#### **BEFORE THE PUBLIC UTILITIES COMMISSION OF THE STATE OF SOUTH DAKOTA**

In the Matter of the Application of Black Hills Power, Inc. for Authority to Increase its Electric Rates Docket No. EL14-026

#### DIRECT TESTIMONY

AND EXHIBITS

OF

**STEPHEN J. BARON** 

#### ON BEHALF OF THE BLACK HILLS INDUSTRIAL INTERVENORS

#### J. KENNEDY AND ASSOCIATES, INC. ROSWELL, GEORGIA

# **PUBLIC DOCUMENT**

December 2014



Stephen J. Baron Page i

#### TABLE OF CONTENTS

| I.  | INTRODUCTION AND SUMMARY                                           | 1  |
|-----|--------------------------------------------------------------------|----|
| II. | CLASS COST OF SERVICE ISSUES                                       | 7  |
| Α.  | Overview of the Company's Results                                  | 7  |
| В.  | The Company Erroneously Allocates Production Demand-related Costs  | 9  |
| C.  | The Company Misclassifies and Inaccurately Allocates Distribution- |    |
|     | Related Costs                                                      | 15 |
| D.  | The Company Failed to Take Into Account Loss Factors               | 24 |
| Е.  | Results from Corrected Class Cost of Service Study                 |    |
|     |                                                                    |    |

## 

#### **BEFORE THE PUBLIC UTILITIES COMMISSION OF THE STATE OF SOUTH DAKOTA**

Docket No. EL14-026

In the Matter of the Application of Black Hills Power, Inc. for Authority to Increase its Electric Rates

#### **DIRECT TESTIMONY OF STEPHEN J. BARON**

| 1  |    | I. INTRODUCTION AND SUMMARY                                                                   |
|----|----|-----------------------------------------------------------------------------------------------|
| 2  | Q. | Please state your name and business address.                                                  |
| 3  | A. | My name is Stephen J. Baron. My business address is J. Kennedy and Associates, Inc.           |
| 4  |    | ("Kennedy and Associates"), 570 Colonial Park Drive, Suite 305, Roswell, Georgia              |
| 5  |    | 30075.                                                                                        |
| 6  |    |                                                                                               |
| 7  | Q. | What is your occupation and by whom are you employed?                                         |
| 8  | A. | I am the President and a Principal of Kennedy and Associates, a firm of utility rate,         |
| 9  |    | planning, and economic consultants in Atlanta, Georgia.                                       |
| 10 |    | · · · · ·                                                                                     |
| 11 | Q. | Please describe your education.                                                               |
| 12 | Α. | I graduated from the University of Florida in 1972 with a B.A. degree with high honors in     |
| 13 |    | Political Science and significant coursework in Mathematics and Computer Science. In          |
| 14 |    | 1974, I received a Master of Arts Degree in Economics, also from the University of Florida.   |
| 15 |    | My areas of specialization were econometrics, statistics, and public utility economics. My    |
| 16 |    | thesis concerned the development of an econometric model to forecast electricity sales in the |

| 1  |    | State of Florida, for which I received a grant from the Public Utility Research Center of the       |
|----|----|-----------------------------------------------------------------------------------------------------|
| 2  |    | University of Florida. In addition, I have advanced study and coursework in time series             |
| 3  |    | analysis and dynamic model building.                                                                |
| 4  |    |                                                                                                     |
| 5  | Q. | Please describe your professional experience.                                                       |
| 6  | Α. | I have more than thirty years of experience in the electric utility industry in the areas of cost   |
| 7  |    | and rate analysis, forecasting, planning, and economic analysis.                                    |
| 8  |    |                                                                                                     |
| 9  |    | Following the completion of my graduate work in economics, I joined the staff of the                |
| 10 |    | Florida Public Service Commission in August 1974 as a Rate Economist. My                            |
| 11 |    | responsibilities included the analysis of rate cases for electric, telephone, and gas utilities, as |
| 12 |    | well as the preparation of cross-examination material and staff recommendations.                    |
| 13 |    |                                                                                                     |
| 14 |    | In December 1975, I joined the Utility Rate Consulting Division of Ebasco Services, Inc.            |
| 15 |    | ("Ebasco"), as an Associate Consultant. In the seven years I worked for Ebasco, I received          |
| 16 |    | successive promotions, ultimately to the position of Vice President of Energy Management            |
| 17 |    | Services of Ebasco Business Consulting Company. My responsibilities included the                    |
| 18 |    | management of a staff of consultants engaged in providing services in the areas of                  |
| 19 |    | econometric modeling, load and energy forecasting, production cost modeling, planning,              |
| 20 |    | cost of service analysis, cogeneration, and load management.                                        |
| 21 |    |                                                                                                     |
| 22 |    | I joined the public accounting firm of Coopers & Lybrand in 1982 as a Manager of the                |
| 23 |    | Atlanta Office of the Utility Regulatory and Advisory Services Group. In this capacity, I           |

| 1  | was responsible for the operation and management of the Atlanta office. My duties included  |
|----|---------------------------------------------------------------------------------------------|
| 2  | the technical and administrative supervision of the staff, budgeting, recruiting, and       |
| 3  | marketing, as well as project management on client engagements. At Coopers & Lybrand, J     |
| 4  | specialized in utility cost analysis, forecasting, load analysis, economic analysis, and    |
| 5  | planning.                                                                                   |
| 6  |                                                                                             |
| 7  | In January 1984, I joined the consulting firm of Kennedy and Associates as a Vice President |
| 8  | and Principal. I became President of the firm in January 1991.                              |
| 9  |                                                                                             |
| 10 | During the course of my career, I have provided consulting services to more than thirty     |
| 11 | utility, industrial, and Public Service Commission clients, including three international   |
| 12 | utility clients.                                                                            |
| 13 |                                                                                             |
| 14 | I have presented numerous papers and published an article entitled "How to Rate Load        |
| 15 | Management Programs" in the March 1979 edition of Electrical World. My article on           |
| 16 | "Standby Electric Rates" was published in the November 8, 1984, issue of Public Utilities   |
| 17 | Fortnightly. In February 1984, I completed a detailed analysis entitled "Load Data Transfer |
| 18 | Techniques" on behalf of the Electric Power Research Institute, which published the study.  |
| 19 |                                                                                             |
| 20 | I have presented testimony as an expert witness in Arizona, Arkansas, Colorado,             |
| 21 | Connecticut, Florida, Georgia, Indiana, Kentucky, Louisiana, Maine, Maryland, Michigan,     |
| 22 | Minnesota, Missouri, New Jersey, New Mexico, New York, North Carolina, Ohio,                |
| 23 | Pennsylvania, Texas, Utah, Virginia, West Virginia, Wisconsin, Wyoming, before the          |
|    | I Kannady and Associates Inc.                                                               |

. .

| 1  |    | Federal Energy Regulatory Commission ("FERC"), and in the United States Bankruptcy           |
|----|----|----------------------------------------------------------------------------------------------|
| 2  |    | Court. A list of my specific regulatory appearances can be found in Exhibit (SJB-1).         |
| 3  |    |                                                                                              |
| 4  | Q. | On whose behalf are you testifying?                                                          |
| 5  | А. | I am testifying on behalf of the Black Hills Industrial Intervenors ("BHII"), a group of     |
| 6  |    | General Service, Large and Industrial Contract customers of Black Hills Power, Inc.          |
| 7  |    | ("BHP" or the "Company").                                                                    |
| 8  |    |                                                                                              |
| 9  | Q. | What is the purpose of your Direct Testimony?                                                |
| 10 | A. | I am presenting testimony on issues pertaining to BHP's class cost of service study and its  |
| 11 |    | apportionment of the overall revenue increase to rate classes. The South Dakota Public       |
| 12 |    | Utilities Commission (the "Commission") has not had the opportunity to consider the          |
| 13 |    | proposed Settlement Stipulation between BHP and the Commission Staff ("Staff") of            |
| 14 |    | December 8, 2014 (the "Proposed Settlement"). Therefore, my testimony addresses the          |
| 15 |    | revenue increases to each rate class under both the Company's originally filed case, in      |
| 16 |    | which it requested an overall revenue increase of \$14,634,238, and the Proposed Settlement, |
| 17 |    | under which it would receive an overall revenue increase of \$6,890,746.                     |
| 18 |    |                                                                                              |
| 19 |    | With respect to these increases, I present testimony on the Company's originally filed class |
| 20 |    | cost of service study and rate class revenue apportionment, as well as the reasonableness of |
| 21 |    | the Proposed Settlement rate class revenue increases shown in Exhibit No. 2 of the Proposed  |
| 22 |    | Settlement.                                                                                  |

23

| 1  |    | As part of this testimony, I discuss a number of errors in the Company's study. I present an    |
|----|----|-------------------------------------------------------------------------------------------------|
| 2  |    | alternative analysis that corrects these errors and provides a reasonable basis to evaluate the |
| 3  |    | reasonableness of BHP's rates relative to cost of service and the appropriate apportionment     |
| 4  |    | of any approved increase in the Company's overall revenues.                                     |
| 5  |    |                                                                                                 |
| 6  | Q. | Would you please summarize your recommendations in this case?                                   |
| 7  | A. | Yes, my summary is as follows:                                                                  |
| 8  |    | $\circ$ The Company's class cost of service study should be rejected because it has a           |
| 9  |    | number of errors – both actual numerical errors and conceptual errors – that                    |
| 10 |    | result in an inaccurate measure of the cost of providing service to each of the its             |
| 11 |    | rate classes. These errors, when corrected, show that the Company is earning a                  |
| 12 |    | rate of return higher than the system average rate of return from the                           |
| 13 |    | Combined General Service Large/Industrial Contract rate class. This is in                       |
| 14 |    | contrast to the results shown in the Company's filed class cost of service study.               |
| 15 |    |                                                                                                 |
| 16 |    | • Notwithstanding the problems with the Company's class cost of service study,                  |
| 17 |    | the Company's proposed apportionment of the overall approved revenue                            |
| 18 |    | increase to each rate class appears to be reasonable and should be accepted.                    |
| 19 |    | The Company's originally-filed rate class revenue increases reflect a level of                  |
| 20 |    | mitigation to each rate class that produces results that are reasonably                         |
| 21 |    | consistent with the results of the BHII corrected class cost of service study that              |
| 22 |    | I present in this testimony. The Proposed Settlement rate class revenue                         |
| 23 |    | increases that are designed to recover the overall increase of \$6.89 million in                |

1 the Proposed Settlement are also reasonable. Effectively, the Proposed 2 Settlement rate class increases shown in Exhibit No. 2 are consistent with the 3 results of my corrected class cost of service study. If the Commission approves the overall base rate increase of \$6,890,746, in the Proposed Settlement, then 4 5 the rate class increases shown in Exhibit No. 2 should be accepted. However, if 6 the Commission approves an overall base rate increase that is lower than 7 \$6,890,746, as BHII witness Lane Kollen recommends, then the increases 8 shown in Exhibit No. 2 should be reduced proportionately. 9 10Going forward, the Commission should require the Company to file a class cost Ο 11 of service study in its next base rate case reflecting the corrections that I 12 recommend in my testimony. At a minimum, the Company should file an 13 alternative study that incorporates my corrections in its next case. 14 15 16

#### II. CLASS COST OF SERVICE ISSUES

1 2

3

#### A. Overview of the Company's Results

#### 4 Q. Please provide an overview of the purpose of a class cost of service study.

5 In general terms, a class cost of service study is an analysis used to determine each A. 6 class's responsibility for a utility's total costs by separating the utility's total costs into 7 amounts that are associated with each of the various customer classes. This analysis 8 consists of the following three steps: (1) a functionalization of costs, (2) a classification 9 of those costs' primary causative factors, and (3) an *allocation* of those costs among the 10 various customer classes. A utility's investments and expenses are first functionalized 11 into production, transmission, distribution, and other functions. The next step is to 12 determine the primary factors that cause the costs to be incurred (*i.e.*, determination of 13 whether the investments and expenses are demand/capacity-related, energy-related, or 14 customer-related). An appropriate allocator is then used to allocate the various classified 15 costs to customer classes. There are various types of methods that can be employed to 16 perform a class cost of service analysis. The analyst is charged with identifying the 17 economic theory that is most representative to measure cost-causation.

