Coyote 

 Covariate 2019 2020 2019 2020 

p Lure 0.87 - 0.31 - 

 Lure Age 0.32 - 0.77 - 

 Trail 0.26 0.78 0.27 0.42 

 CamModel 0.27 0.15 0.32 0.97 

 Illumination 0.27 0.47 0.27 0.29 

 Precipitation 0.51 0.26 0.36 0.99 

 Temperature 0.51 0.41 0.27 0.30 

 Time 0.39 0.85 0.65 0.41 

      

Ψ Slope 0.26 - 1.00 - 

 TRI - 0.47 - 0.27 

 Concealment 0.61 - - 0.51 

 VO - 0.54 0.26 - 

 Edge Density - - 0.36 0.67 

 Patch 0.88 0.87 - - 

 Coyote Act. 0.96 0.97 - - 

 Road Dist 0.26 0.97 0.25 0.26 

 LS_%WS 0.45 1.00 0.74 0.31 

 LS_%Ag 0.26 0.48 0.27 0.27 

 SS_%WS 0.31 0.53 0.34 0.38 

 SS_%Ag 0.29 0.34 0.76 0.31 
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Notes:  Predictors: Lure = lure applied at time of survey; lure age = days since lure applied; Trail =  camera set adjacent to game trail; 

Camera Model = categorical identification of camera model; Precipitation = daily precipitation total (mm) from nearest weather 

station; Temperature = daily max temperature (ºC) from nearest weather station;  Illumination = scaled range of moon phase; 0 (new 

moon) to 100 (full moon); Time = Julian day during survey; Slope =  slope at station; TRI = Terrain ruggedness index at station; 

concealment =  visual cover measured as percent of  39 x 30 cm concealed by vegetation at ground level;  VO = vertical density of 

vegetation measured from ground level (cm);  Edge Density  = total edge (m) per hectare within 600-m buffer; Patch = mean patch 

size within 600-m buffer; coyote act =  proportion of survey days with a coyote detection; Road Dist = distance to nearest paved road 

(km);  LS_%WS = percent woodland/shrubland cover within 600-m buffer; LS_%Ag = percent agriculture cover within 600-m buffer, 

SS_%WS = percent woodland/shrubland cover within 100-m buffer, SS_%Ag  = percent agriculture cover within 600-m . 
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