- 18
- 19

#### Q. What are the results of the Company's cost of service study?

A. Table 1 below summarizes the earned rate of return and relative rate of return at present
rates for each customer class, based on the Company's study.

| Г ·                                | able 1                 |           |
|------------------------------------|------------------------|-----------|
| Summary of Co                      | ost of Service Results |           |
|                                    | Rate of Return         | Relative  |
| Customer Class                     | As Filed               | ROR Index |
| Residential                        | 5.11%                  | 0.76      |
| General Service                    | 9.85%                  | 1.46      |
| Combined Gen Svc Lg - Ind Contract | 5.70%                  | 0.85      |
| Lighting Service                   | 12.14%                 | 1.80      |
| Water Pumping/Irrigation           | 7.78%                  | 1.16      |
| Total South Dakota Retail          | 6.73%                  | 1.00      |

3

4

5

6

7

8

The analysis underlying the Company's results in Table 1 suggests that the Residential class and the Combined General Service Large/Industrial Contract class are earning below the system average return (relative rates of return below 1.0). However, the Company's analysis is flawed. As discussed below, the Combined General Service Large/Industrial Contract class is earning a rate of return higher than the system average rate of return.

9

10 Q. Have you identified specific problems with the Company's class cost of service
11 study?

A. Yes. I have found a number of problems with the Company's study. As I will discuss,
correcting these errors results in a significant revision to each rate class's earned rate of
return and the corresponding rate increase for each class that can be justified based on its

| 1  |    | rate of return. I will present a revised cost of service study reflecting all of these        |
|----|----|-----------------------------------------------------------------------------------------------|
| 2  |    | corrections in a subsequent portion of my testimony.                                          |
| 3  |    |                                                                                               |
| 4  |    | Specifically, I have identified errors in three broad areas: (1) the allocation of production |
| 5  |    | demand-related costs, (2) the classification and allocation of distribution-related costs and |
| 6  |    | (3) the energy-related costs associated with voltage loss factors.                            |
| 7  |    |                                                                                               |
| 8  |    | B. The Company Erroneously Allocates Production Demand-related Costs                          |
| 9  |    |                                                                                               |
| 10 | Q. | Have you reviewed the Company's class cost of service study filed in this case?               |
| 11 | А. | Yes. As discussed by Company witness Charles Gray, the Company utilized an Average            |
| 12 |    | and Excess Demand ("A&E") methodology to allocate fixed production demand-related             |
| 13 |    | costs to rate classes.                                                                        |
| 14 |    |                                                                                               |
| 15 | Q. | What is the A&E Methodology?                                                                  |
| 16 | A. | According to the National Association of Regulatory Utility Commissions ("NARUC")             |
| 17 |    | Electric Utility Cost Allocation Manual (the "NARUC Cost Allocation Manual"), the             |
| 18 |    | A&E methodology is an energy-weighting method. Generally speaking, all production             |
| 19 |    | plant costs are classified as demand-related and the methodology allocates those              |
| 20 |    | production plant costs to rate classes using factors that incorporate the classes' average    |
| 21 |    | demands and non-coincident peak demands.                                                      |
| 22 |    |                                                                                               |
| 23 | Q. | Do you have any objections to the Company's use of the A&E Methodology?                       |

1 A. No. It is a reasonable methodology that is consistent with traditional production demand 2 allocation methodologies discussed in the NARUC Cost Allocation Manual. The A&E Methodology has also been adopted by a number of electric utilities and approved by 3 4 state regulatory commissions throughout the country. For example, Public Service 5 Company of Colorado has utilized the A&E method and it has been approved in a 6 number of Colorado cases by the Public Utilities Commission of the State of Colorado. It 7 has also been approved by the Virginia State Corporation Commission in a number of 8 Virginia Electric Power Company rate cases, as well as the Texas Public Utility 9 Commission in electric utility rate cases in that state. 10 11 How does BHP apply the A&E Methodology? **Q**. Specifically, BHP used a 3 coincident peak ("CP") A&E method in which the A&E 12 A. demand costs are allocated based on each class's contribution to the three BHP South 13 14 Dakota summer coincident peaks, which are the average hourly demands during BHP's 15 highest peaks in the months of July, August and September. 16 17 With respect to distribution costs, the Company assigned all costs in distribution account 362 through 368 on the basis of class non-coincident peak ("NCP") demands. 18 For 19 account 369, services, the Company used a weighted NCP demand allocation method. 20 21 22

2

8

**Q**.

# Would you please discuss the problems that you have identified with the Company's allocation of production demand-related costs?

A. Notwithstanding my support for the use of the A&E method in this case, I have identified
two errors in the Company's method. First, there is an error in its A&E calculation for
two rate classes (Residential – Total Electric Demand and General Service – Total
Electric). While each of these two classes has "excess demand," no excess demand
assignment was made to these classes.<sup>1</sup>

9 The second error is a conceptual error associated with the Company's calculation of the 3 10 CP A&E factor. The traditional A&E method separates demand-related costs into two 11 categories, average demand-related and excess demand-related, based on the annual 12 system load factor. This load factor is calculated as the ratio of average demand to the 13 annual system peak (1 CP). Average demand costs are determined by multiplying the 14 load factor times total demand costs; excess demand costs are determined by multiplying 15 (1 minus the load factor) times total demand costs. In the Company's analysis in this 16 case, it used a 3 CP load factor to perform this initial allocation. My experience has been 17 that the initial separation of the demand-related costs into average and excess categories 18 is based on a 1 CP annual system load factor, even if a multiple coincident peak is used to 19 allocate the "excess" costs to classes. The annual system load factor is the correct 20measure of average demand and excess demand because the system is planned to meet 21 the annual peak. While use of a 3 CP allocator to assign excess costs to rate classes is

*L* 1

<sup>1</sup> Excess demand is the rate class's 3 CP demand less its average demand.

reasonable and is consistent with the 4 CP A&E method used in Colorado, the 3 CP load factor is not consistent with the requirement that BHP has to meet its annual system peak.

- 3
- 4

5

# Q. Are there any additional problems with the Company's allocation of production demand costs?

6 Α. Yes. The Company has identified of interruptible/curtailable load on its 7 system. This includes of curtailable load associated with the general service 8 large rate class and of interruptible load associated with the industrial contract 9 rate class. Customers taking non-firm interruptible service receive a credit reflecting the 10 lower quality of service they receive. Other customers benefit from this interruptible load 11 because the Company does not need as much capacity as it otherwise would require – 12 thus, saving all firm customers the cost of such additional generating capacity. In effect, 13 interruptible load provides a demand response generation resource in a manner similar to 14 supply-side capacity. In exchange for providing capacity to the system by curtailing their 15 usage at the time of peak demand and in other critical periods, customers subscribing to 16 non-firm interruptible service receive a rate credit on their power bills.

17

# 18 Q. Did the Company's cost of service study reflect this interruptible load arrangement 19 in any manner?

A. No. Rate classes that have interruptible load receive a rate credit, or an implicit rate credit in the form of a lower overall demand charge, in the case of a contract rate. As such, rate classes that have customers with interruptible load produce lower test-year revenues than an equivalent firm power customer, all else being equal. The Company's

1 cost of service analysis makes no adjustment to reflect the important distinction between 2 equivalent customers that receive different service (*i.e.*, interruptible vs. firm), nor does it 3 make any load adjustment to reflect the interruptible portion of rate class load. 4 5 What is the impact of this failure to recognize and distinguish between firm and Q. 6 interruptible load in the Company's cost of service study? 7 Because the BHP cost of service study simply reports the reduced revenues paid by A. 8 interruptible load without any recognition (in the form of an adjustment) to reflect the 9 interruptible nature of the load, the reported rates of return for rate classes that have 10 interruptible load are biased and understate the Company's actual rate of return from 11 those rate classes. This is a very significant problem for the combined general service large/industrial contract rate class – a class that has a significant amount of interruptible 12 load. Thus, any decision based on the Company's analysis is incorrect; including relying 13 on the class cost of service study to assign the proposed revenue increase to this class. 14 15 16 Q. How should the Company's class cost of service study be revised to correct this problem? 17 Based on my experience, the best way to properly reflect interruptible load in a class cost 18 Α. 19 of service study is to use an imputed avoided capacity cost approach. This methodology assumes that the value of interruptible load (per kW) is equivalent to the avoided cost of a 20 new combustion turbine generating unit. Each rate class that has interruptible load is 21 22 credited with the avoided capacity cost on a \$/kW basis and the total cost of the 23 interruptible-load credit is then allocated on a demand allocation factor basis to all rate

- classes (including the classes that have interruptible load). The net impact on a total
   company basis is \$0 and therefore the adjustment has no effect on the overall rate of
   return or revenue requirement for the Company. This is the methodology that I have used
   to adjust BHP's class cost of service study in this case.
- 5
- 6

#### Q. How did you develop the avoided capacity cost?

7 I relied on a levelized cost analysis from the U.S. Energy Information Administration Α. ("EIA").<sup>2</sup> Baron Exhibit (SJB-2) contains a copy of the EIA analysis, which reflects 8 9 the levelized fixed costs of a new-build 2019 simple cycle combustion turbine, expressed 10 in 2012 dollars. As shown on page 6 of the exhibit, the levelized capital cost is 11 \$40.20/MWh and the levelized fixed O&M expense is \$2.80/MWh (both in \$2012). 12 Because the EIA values are on a \$/MWh, I converted them to an equivalent \$/kW-year 13 basis using the 30% annual capacity factor assumed in EIA's analysis. Finally, I escalated the 2012 cost to 2013 by applying a 1.5% inflation factor. The resulting 2013 14 15 levelized avoided capacity cost is \$114.70/kW-year. This avoided capacity cost is 16 credited to the combined general service large/industrial contract rate class for each of the 17 of interruptible load. The total cost of this credit is then allocated to all rate classes (including the combined general service large/industrial contract class) to reflect 18 19 the resource cost provided by interruptible load.

- 20
- 21

<sup>&</sup>lt;sup>2</sup> Levelized Cost and Levelized Avoided Cost of New Generation Resources in the Annual Energy Outlook 2014, Energy Information Administration, April 2014.

С.

#### The Company Misclassifies and Inaccurately Allocates Distribution-Related Costs

# 3 Q. Would you discuss the next category of adjustments that you made to the 4 Company's cost of service study?

5 A. The next category of adjustments is associated with the classification and allocation of 6 BHP distribution system costs. The largest of these adjustments is designed to correct the 7 Company's study by reflecting a minimum distribution system methodology, as 8 described in the NARUC Cost Allocation Manual. The Company's analysis assumed 9 100% of distribution costs in FERC accounts 364 to 369 are demand-related, with no 10 amounts classified as customer-related. As I discuss below, this is not a reasonable cost 11 classification/allocation methodology and is inconsistent with the methodologies discussed in the NARUC Cost Allocation Manual. While the NARUC Cost Allocation 12 13 Manual does not require any specific methodology, the methodologies discussed in the 14 NARUC Cost Allocation Manual for cost allocation are deemed to be reasonable and 15 generally accepted.

16

17

#### Q. Would you explain the minimum distribution system methodology?

A. Yes. As described in the NARUC Cost Allocation Manual, the underlying argument in
support of a customer component for distribution costs is that there is a minimal level of
distribution investment necessary to connect a customer to the distribution system (lines,
poles, transformers) that is independent of the level of demand of the customer. An excerpt
from the NARUC manual that discusses the classification of distribution costs is
contained in Baron Exhibit (SJB-3).

The amount of distribution cost that is a function of the requirement to interconnect the customer, regardless of the customer's size, is appropriately assigned to rate classes on the basis of the number of customers, rather than on the kW demand of the class. As stated on page 90 of the NARUC cost allocation manual:

When the utility installs distribution plant to provide service to a customer and to meet the individual customer's peak demand requirements, the utility must classify distribution plant data separately into demand- and customer-related costs...[T]he number of poles, conductors, transformers, services, and meters are directly related to the number of customers on the utility's system.

13 Q.

1

6

7

8

9 10

11

12

#### Has BHP offered evidence disputing that conclusion?

14 A. No. BHP witness Gray simply states on page 25 of his direct testimony that "Due to the 15 potential misclassification or misallocation to customer classes from these shortcomings 16 associated with employing these classification methods, the Company elected to classify 17 these accounts as demand." Mr. Gray's testimony provides no justification for 18 completely ignoring a customer component associated with poles, overhead conductors, 19 underground conductors and transformers. Ironically, Mr. Gray relied completely on the 20 analysis of distribution costs relied upon by BHP's affiliate in Colorado ("Black Hills 21 Colorado" or "BHC") in 2012, for the purpose of developing the Company's primary/secondary distribution facility split, as I discuss below.<sup>3</sup> I say that Mr. Gray's 22 23 reliance on the 2012 Black Hills Colorado case is ironic because the 2012 BHC case used 24 distribution system analyses actually developed in a 2004 BHC case. Mr. Gray and I

<sup>3</sup> See Baron Exhibit (SJB-4), which contains a copy of the Company's response BHII Request No. 36.

2

both participated in that case, a case in which the Company fully supported the use of the minimum distribution system methodology that I advocate here.<sup>4</sup>

3

4

5

# Q. Would you briefly explain the conceptual basis for a minimum distribution cost methodology?

6 As discussed in the NARUC cost allocation manual, there are two approaches that are A. typically used to develop a customer component of distribution plant and expenses. Each 7 of the two approaches ("zero-intercept" and "minimum size") is designed to measure a 8 9 "zero load cost" associated with serving customers. Each methodology attempts to 10 measure the customer component of various distribution plant accounts (e.g., poles, 11 primary lines, secondary lines, line transformers). Each of the two methods is designed to 12 estimate the component of distribution plant cost that is incurred by a utility to effectively interconnect a customer to the system, as opposed to providing a specific level of power 13 (kW demand) to the customer. Though arithmetically the zero-intercept method does, for 14 example, produce the cost of "line transformers" associated with "0" kW demand, the 15 more appropriate interpretation of the zero-intercept is that it represents the portion of 16 cost that does not vary with a change in size or kW demand and thus should not be 17 18 allocated on NCP demand (as BHP has done). Essentially, the "zero-intercept" represents the cost that would be incurred, irrespective of differences in the kW demand 19 of a distribution customer. It is this cost, which is not related to customer usage levels, 20 that is used in the zero-intercept method to identify the portion of distribution costs that 21

<sup>4</sup> The 2004 case involved BHC's predecessor company, Aquila, Inc.

2

3

should be allocated to rate classes based on the number of primary and secondary distribution customers taking service in the class.

Conceptually, this analysis is designed to estimate the behavior of costs statistically, as 4 5 the Company meets growth in both the number of distribution customers and the loads of 6 these customers. For example, new distribution investment in poles or underground 7 conductors for a new subdivision may be associated with unsold, or unoccupied homes 8 that have "0" kW demand – yet the cost for these facilities is still incurred. Similarly, 9 distribution facilities must be installed to meet the needs of part time residents that may 10 have little or no demand during a portion of the year - yet the cost of such distribution 11 facilities still must be incurred and does not vary as a result of the fact that such facilities 12 serve part-time residents. The minimum distribution system methodology recognizes this 13 circumstance by assigning a portion of the cost of these facilities based on the existence of a "customer," and not just the level of the customer's kW demand. BHP's analysis, on 14 15 the other hand, assumes that all distribution costs (except meters) vary directly with kW 16 demand, without any fixed component that should be allocated on the basis of the number 17 of customers in each class.

- 18
- 19 Q. Do you believe that a minimum distribution system methodology is appropriate for
  20 BHP?

A. Yes. The conceptual basis for the minimum distribution system method is that it reflects
 a classification of the distribution facilities that would be required to simply interconnect
 a customer to the system, irrespective of the kW load of the customer. From a cost-

causation standpoint, the argument supporting this approach is that all of these minimal facilities are needed to interconnect a customer to the BHP system.

3.

2

Q. Did BHP provide the necessary information to develop a BHP-specific minimum
 distribution system methodology?

A. No. However, as I noted previously, BHP's affiliate Black Hills Colorado developed,
presented, and supported a minimum distribution analysis for its 2012 rate case. While
BHP relies on BHC's primary/secondary split analysis from that case, the Company
selectively ignores BHC's minimum distribution system analysis. In the interest of
consistency, just as BHP is relying on the BHC primary/secondary classification analysis, I
am relying on the BHC minimum distribution system classification analysis.

12

Q. Are you familiar with the methodology used by Black Hills Colorado to develop its
 minimum distribution system demand/energy classification?

15 The Company, which was Aquila, Inc. in 2004 at that time of the original Α. Yes. 16 distribution system analysis (both the primary/secondary split analysis used by BHP in 17 this case and the minimum distribution system analysis that I am using), separately analyzed each distribution plant account to determine the amount of cost that is driven by 18 19 the addition of customers to the BHC distribution system and the remaining amount of 20 cost that is related to the level of NCP kW demand associated with these customers. 21 BHC classified all of its distribution substation costs as demand-related, since these 22 facilities provide service at the upstream portion of the distribution system and are 23 designed and sized to meet the maximum diversified loads of customers imposed on the

| 1                    | system downstream from these facilities. For other distribution facilities, such as primary                                                                                                                                                                           |
|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2                    | conductors, secondary conductors and line transformers, BHC classified the facilities as                                                                                                                                                                              |
| 3                    | both customer and demand-related using a statistical regression analysis of actual                                                                                                                                                                                    |
| 4                    | installed costs. The approach used by BHC is generally referred to as the "zero-intercept                                                                                                                                                                             |
| 5                    | method" and is specifically identified in the NARUC Cost Allocation Manual as one of                                                                                                                                                                                  |
| 6                    | the two methods used to classify and allocate distribution costs in a cost of service study.                                                                                                                                                                          |
| 7                    | As stated on page 90 of the manual:                                                                                                                                                                                                                                   |
| 8                    |                                                                                                                                                                                                                                                                       |
| 9<br>10<br>11<br>12  | When the utility installs distribution plant to provide service to a customer and to meet the individual customer's peak demand requirements, the utility must classify distribution plant data separately into demand- and customer-related costs.                   |
| 13<br>14             | The manual goes on to state, also on page 90:                                                                                                                                                                                                                         |
| 15<br>16<br>17<br>18 | Two methods are used to determine the demand and customer<br>components of distribution facilities. They are, the minimum-size-<br>of-facilities method, and the minimum-intercept cost (zero-<br>intercept or positive-intercept cost, as applicable) of facilities. |
| 19                   |                                                                                                                                                                                                                                                                       |
| 20<br>21             | The manual clearly makes two important points on the issue of the classification of                                                                                                                                                                                   |
| 22                   | distribution costs into a customer component and a demand component. The manual                                                                                                                                                                                       |
| 23                   | states that (1) the utility must classify such costs, and (2) there are two methods to do so.                                                                                                                                                                         |
| 24                   |                                                                                                                                                                                                                                                                       |
| 25                   | BHC performed a statistical analysis to identify the portion of a specific FERC                                                                                                                                                                                       |
| 26                   | distribution plant account (for example, Account No. 368, line transformers) that varies                                                                                                                                                                              |
| 27                   | with changes in kW demand and the portion of the costs that do not. This latter portion,                                                                                                                                                                              |

1

which has been statistically identified as invariant to the size of the facility and thus kW load changes, should reasonably be assigned to customer classes on the basis of the number of customers within the class.

4

3

# 5 Q. Does the Zero Intercept method provide a reasonable basis to classify distribution 6 costs into both a customer and a demand component?

7 Yes. The methodology utilizes a statistical analysis to estimate the relationship between A. 8 "size" and cost for each of the distribution plant accounts. As discussed in the NARUC 9 Cost Allocation Manual, the purpose of the analysis is to identify the relationship 10 between changes in the size of a particular distribution facility (such as line transformers, 11 conductors, poles, etc.) and the cost of the facility. This statistical analysis then 12 determines the portion of cost that varies with the level of customer load and the portion 13 that is invariant with size or load. The cost-invariant portion is represented by the Y-14 intercept of the statistical regression equation.

15

16 The zero-intercept ("b" in the straight line equation " $Y = A^*X + b$ " used to estimate the 17 customer component of each distribution account) represents the portion of cost that does 18 not vary with a change in size or kW demand and thus should not be allocated on NCP 19 demand as the Staff advocates. Essentially, the "zero-intercept" represents the cost that would be incurred, irrespective of differences in the kW demand of a distribution 20 21 customer. It is this cost-invariant component that is used in the zero-intercept method to 22 identify the portion of distribution costs that should be allocated to rate classes based on 23 the number of primary and secondary distribution customers taking service in the class.

- Q. Would you summarize the demand/customer classification for each FERC account
   that was developed by BHC and which you are relying on in this case?
- A. Table 2 below shows the percentage demand/customer classification for each of the
   major distribution accounts. I used these classification percentages to classify BHP's
   distribution plant in the corresponding accounts in my corrected class cost of service
   study.

| Table 2           Minimum Distribution Study Classification Factors*                                                                                                                                                            |                                           |                                           |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-------------------------------------------|--|
| <u>Plant Account</u>                                                                                                                                                                                                            | Percent<br><u>Demand</u>                  | Percent<br><u>Customer</u>                |  |
| <ul> <li>364 - Poles, Towers &amp; Fixtures</li> <li>365 - Overhead Conductors &amp; Devices</li> <li>366 - Underground Conduit</li> <li>367 - Underground Conductors &amp; Devices</li> <li>368 - Line Transformers</li> </ul> | 83.4%<br>88.6%<br>19.3%<br>14.2%<br>44.3% | 16.6%<br>11.4%<br>80.7%<br>85.8%<br>55.8% |  |
| * Source: Black Hills Colorado Study                                                                                                                                                                                            |                                           |                                           |  |

7

9

10 Q. Did you make any adjustments to the Company's allocation of FERC account 369

11 distribution services?

12 A. Yes.' As stated in response to SDPUC Request No. 3-72, the Company allocated services

13 on the following basis:

Account 369 – Services were allocated on class NCP demand with additional customer weighting factors added to the NCPs of the residential class (2.41) and NCPs of the small general service class (1.53), consistent with the allocation method employed in Black Hills 2012 filing for Account 369.

17 18

14

15

16

1 Q

#### Q. Is this a reasonable allocation method for Account 369-Services costs?

2 Α. No. I do not recall ever seeing a utility classifying Account 369 costs as anything other 3 than 100% customer-related and then allocated to rate classes on the basis of the number 4 of customers. The NARUC Cost Allocation Manual, at page 96 [page 14 of 17. 5 Exhibit (SJB-3)] states that these costs are "generally classified as customer-related." 6 While the NARUC manual notes that some utilities recognize size differences through a 7 demand component, this does not mean that it is appropriate to allocate these costs on 8 NCP demand, with a weighting factor for the residential and small general service 9 classes, as the Company has done in this case. I believe that a customer classification of 10 these costs appropriately reflects cost causation.

11

Q. Would you discuss the next correction that you made to the Company's class cost of
service study?

14 A. The Company's analysis of distribution facilities did not recognize any distinction 15 between customers served at 69,000 volt ("69 kV") and other primary voltage customers. 16 Based on a review of BHP data, these 69 kV customers should not be allocated substation 17 and primary line costs that are associated with lower voltage primary service that cannot 18 be used to serve 69 kV loads. To correct this problem, I functionalized Accounts 360 to 19 362, which are associated with substation plant costs, into two sub-functions: 69 kV20 subtransmission and other. Because the 69 kV customers are not served by lower voltage 21 facilities, they should only be allocated an NCP demand share of the 69 kV facilities and 22 none of the other lower voltage costs. This adjustment removes the NCP demand 23 allocator for the 69 kV classes for accounts 361-362 and develops a blended allocator for

account 360 that 1) allocates the land for 69 kV lines to all classes and 2) the land for substations only to rate classes taking service below 69 kV.

3

2

4 A similar adjustment has been made to distribution costs in Accounts 364 to 367 5 associated with poles, overhead lines and underground lines and conduit. To the extent 6 that these distribution accounts contain costs for facilities that can only serve customers 7 taking service at voltages below 69 kV, the 69 kV customers should not be allocated such 8 costs. To sub-functionalize these costs, investment in Accounts 364-367 associated with 9 the 69 kV system were separated based on the ratio of 69 kV related investment at 10 September 2013. These 69 kV costs were then assigned to all rate classes in the manner 11 used in the Company's study. The remaining investment is assigned only to rate classes 12 served below 69 kV. For purposes of this adjustment, I relied on the primary/secondary 13 functionalization developed by the Company and assumed that the 69 kV investment is 14 completely in the primary amount.

15

16 D. The Company Failed to Take Into Account Loss Factors

Q. Would you discuss the final adjustment that you made to the Company's class cost
of service study?

A. Based on the Commission's decision in Docket EL12-061, all costs collected through the
Energy Cost Adjustment ("ECA") have been removed from base rates in this case. All of
these costs will be collected through the ECA. The current ECA does not differentiate by
rate class service voltage (i.e, secondary, primary, 69 kV). As a result customers that
take service at primary and 69 kV are subsidizing customers taking service at secondary

| 1                                                                                                          |                 | voltage - this occurs because all kWh are billed the identical ECA charge per kWh.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|------------------------------------------------------------------------------------------------------------|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2                                                                                                          |                 | When the ECA was determined as simply the incremental cost over (or under) the base                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 3                                                                                                          |                 | amount of fuel and purchased power expense, this voltage issue was not significant since                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 4                                                                                                          |                 | the base amount of fuel and purchased power expenses were allocated to rate classes in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 5                                                                                                          |                 | each base rate cost of service study on a loss adjusted kWh energy basis. Thus only the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 6                                                                                                          |                 | incremental (negative or positive) ECA adjustment was misaligned with cost causation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 7                                                                                                          |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 8                                                                                                          |                 | As a result of the change to 100% of fuel and purchased power costs now being                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 9                                                                                                          |                 | recovered in the ECA, ignoring this loss issue becomes more significant. Absent a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 10                                                                                                         |                 | change in the ECA to reflect loss differences among rate classes, it is reasonable to make                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 11                                                                                                         |                 | a loss adjustment in the base rate class cost of service study.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 10                                                                                                         |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 12                                                                                                         |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 12                                                                                                         | Q.              | Would you describe how you performed this analysis?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                            | <b>Q.</b><br>A. | Would you describe how you performed this analysis?<br>Yes. I developed an adjustment to each rate class's O&M expenses based on the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 13                                                                                                         |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 13<br>14                                                                                                   |                 | Yes. I developed an adjustment to each rate class's O&M expenses based on the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 13<br>14<br>15                                                                                             |                 | Yes. I developed an adjustment to each rate class's O&M expenses based on the difference between: (1) an allocation of the test year amount of fuel and purchased energy                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 13<br>14<br>15<br>16                                                                                       |                 | Yes. I developed an adjustment to each rate class's O&M expenses based on the difference between: (1) an allocation of the test year amount of fuel and purchased energy expense (\$33,519,802) based on metered kWh and (2) an allocation of the same expense                                                                                                                                                                                                                                                                                                                                                        |
| 13<br>14<br>15<br>16<br>17                                                                                 |                 | Yes. I developed an adjustment to each rate class's O&M expenses based on the difference between: (1) an allocation of the test year amount of fuel and purchased energy expense (\$33,519,802) based on metered kWh and (2) an allocation of the same expense using loss-adjusted rate class kWh. The resulting amounts for each rate class sum to \$0                                                                                                                                                                                                                                                               |
| 13<br>14<br>15<br>16<br>17<br>18                                                                           |                 | Yes. I developed an adjustment to each rate class's O&M expenses based on the difference between: (1) an allocation of the test year amount of fuel and purchased energy expense (\$33,519,802) based on metered kWh and (2) an allocation of the same expense using loss-adjusted rate class kWh. The resulting amounts for each rate class sum to \$0 on a total BHP basis and therefore this adjustment has no impact on BHP's overall                                                                                                                                                                             |
| 13<br>14<br>15<br>16<br>17<br>18<br>19                                                                     |                 | Yes. I developed an adjustment to each rate class's O&M expenses based on the difference between: (1) an allocation of the test year amount of fuel and purchased energy expense (\$33,519,802) based on metered kWh and (2) an allocation of the same expense using loss-adjusted rate class kWh. The resulting amounts for each rate class sum to \$0 on a total BHP basis and therefore this adjustment has no impact on BHP's overall expenses or revenue requirements. The adjustment simply provides a cost of service                                                                                          |
| <ol> <li>13</li> <li>14</li> <li>15</li> <li>16</li> <li>17</li> <li>18</li> <li>19</li> <li>20</li> </ol> |                 | Yes. I developed an adjustment to each rate class's O&M expenses based on the difference between: (1) an allocation of the test year amount of fuel and purchased energy expense (\$33,519,802) based on metered kWh and (2) an allocation of the same expense using loss-adjusted rate class kWh. The resulting amounts for each rate class sum to \$0 on a total BHP basis and therefore this adjustment has no impact on BHP's overall expenses or revenue requirements. The adjustment simply provides a cost of service recognition for differences in energy losses incurred by BHP to actually serve each rate |

E. Results from Corrected Class Cost of Service Study
 Q. What are the overall results of your corrected class cost of service study?
 A. Table 3 below summarizes the rates of return and relative rate of return indexes at present
 rates produced by the BHII corrected class cost of service study versus the Company's
 filed cost of service study. Baron Exhibit\_(SJB-5) contains summary schedules from
 the corrected class cost of service study.

| Table 3<br>Summary of Cost of Service Results<br>BHII Corrected Class Cost of Service Study |                |           |                |           |  |
|---------------------------------------------------------------------------------------------|----------------|-----------|----------------|-----------|--|
|                                                                                             | BHII Corr      | ected     | BHP As-F       | iled      |  |
| Customer Class                                                                              | Rate of Return | ROR Index | Rate of Return | ROR Index |  |
| Residential                                                                                 | 4.23%          | 0.63      | 5.11%          | 0.76      |  |
| General Service                                                                             | 9.98%          | 1.48      | 9.85%          | 1.46      |  |
| Combined GSL-ICS                                                                            | 7.26%          | 1.08      | 5.70%          | 0.85      |  |
| Lighting Service                                                                            | 12.37%         | 1.84      | 12.14%         | 1.80      |  |
| Water Pumping/Irrigation                                                                    | 9.39%          | 1.40      | 7.78%          | 1.16      |  |
| Total South Dakota Retail                                                                   | 6.73%          | 1.00      | 6.73%          | 1.00      |  |

8

7

# 9

#### III. APPORTIONMENT OF THE REVENUE INCREASE TO RATE CLASSES

- 10
- Q. In its original filing in this case, how did the Company propose to apportion its
  requested \$14,634,238 revenue increase to rate classes?
- A. Table 4 below shows the increases proposed by BHP, assuming that it receives its
  originally filed requested overall revenue increase in this case. According to the

testimony of Company witness Kyle White, the Company has utilized the results of its filed class cost of service study, subject to mitigation limits such that no rate class receives less than 75% of the average retail percentage increase of 9.3% and no class receives more than 120% of the average increase.<sup>5</sup> Also shown in Table 4 are the unmitigated increases that would otherwise be produced by the Company's as-filed class cost of service study.

| Table 4<br>Summary of BHP Proposed Rate Increases |                   |          |                    |          |  |  |  |
|---------------------------------------------------|-------------------|----------|--------------------|----------|--|--|--|
|                                                   | Increases         |          | ВНР                |          |  |  |  |
| <u>Customer Class</u>                             | Per BHP Cost of S |          | Proposed Increases |          |  |  |  |
|                                                   | <u>\$</u>         | <u>%</u> | <u>\$</u>          | <u>%</u> |  |  |  |
| Residential                                       | 11,671,978        | 19.3%    | 6,536,767          | 10.8%    |  |  |  |
| General Service                                   | (3,259,960)       | -6.4%    | 3,899,585          | 7.3%     |  |  |  |
| Combined Gen Svc Lg - Ind Contract                | 6,465,811         | 15.4%    | 4,048,108          | 9.7%     |  |  |  |
| Lighting Service                                  | (319,005)         | -15.7%   | 148,409            | 7.3%     |  |  |  |
| Water Pumping/Irrigation                          | 75,415            | 3.5%     | 7,290              | 6.1%     |  |  |  |
| Total South Dakota Retail                         | 14,634,238        | 9.3%     | 14,640,159         | 9.3%     |  |  |  |

8 9

1

2

3

4

5

6

7

10

12

- 11 Q. Have you developed the rate class increases that would be supported by your
  - corrected class cost of service study?

<sup>&</sup>lt;sup>5</sup>Direct Testimony of Kyle D. White at 9.

A. Yes. Table 5 shows these increases, again based on the Company's overall originally requested increase of \$14.6 million. These increases are the increases that would be required at full cost of service rates, with no mitigation or limitations.

| BHII Corrected<br>Increase<br>Per BHII Cost o |                                                                 | esults<br>BHP                                                                                                                                   |                                                                                                                                                                                                                           |
|-----------------------------------------------|-----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                               |                                                                 | ВНР                                                                                                                                             |                                                                                                                                                                                                                           |
| Per BHil Cost o                               | _                                                               |                                                                                                                                                 |                                                                                                                                                                                                                           |
|                                               | f Service                                                       | Proposed Increases                                                                                                                              |                                                                                                                                                                                                                           |
| <u>\$</u>                                     | <u>%</u>                                                        | \$                                                                                                                                              | <u>%</u>                                                                                                                                                                                                                  |
| 16,070,797                                    | 26.5%                                                           | 6,536,767                                                                                                                                       | 10.8%                                                                                                                                                                                                                     |
| (3,515,966)                                   | -6.9%                                                           | 3,899,585                                                                                                                                       | 7.3%                                                                                                                                                                                                                      |
| 2,501,091                                     | 6.0%                                                            | 4,048,108                                                                                                                                       | 9.7%                                                                                                                                                                                                                      |
| (334,987)                                     | -16.5%                                                          | -<br>148,409                                                                                                                                    | 7.3%                                                                                                                                                                                                                      |
| (86,697)                                      | -4.0%                                                           | -<br>7,290                                                                                                                                      | 6.1%                                                                                                                                                                                                                      |
| 14,634,238                                    | 9.3%                                                            | 14,640,159                                                                                                                                      | 9.3%                                                                                                                                                                                                                      |
|                                               | 16,070,797<br>(3,515,966)<br>2,501,091<br>(334,987)<br>(86,697) | 16,070,797       26.5%         (3,515,966)       -6.9%         2,501,091       6.0%         (334,987)       -16.5%         (86,697)       -4.0% | 16,070,797       26.5%       6,536,767         (3,515,966)       -6.9%       3,899,585         2,501,091       6.0%       4,048,108         (334,987)       -16.5%       148,409         (86,697)       -4.0%       7,290 |

As can be seen, based on the BHII corrected class cost of service study, the increase to the Combined General Service Large/Industrial Contract Class would be substantially less than the Company's proposed increase (6.0% versus 9.7%). However, the increases shown in Table 5 are based directly on the BHII class cost of service study and do not reflect any mitigation. As I will discuss below, I believe that it is appropriate to mitigate the increases to each rate class.

#### 1 Q. What are the increases to each rate class proposed in the Proposed Settlement?

- 2 A. Table 6 below summarizes the increases to each rate class shown in Proposed Settlement
- 3 Exhibit No. 2.

| Table 6                                |                         |          |  |  |  |  |
|----------------------------------------|-------------------------|----------|--|--|--|--|
| Summary of BHP Proposed Rate Increases |                         |          |  |  |  |  |
|                                        | Increases               |          |  |  |  |  |
| Customer Class                         | Per BHP Cost of Service |          |  |  |  |  |
|                                        | <u>\$</u>               | <u>%</u> |  |  |  |  |
| Residential                            | 3,077,150               | 5.04%    |  |  |  |  |
| General Service*                       | 1,838,869               | 3.45%    |  |  |  |  |
| Combined Gen Svc Lg - Ind Contract     | 1,904,657               | 4.55%    |  |  |  |  |
| Lighting Service                       | 69,858                  | 3.45%    |  |  |  |  |
| Total South Dakota Retail              | 6,890,534               | 4.35%    |  |  |  |  |
| * Includes Water Pumping/Irrigation.   | <u></u>                 |          |  |  |  |  |

- 4
- 5

Q. Have you developed an analysis of the increases to each rate class using the BHII
corrected class cost of service study, adjusted to reflect the Proposed Settlement
revenue increases agreed to by the Company and the Commission Staff?

9 A. Yes. Table 7 shows these increases, based on the Staff/BHP overall revenue increase of 10 \$6.89 million. Also shown in Table 7 are a set of corresponding increases with two 11 levels of mitigation that I believe would be appropriate, if the BHII corrected class cost of 12 service study were adopted by the Commission. The first level of mitigation would 13 eliminate any revenue decreases (*i.e.*, a limitation that no rate class receives a rate 14 decrease). The additional revenue produced by this "no rate decrease" limitation is 15 spread as a credit to each of the other rate classes in proportion to the otherwise

applicable increases. The second level of mitigation that I would recommend would limit the increase to each rate class to no more than 1.5 times the retail average increase (1.5 X 4.35 = 6.53%).

4

1

2

3

|                            |                          |                    | Table 7               |                       |                                |           |          |
|----------------------------|--------------------------|--------------------|-----------------------|-----------------------|--------------------------------|-----------|----------|
|                            | Summary of BHI           | l Class Cost       | of Service Result     | s and Mitig           | ated Increases                 |           |          |
|                            | Usi                      | ng the Settle      | ement Revenue I       | Requiremer            | it ·                           |           |          |
|                            |                          |                    | Increases             |                       | Increases With                 |           |          |
| Increases                  |                          | with Mitigation -1 |                       | Additional Mitigation |                                |           |          |
| Customer Class             | Per BHII Cost of Service |                    | (Eliminate decreases) |                       | (Limit Increase to 1.5 X Avg,) |           |          |
|                            | <u>\$</u>                | <u>%</u>           | <u>\$</u>             | <u>%</u>              | <u>\$ Mitigation</u>           | \$        | <u>%</u> |
| Residential                | 12,636,616               | 20.72%             | 6,633,869             | 10.88%                | (2,650,215)                    | 3,983,654 | 6.53%    |
| General Service            | (5,649,518)              | -11.04%            | -                     | 0.00%                 | 1,394,103                      | 1,394,103 | 2.739    |
| Combined GS Lg - Ind Contr | 489,315                  | 1.17%              | 256,877               | 0.61%                 | 1,141,373                      | 1,398,249 | 3.34%    |
| Lighting Service           | (409,879)                | -20.23%            | -                     | 0.00%                 | 55,222                         | 55,222    | 2.739    |
| Water Pumping/Irrigation   | (175,787)                | -8.05%             | -                     | 0.00%                 | 59,517                         | 59,517    | 2,739    |
| Total South Dakota Retail  | 6,890,746                | 4.35%              | 6,890,746             | 4.35%                 | (0)                            | 6,890,746 | 4.35%    |

5 6

7

8

9

For this second mitigation adjustment, I have allocated the reduction to the residential class increase to each of the other rate classes based on a uniform percentage amount applied to present revenues.

- 10
- 11 Q. How do the mitigated increases shown in Table 7 compare to the increases shown in
  12 Exhibit No. 2 to the Proposed Settlement?

- A. While the increases shown in Table 7 differ from the Proposed Settlement rate class
  increases, I am offering Table 7 as a means of reaching the Proposed Settlement
  increases. Thus, I am not advocating that the Commission accept the increases set forth
  in Table 7. I believe that the relative apportionment of the increases shown in Proposed
  Settlement Exhibit No. 2 (my Table 6) are reasonable, assuming the Commission
  approves the overall Proposed Settlement revenue increase of \$6,890,746.
- 7

8 If, however, the Commission accepts the recommendation of BHII witness Kollen that 9 the overall revenue increase in this case should be much lower than the Proposed 10 Settlement amount, then I recommend that the overall approved BHP revenue increase be apportioned based on the increases shown in Proposed Settlement Exhibit No. 2, by 11 12 scaling back the increases in Exhibit No. 2 proportionately. For example, if the 13 Commission approves an overall BHP increase of \$3.0 million, then the increases shown 14 in Proposed Settlement Exhibit No. 2 should be reduced proportionately for each rate 15 class by the ratio of [\$3,000,000/\$6,890,746] or 43.5367%. This would mean that the 16 dollar increase to say, the residential class, would be \$1,339,688 instead of the Proposed 17 Settlement residential class increase of \$3,077,150. Similar proportionate adjustments would be made to the increases for each rate class shown in Exhibit No. 2. 18

- 19
- 20

#### Q. Do you have any additional recommendations?

A. Yes. The Commission should require BHP to file a class cost of service study in its next
 base rate case reflecting the corrections that I have discussed in my testimony. At a
 minimum, the Company should be required to file an alternative class cost of service

study (in addition to its preferred method) reflecting the corrections that I am
 recommending. The changes to the Company's study that I have presented provide a
 more appropriate basis to evaluate the reasonableness of the Company's rates.

- 4
- 5

#### Does this conclude your Direct Testimony?

6 A. Yes.

Q.

#### **BEFORE THE PUBLIC UTILITIES COMMISSION OF THE STATE OF SOUTH DAKOTA**

Docket No. EL14-026

In the Matter of the Application of Black Hills Power, Inc. for Authority to Increase its Electric Rates

1

EXHIBITS

OF

**STEPHEN J. BARON** 

#### ON BEHALF OF THE BLACK HILLS INDUSTRIAL INTERVENORS

#### J. KENNEDY AND ASSOCIATES, INC. ROSWELL, GEORGIA

December 2014

77872095.3 0064944-00002

#### **BEFORE THE PUBLIC UTILITIES COMMISSION OF THE STATE OF SOUTH DAKOTA**

In the Matter of the Application of Black Hills Power, Inc. for Authority to Increase its Electric Rates

Docket No. EL14-026

EXHIBIT\_(SJB-1)

• OF

**STEPHEN J. BARON** 

#### ON BEHALF OF THE BLACK HILLS INDUSTRIAL INTERVENORS

#### J. KENNEDY AND ASSOCIATES, INC. ROSWELL, GEORGIA

December 2014

Exhibit (SJB-1) Page 1 of 22

#### Expert Testimony Appearances of Stephen J. Baron As of November 2014

| Date  | Case      | Jurisdic <u>t.</u> | Party                                                  | Utility                              | Subject                                                                                                        |
|-------|-----------|--------------------|--------------------------------------------------------|--------------------------------------|----------------------------------------------------------------------------------------------------------------|
| 4/81  | 203(B)    | KY                 | Louisville Gas<br>& Electric Co.                       | Louisville Gas<br>& Electric Co.     | Cost-of-service.                                                                                               |
| 4/81  | ER-81-42  | МО                 | Kansas City Power<br>& Light Co.                       | Kansas City<br>Power & Light Co.     | Forecasting.                                                                                                   |
| 6/81  | U-1933    | AZ                 | Arizona Corporation<br>Commission                      | Tucson Electric<br>Co.               | Forecasting planning.                                                                                          |
| 2/84  | 8924      | KY                 | Airco Carbide                                          | Louisville Gas<br>& Electric Co.     | Revenue requirements,<br>cost-of-service, forecasting,<br>weather normalization.                               |
| 3/84  | 84-038-U  | AR                 | Arkansas Electric<br>Energy Consumers                  | Arkansas Power<br>& Light Co.        | Excess capacity, cost-of-<br>service, rate design                                                              |
| 5/84  | 830470-EI | FL                 | Florida Industrial<br>Power Users' Group               | Florida Power<br>Corp.               | Allocation of fixed costs,<br>load and capacity balance, and<br>reserve margin. Diversification<br>of utility. |
| 10/84 | 84-199-U  | AR                 | Arkansas Electric<br>Energy Consumers                  | Arkansas Power<br>and Light Co.      | Cost allocation and rate design.                                                                               |
| 11/84 | R-842651  | PA                 | Lehigh Valley<br>Power Committee                       | Pennsylvania<br>Power & Light<br>Co. | Interruptible rates, excess capacity, and phase-in.                                                            |
| 1/85  | 85-65     | ME                 | Airco Industrial<br>Gases                              | Central Maine<br>Power Co.           | Interruptible rate design.                                                                                     |
| 2/85  | I-840381  | PA                 | Philadelphia Area<br>Industrial Energy<br>Users' Group | Philadelphia<br>Electric Co.         | Load and energy forecast.                                                                                      |
| 3/85  | 9243      | KY .               | Alcan Aluminum<br>Corp., et al.                        | Louisville Gas<br>& Electric Co.     | Economics of completing fossil generating unit.                                                                |
| 3/85  | 3498-U    | GA                 | Attorney General                                       | Georgia Power<br>Co.                 | Load and energy forecasting, generation planning economics.                                                    |
| 3/85  | R-842632  | PA                 | West Penn Power<br>Industrial<br>Intervenors           | West Penn Power<br>Co.               | Generation planning economics,<br>prudence of a pumped storage<br>hydro unit.                                  |
| 5/85  | 84-249    | AR                 | Arkansas Electric<br>Energy Consumers                  | . Arkansas Power & Light Co.         | Cost-of-service, rate design<br>retum multipliers.                                                             |
| 5/85  |           | City of            | Chamber of                                             | Santa Clara                          | Cost-of-service, rate design.                                                                                  |

Exhibit (SJB-1) Page 2 of 22

> : \_ .-

#### Expert Testimony Appearances of Stephen J. Baron As of November 2014

| Date  | Case              | Jurisdic <u>t.</u> | Party                                           | Utility                             | Subject                                                                       |
|-------|-------------------|--------------------|-------------------------------------------------|-------------------------------------|-------------------------------------------------------------------------------|
| 0.05  | 04 700            | Santa<br>Clara     | Commerce                                        | Municípal                           |                                                                               |
| 6/85  | 84-768-<br>E-42T  | W                  | West Virginia<br>Industrial<br>Intervenors      | Monongahela<br>Power Co.            | Generation planning economics,<br>prudence of a pumped storage<br>hydro unit. |
| 6/85  | E-7<br>Sub 391    | NC                 | Carolina<br>Industrials<br>(CIGFUR III)         | Duke Power Co.                      | Cost-of-service, rate design,<br>interruptible rate design.                   |
| 7/85  | 29046             | NY                 | Industrial<br>Energy Users<br>Association       | Orange and<br>Rockland<br>Utilities | Cost-of-service, rate design.                                                 |
| 10/85 | 85-043-U          | AR                 | Arkansas Gas<br>Consumers                       | Arkia, Inc.                         | Regulatory policy, gas cost-of-<br>service, rate design.                      |
| 10/85 | 85-63             | ME                 | Airco Industrial<br>Gases                       | Central Maine<br>Power Co.          | Feasibility of interruptible<br>rates, avoided cost.                          |
| 2/85  | ER-<br>8507698    | NJ                 | Air Products and<br>Chemicals                   | Jersey Central<br>Power & Light Co. | Rate design.                                                                  |
| 3/85  | R-850220          | PA                 | West Penn Power<br>Industrial<br>Intervenors    | West Penn Power Co.                 | Optimal reserve, prudence,<br>off-system sales guarantee plan.                |
| 2/86  | R-850220          | PA                 | West Релл Power<br>Industrial<br>Intervenors    | West Penn Power Co.                 | Optimal reserve margins,<br>prudence, off-system sales<br>guarantee plan.     |
| 3/86  | 85-299U           | AR                 | Arkansas Electric<br>Energy Consumers           | Arkansas Power<br>& Light Co.       | Cost-of-service, rate design, revenue distribution.                           |
| 3/86  | 85-726-<br>EL-AIR | OH                 | Industrial Electric<br>Consumers Group          | Ohio Power Co.                      | Cost-of-service, rate design,<br>interruptible rates.                         |
| 5/86  | 86-081-<br>E-GI   | WV                 | West Virginia<br>Energy Users<br>Group          | Monongahela Power<br>Co.            | Generation planning economics,<br>prudence of a pumped storage<br>hydro unit. |
| 8/86  | E-7<br>Sub 408    | NC                 | Carolina Industrial<br>Energy Consumers         | Duke Power Co.                      | Cost-of-service, rate design,<br>interruptible rates.                         |
| 10/86 | U-17378           | LA                 | Louisiana Public<br>Service Commission<br>Staff | Gulf States<br>Utilities            | Excess capacity, economic<br>analysis of purchased power.                     |
| 12/86 | 38063             | łN                 | Industrial Energy                               | Indiana & Michigan                  | Interruptible rates.                                                          |

#### Expert Testimony Appearances of Stephen J. Baron As of November 2014

| Date  | Case                                 | Jurisdict.                                              | Party                                           | Utility                                   | Subject                                                                                  |
|-------|--------------------------------------|---------------------------------------------------------|-------------------------------------------------|-------------------------------------------|------------------------------------------------------------------------------------------|
|       |                                      |                                                         | Consumers                                       | Power Co.                                 |                                                                                          |
| 3/87  | EL-86-<br>53-001<br>EL-86-<br>57-001 | Federal<br>Energy<br>Regutatory<br>Commission<br>(FERC) | Louisiana Public<br>Service Commission<br>Staff | Gulf States<br>Utilities,<br>Southern Co. | Cost/benefit analysis of unit power sales contract.                                      |
| 4/87  | U-17282                              | LA                                                      | Louisiana Public<br>Service Commission<br>Staff | Gulf States<br>Utilities                  | Load forecasting and imprudence<br>damages, River Bend Nuclear unit.                     |
| 5/87  | 87-023-<br>E-C                       | WV                                                      | Airco Industrial<br>Gases                       | Monongahela<br>Power Co.                  | Interruptible rates.                                                                     |
| 5/87  | 87-072-<br>E-G1                      | WV                                                      | West Virginia<br>Energy Users'<br>Group         | Monongahela<br>Power Co.                  | Analyze Mon Power's fuel filing<br>and examine the reasonableness<br>of MP's claims.     |
| 5/87  | 86-524-<br>E-SC                      | WV                                                      | West Virginia<br>Energy Users' Group            | Monongahela<br>Power Co.                  | Economic dispatching of<br>pumped storage hydro unit.                                    |
| 5/87  | 9781                                 | KY                                                      | Kentucky Industrial<br>Energy Consumers         | Louisville Gas<br>& Electric Co.          | Analysis of impact of 1986 Tax<br>Reform Act.                                            |
| 6/87  | 3673-U                               | GA                                                      | Georgia Public<br>Service Commission            | Georgia Power Co.                         | Economic prudence, evaluation<br>of Vogtle nuclear unit - load<br>forecasting, planning. |
| 6/87  | U-17282                              | LA                                                      | Louisiana Public<br>Service Commission<br>Staff | Gulf States<br>Utilities                  | Phase-in plan for River Bend<br>Nuclear unit.                                            |
| 7/87  | 85-10-22                             | СТ                                                      | Connecticut<br>Industrial<br>Energy Consumers   | Connecticut<br>Light & Power Co.          | Methodology for refunding rate moderation fund.                                          |
| 8/87  | 3673-U                               | GA                                                      | Georgia Public<br>Service Commission            | Georgia Power Co.                         | Test year sales and revenue forecast.                                                    |
| 9/87  | R-850220                             | PA                                                      | West Penn Power<br>Industrial<br>Intervenors    | West Penn Power Co.                       | Excess capacity, reliability of generating system.                                       |
| 10/87 | R-870651                             | PA                                                      | Duquesne<br>Industrial<br>Intervenors           | Duquesne Light Co.                        | Interruptible rate, cost-of-<br>service, revenue allocation, ,<br>rate design.           |

#### Expert Testimony Appearances of Stephen J. Baron As of November 2014

| Date  | Case                                                   | Jurisdict.                            | Party                                                                   | Utility                                                     | Subject                                                                            |
|-------|--------------------------------------------------------|---------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------------------------------------|
| 10/87 | 1-860025                                               | PA                                    | Реппsylvania<br>Industrial<br>Intervenors                               |                                                             | Proposed rules for cogeneration,<br>avoided cost, rate recovery.                   |
| 10/87 | E-015/<br>GR-87-223                                    | MN                                    | Taconite<br>Intervenors                                                 | Minnesota Power<br>& Light Co.                              | Excess capacity, power and cost-of-service, rate design.                           |
| 10/87 | 8702-Ei                                                | FL .                                  | Occidental Chemical<br>Corp.                                            | Florida Power Corp.                                         | Revenue forecasting, weather normalization.                                        |
| 12/87 | 87-07-01                                               | СТ                                    | Connecticut Industrial<br>Energy Consumers                              | Connecticut Light<br>Power Co.                              | Excess capacity, nuclear plant phase-in.                                           |
| 3/88  | 10064                                                  | KY                                    | Kentucky Industrial<br>Energy Consumers                                 | Louisville Gas &<br>Electric Co.                            | Revenue forecast, weather<br>normalization rate treatment<br>of cancelled plant.   |
| 3/88  | 87-183-TF                                              | AR                                    | Arkansas Electric<br>Consumers                                          | Arkansas Power & Light Co.                                  | Standby/backup electric rates.                                                     |
| 5/88  | 870171C001                                             | PA                                    | GPU Industrial<br>Intervenors                                           | Metropolitan<br>Edison Co.                                  | Cogeneration deferral<br>mechanism, modification of energy<br>cost recovery (ECR). |
| 6/88  | 870172C005                                             | PA                                    | GPU Industrial<br>Intervenors                                           | Pennsylvania<br>Electric Co.                                | Cogeneration deferral mechanism, modification of energy cost recovery (ECR).       |
| 7/88  | 88-171-<br>EL-AIR<br>88-170-<br>EL-AIR<br>Interim Rate | OH<br>Case                            | Industrial Energy<br>Consumers                                          | Cleveland Electric/<br>Toledo Edison                        | Financial analysis/need for interim rate relief.                                   |
| 7/88  | Appeal<br>of PSC                                       | 19th<br>Judicial<br>Docket<br>U-17282 | Louisiana Public<br>Service Commission<br>Circuit<br>Court of Louisiana | Guif States<br>Utilities                                    | Load forecasting, imprudence damages.                                              |
| 11/88 | R-880989                                               | PA                                    | United States<br>Steel                                                  | Carnegie Gas                                                | Gas cost-of-service, rate design.                                                  |
| 11/88 | 88-171-<br>EL-AIR<br>88-170-<br>EL-AIR                 | OH                                    | Industrial Energy<br>Consumers                                          | Cleveland Electric/<br>Toledo Edison.<br>General Rate Case. | Weather normalization of<br>peak loads, excess capacity,<br>regulatory policy.     |
| 3/89  | 870216/283<br>284/286                                  | PA                                    | Armco Advanced<br>Materials Corp.,                                      | West Penn Power Co.                                         | Calculated avoided capacity, recovery of capacity payments.                        |

Exhibit (SJB-1) Page 5 of 22

#### Expert Testimony Appearances of Stephen J. Baron As of November 2014

| Date  | Case                | Jurisdict. | Party                                                          | Utility                             | Subject                                                                                                            |
|-------|---------------------|------------|----------------------------------------------------------------|-------------------------------------|--------------------------------------------------------------------------------------------------------------------|
|       |                     |            | Allegheny Ludlum<br>Corp.                                      |                                     |                                                                                                                    |
| 8/89  | 8555                | ,TX        | Occidental Chemical<br>Corp.                                   | Houston Lighting<br>& Power Co.     | Cost-of-service, rate design.                                                                                      |
| 8/89  | 3840-U              | GA         | Georgia Public<br>Service Commission                           | Georgia Power Co.                   | Revenue forecasting, weather normalization.                                                                        |
| 9/89  | 2087                | ММ         | Attorney General<br>of New Mexico                              | Public Service Co.<br>of New Mexico | Prudence - Palò Verde Nuclear<br>Units 1, 2 and 3, load fore-<br>casting.                                          |
| 10/89 | 2262                | NM         | New Mexico Industrial<br>Energy Consumers                      | Public Service Co.<br>of New Mexico | Fuel adjustment clause, off-<br>system sales, cost-of-service,<br>rate design, marginal cost.                      |
| 11/89 | 38728               | IN         | Industrial Consumers<br>for Fair Utility Rates                 | Indiana Michigan<br>Power Co.       | Excess capacity, capacity<br>equalization, jurisdictional<br>cost allocation, rate design,<br>interruptible rates. |
| 1/90  | U-17282             | LA         | Louisiana Public<br>Service Commission<br>Staff                | Gulf States<br>Utilities            | Jurisdictional cost allocation,<br>O&M expense analysis.                                                           |
| 5/90  | 890366              | PA         | GPU Industrial<br>Intervenors                                  | Metropolitan<br>Edison Co.          | Non-utility generator cost recovery.                                                                               |
| 6/90  | R-901609            | PA         | Amco Advanced<br>Materials Corp.,<br>Allegheny Ludlum<br>Corp. | West Penn Power Co.                 | Allocation of QF demand charges<br>in the fuel cost, cost-of-<br>service, rate design.                             |
| 9/90  | 8278                | MD         | Maryland Industrial<br>Group                                   | Baltimore Gas &<br>Electric Co.     | Cost-of-service, rate design, revenue allocation.                                                                  |
| 12/90 | U-9346<br>Rebuttal  | MI         | Association of<br>Businesses Advocating<br>Tariff Equity       | Consumers Power<br>Co.              | Demand-side management,<br>environmental externalities.                                                            |
| 12/90 | U-17282<br>Phase IV | LA         | Louisiana Public<br>Service Commission<br>Staff                | Gulf States<br>Utilities            | Revenue requirements,<br>jurisdictional allocation.                                                                |
| 12/90 | 90-205              | ME         | Airco Industrial<br>Gases                                      | Central Maine Power<br>Co.          | Investigation into interruptible service and rates.                                                                |

Exhibit (SJB-1) Page 6 of 22

#### Expert Testimony Appearances of Stephen J. Baron As of November 2014

| Date  | Case                         | Jurisdict. | Party                                                                                                         | Utility                                                                                        | Subject                                                                                        |
|-------|------------------------------|------------|---------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
| 1/91  | 90-12-03<br>Interim          | СТ         | Connecticut Industrial<br>Energy Consumers                                                                    | Connecticut Light<br>& Power Co.                                                               | Interim rate relief, financial analysis, class revenue allocation.                             |
| 5/91  | 90-12-03<br>Phase il         | СТ         | Connecticut Industrial<br>Energy Consumers                                                                    | Connecticut Light<br>& Power Co.                                                               | Revenue requirements, cost-of-<br>service, rate design, demand-side<br>management.             |
| 8/91  | E-7, SUB<br>SUB 487          | NC         | North Carolina<br>Industrial<br>Energy Consumers                                                              | Duke Power Co.                                                                                 | Revenue requirements, cost<br>allocation, rate design, demand-<br>side management.             |
| 8/91  | 8341<br>Phase I              | MD         | Westvaco Corp.                                                                                                | Potomac Edison Co.                                                                             | Cost allocation, rate design,<br>1990 Clean Air Act Amendments.                                |
| 8/91  | 91-372                       | ОН         | Armco Steel Co., L.P.                                                                                         | Cincinnati Gas &                                                                               | Economic analysis of                                                                           |
|       | EL-UNC                       |            |                                                                                                               | Electric Co.                                                                                   | cogeneration, avoid cost rate.                                                                 |
| 9/91  | P-910511<br>P-910512         | PA         | Allegheny Ludlum Corp.,<br>Armco Advanced<br>Materials Co.,<br>The West Penn Power<br>Industrial Users' Group | West Penn Power Co.                                                                            | Economic analysis of proposed<br>CWIP Rider for 1990 Clean Air<br>Act Amendments expenditures. |
| 9/91  | 91-231<br>-E-NC              | WV         | West Virginia Energy<br>Users' Group                                                                          | Monongahela Power<br>Co.                                                                       | Economic analysis of proposed<br>CWIP Rider for 1990 Clean Air<br>Act Amendments expenditures. |
| 10/91 | 8341 -<br>Phase II           | MD         | Westvaco Corp.                                                                                                | Potomac Edison Co.                                                                             | Economic analysis of proposed<br>CWIP Rider for 1990 Clean Air<br>Act Amendments expenditures. |
| 10/91 | U-17282                      | LA         | Louisiana Public<br>Service Commission<br>Staff                                                               | Gulf States<br>Utilities                                                                       | Results of comprehensive management audit.                                                     |
|       | o testimony<br>iled on this. |            |                                                                                                               |                                                                                                |                                                                                                |
| 11/91 | U-17949<br>Subdocket A       | LA         | Louisiana Public<br>Service Commission<br>Staff                                                               | South Central<br>Bell Telephone Co.<br>and proposed merger with<br>Southern Bell Telephone Co. | Analysis of South Central<br>Bell's restructuring and                                          |
| 12/91 | 91-410-<br>EL-AIR            | OH         | Armco Steel Co.,<br>Air Products &<br>Chemicals, Inc.                                                         | Cincinnati Gas<br>& Electric Co.                                                               | Rate design, interruptible rates.                                                              |

Exhibit (SJB-1) Page 7 of 22

#### Expert Testimony Appearances of Stephen J. Baron As of November 2014

| Date  | Case                                            | Jurisdict.                                    | Party                                                                | Utility                                        | Subject                                                                                         |
|-------|-------------------------------------------------|-----------------------------------------------|----------------------------------------------------------------------|------------------------------------------------|-------------------------------------------------------------------------------------------------|
| 12/91 | P-880286                                        | PA                                            | Armco Advanced<br>Materials Corp.,<br>Allegheny Ludlum Corp.         | West Penn Power Co.                            | Evaluation of appropriate<br>avoided capacity costs -<br>QF projects.                           |
| 1/92  | C-913424                                        | PA                                            | Duquesne Interruptible<br>Complainants                               | Duquesne Light Co.                             | Industrial interruptible rate.                                                                  |
| 6/92  | 92-02-19                                        | CT                                            | Connecticut Industrial<br>Energy Consumers                           | Yankee Gas Co.                                 | Rate design.                                                                                    |
| 8/92  | 2437                                            | NM                                            | New Mexico<br>Industrial Intervenors                                 | Public Service Co.<br>of New Mexico            | Cost-of-service.                                                                                |
| 8/92  | R-00922314                                      | PA                                            | GPU Industrial<br>Intervenors                                        | Metropolitan Edison<br>Co.                     | Cost-of-service, rate design, energy cost rate.                                                 |
| 9/92  | 39314                                           | ID                                            | Industrial Consumers<br>for Fair Utility Rates                       | Indiana Michigan<br>Power Co.                  | Cost-of-service, rate design,<br>energy cost rate, rate treatment.                              |
| 10/92 | M-00920312<br>C-007                             | PA                                            | The GPU Industrial<br>Intervenors                                    | Pennsylvania<br>Electric Co.                   | Cost-of-service, rate design,<br>energy cost rate, rate treatment.                              |
| 12/92 | U-17949                                         | LA                                            | Louisiana Public<br>Service Commission<br>Staff                      | South Central Bell<br>Co.                      | Management audit.                                                                               |
| 12/92 | R-00922378                                      | PA                                            | Armco Advanced<br>Materials Co.<br>The WPP Industria?<br>Intervenors | West Penn Power Co.                            | Cost-of-service, rate design,<br>energy cost rate, SO <sub>2</sub> allowance<br>rate treatment. |
| 1/93  | 8487                                            | MD                                            | The Maryland<br>Industrial Group                                     | Baltimore Gas &<br>Electric Co.                | Electric cost-of-service and<br>rate design, gas rate design<br>(flexible rates).               |
| 2/93  | E002/GR-<br>92-1185                             | MN                                            | North Star Steel Co.<br>Praxair, Inc.                                | Northem States<br>Power Co.                    | Interruptible rates.                                                                            |
| 4/93  | EC92<br>21000<br>ER92-806-<br>000<br>(Rebuttal) | Federał<br>Energy<br>Regułatory<br>Commission | Louisiana Public<br>Service Commission<br>Staff                      | Gulf States<br>Utilities/Entergy<br>agreement. | Merger of GSU into Entergy<br>System; impact on system                                          |
| 7/93  | 93-0114-<br>E-C                                 | WV                                            | Airco Gases                                                          | Monongahela Power<br>Co.                       | Interruptible rates.                                                                            |

Exhibit (SJB-1) Page 8 of 22

#### Expert Testimony Appearances of Stephen J. Baron As of November 2014

| Date  | Case                                  | Jurisdict.                                    | Party                                                     | Utility                                       | Subject                                                                                                                               |
|-------|---------------------------------------|-----------------------------------------------|-----------------------------------------------------------|-----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| 8/93  | 930759-EG                             | FL                                            | Florida Industrial<br>Power Users' Group                  | Generic - Electric<br>Utilities               | Cost recovery and allocation of DSM costs.                                                                                            |
| 9/93  | M-009<br>30406                        | PA                                            | Lehigh Valley<br>Power Committee                          | Pennsylvania Power<br>& Light Co.             | Ratemaking treatment of<br>off-system sales revenues.                                                                                 |
| 11/93 | 346                                   | KY                                            | Kentucky Industrial<br>Utility Customers                  | Generic - Gas<br>Utilities                    | Allocation of gas pipeline transition costs - FERC Order 636.                                                                         |
| 12/93 | U-17735                               | LA                                            | Louisiana Public<br>Service Commission<br>Staff           | Cajun Electric<br>Power Cooperative           | Nuclear plant prudence, forecasting, excess capacity.                                                                                 |
| 4/94  | E-015/<br>GR-94-001                   | MN                                            | Large Power Intervenors                                   | Minnesota Power<br>Co.                        | Cost allocation, rate design, rate phase-in plan.                                                                                     |
| 5/94  | U-20178                               | LA                                            | Louisiana Public<br>Service Commission                    | Louisiana Power.&<br>Light Co.                | Analysis of least cost<br>integrated resource plan and<br>demand-side management program.                                             |
| 7/94  | R-00942986                            | PA                                            | Armco, Inc.;<br>West Penn Power<br>Industrial Intervenors | West Penn Power Co.                           | Cost-of-service, allocation of<br>rate increase, rate design,<br>emission allowance sales, and<br>operations and maintenance expense. |
| 7/94  | 94-0035-<br>E-42T                     | WV                                            | West Virginia<br>Energy Users Group                       | Monongahela Power<br>Co.                      | Cost-of-service, allocation of<br>rate increase, and rate design.                                                                     |
| 8/94  | EC94<br>13-000                        | Federat<br>Energy<br>Regulatory<br>Commission | Louisiana Public<br>Service Commission                    | Gulf States<br>Utilities/Entergy              | Analysis of extended reserve<br>shutdown units and violation of<br>system agreement by Entergy.                                       |
| 9/94  | R-00943<br>081<br>R-00943<br>081C0001 | PA                                            | Lehigh Valley<br>Power Committee                          | Pennsylvania Public<br>Utility Commission     | Analysis of interruptible rate terms and conditions, availability.                                                                    |
| 9/94  | U-17735                               | LA                                            | Louisiana Public<br>Service Commission                    | Cajun Electric<br>Power Cooperative           | Evaluation of appropriate avoided cost rate.                                                                                          |
| 9/94  | U-19904                               | LA                                            | Louisiana Public<br>Service Commission                    | Gulf States<br>Utilities                      | Revenue requirements.                                                                                                                 |
| 10/94 | 5258-U                                | GA                                            | Georgia Public<br>Service Commission                      | Southern Bell<br>Telephone &<br>Telegraph Co. | Proposals to address competition<br>in telecommunication markets.                                                                     |

Exhibit (SJB-1) Page 9 of 22

#### Expert Testimony Appearances of Stephen J. Baron As of November 2014

| Date  | Case                      | Jurisdict. | Party                                             | Utility                                                                                  | Subject                                                                               |  |
|-------|---------------------------|------------|---------------------------------------------------|------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|--|
| 11/94 | EC94-7-000<br>ER94-898-00 |            | Louisiana Public<br>Service Commission            | El Paso Electric<br>and Central and<br>Southwest                                         | Merger economics, transmission<br>equalization hold harmless<br>proposals.            |  |
| 2/95  | 941-430EG                 | СО         | CF&I Steel, L.P.                                  | Public Service<br>Company of<br>Colorado                                                 | Interruptible rates,<br>cost-of-service.                                              |  |
| 4/95  | R-00943271                | PA         | PP&L Industrial<br>Customer Alliance              | Pennsylvania Power<br>& Light Co.                                                        | Cost-of-service, allocation of<br>rate increase, rate design,<br>interruptible rates. |  |
| 6/95  | C-00913424<br>C-00946104  | PA         | Duquesne Interruptible<br>Complainants            | Duquesne Light Co.                                                                       | Interruptible rates.                                                                  |  |
| 8/95  | ER95-112<br>-000          | FERC       | Louisiana Public<br>Service Commission            | Entergy Services,<br>Inc.                                                                | Open Access Transmission<br>Tariffs - Wholesale.                                      |  |
| 10/95 | U-21485                   | LA         | Louisiana Public<br>Service Commission            | Gulf States<br>Utilities Company                                                         | Nuclear decommissioning,<br>revenue requirements,<br>capital structure.               |  |
| 10/95 | ER95-1042<br>-000         | FERC       | Louisiana Public<br>Service Commission            | System Energy<br>Resources, Inc.                                                         | Nuclear decommissioning,<br>revenue requirements.                                     |  |
| 10/95 | U-21485                   | LA         | Louisiana Public<br>Service Commission            | Guif States<br>Utilities Co.                                                             | Nuclear decommissioning and<br>cost of debt capital, capital<br>structure.            |  |
| 11/95 | 1-940032                  | PA         | Industrial Energy<br>Consumers of<br>Pennsylvania | State wide -<br>all utilities                                                            | Retail competition issues.                                                            |  |
| 7/96  | U-21496                   | LA         | Louisiana Public<br>Service Commission            | Central Louisiana<br>Electric Co.                                                        | Revenue requirement analysis.                                                         |  |
| 7/96  | 8725                      | MD         | Maryland Industrial<br>Group                      | Baltimore Gas &<br>Elec. Co., Potomac<br>Elec. Power Co.,<br>Constellation Energy<br>Co. | Ratemaking issues associated with a Merger.                                           |  |
| 8/96  | U-17735                   | LA         | Louisiana Public<br>Service Commission            | Cajun Electric<br>Power Cooperative                                                      | Revenue requirements.                                                                 |  |
| 9/96  | U-22092                   | LA         | Louisiana Public<br>Service Commission            | Entergy Gulf<br>States, Inc.                                                             | Decommissioning, weather<br>normalization, capital<br>structure.                      |  |

Exhibit (SJB-1) Page 10 of 22

#### Expert Testimony Appearances of Stephen J. Baron As of November 2014

| Date                            | Case                               | Jurisdic <u>t.</u>                                             | Party                                                 | Utility                                              | Subject                                                                                        |  |
|---------------------------------|------------------------------------|----------------------------------------------------------------|-------------------------------------------------------|------------------------------------------------------|------------------------------------------------------------------------------------------------|--|
| 2/97                            | R-973877                           | PA                                                             | Philadelphia Area<br>Industrial Energy<br>Users Group | PECO Energy Co.                                      | Competitive restructuring<br>policy issues, stranded cost,<br>transition charges.              |  |
| 6/97                            | Civil<br>Action<br>No.<br>94-11474 | US Bank-<br>ruptcy<br>Court<br>Middle District<br>of Louisiana | Louisiana Public<br>Service Commission                | Cajun Electric<br>Power Cooperative                  | Confirmation of reorganization<br>plan; analysis of rate paths<br>produced by competing plans. |  |
| 6/97                            | R-973953                           | PA                                                             | Philadelphia Area<br>Industrial Energy<br>Users Group | PECO Energy Co.                                      | Retail competition issues, rate<br>unbundling, stranded cost<br>analysis.                      |  |
| 6/97                            | 8738                               | · MD .                                                         | Maryland Industrial<br>Group                          | Generic                                              | Retail competition issues                                                                      |  |
| 7/97                            | R-973954                           | PA                                                             | PP&L Industrial<br>Customer Alliance                  | Pennsylvania Power<br>& Light Co.                    | Retail competition issues, rate unbundling, stranded cost analysis.                            |  |
| 10/97                           | 97-204                             | КY                                                             | Alcan Aluminum Corp.<br>Southwire Co.                 | Big River<br>Electric Corp.                          | Analysis of cost of service issues<br>- Big Rivers Restructuring Plan                          |  |
| 10/97                           | R-974008                           | PA                                                             | Metropolitan Edison<br>Industrial Users               | Metropolitan Edison<br>Co.                           | Retail competition issues, rate unbundling, stranded cost analysis.                            |  |
| 10/97                           | R-974009                           | PA                                                             | Pennsylvania Electric<br>Industrial Customer          | Pennsylvania<br>Electric Co.                         | Retail competition issues, rate unbundling, stranded cost analysis.                            |  |
| 11/97                           | U-22491                            | LA                                                             | Louisiana Public<br>Service Commission                | Entergy Gulf<br>States, Inc.                         | Decommissioning, weather<br>normalization, capital<br>structure.                               |  |
| 11/97                           | P-971265                           | PA                                                             | Philadelphia Area<br>Industrial Energy<br>Users Group | Enron Energy<br>Services Power, Inc./<br>PECO Energy | Analysis of Retail<br>Restructuring Proposal.                                                  |  |
| 12/97                           | R-973981                           | PA                                                             | West Penn Power<br>Industrial Intervenors             | West Penn<br>Power Co.                               | Retail competition issues, rate<br>unbundling, stranded cost<br>analysis,                      |  |
| 12/97                           | R-974104                           | PA                                                             | Duquesne Industrial<br>Intervenors                    | Duquesne<br>Light Co.                                | Retail competition issues, rate<br>unbundling, stranded cost<br>analysis.                      |  |
| 3/98<br>(Allocated<br>Cost Issu | U-22092<br>I Stranded<br>es)       | LA                                                             | Louisiana Public<br>Service Commission                | Gulf States<br>Utilities Co.                         | Retail competition, stranded cost quantification.                                              |  |

Exhibit (SJB-1) Page 11 of 22

#### Expert Testimony Appearances of Stephen J. Baron As of November 2014

| Date                        | Case                                   | Jurisdict.                  | Party                                                                      | Utility                                                                   | Subject                                                                                                            |  |
|-----------------------------|----------------------------------------|-----------------------------|----------------------------------------------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|--|
| 3/98                        | U-22092                                |                             | Louisiana Public<br>Service Commission                                     | Gulf States<br>Utilities, Inc.                                            | Stranded cost quantification, restructuring issues.                                                                |  |
| 9/98                        | U-17735                                |                             | Louisiana Public<br>Service Commission                                     | Cajun Electric<br>Power Cooperative,<br>inc.                              | Revenue requirements analysis, weather normalization.                                                              |  |
| 12/98                       | 8794                                   | MD                          | Maryland Industrial<br>Group and<br>Millennium Inorganic<br>Chemicals Inc. | Baltimore Gas<br>and Electric Co.                                         | Electric utility restructuring,<br>stranded cost recovery, rate<br>unbundling.                                     |  |
| 12/98                       | U-23358                                | LA                          | Louisiana Public<br>Service Commission                                     | Entergy Gulf<br>States, Inc.                                              | Nuclear decommissioning, weather<br>normalization, Entergy System<br>Agreement.                                    |  |
| 5/99<br>(Cross-4<br>Answeri | EC-98-<br>i0-000<br>ng Testimony)      | FERC                        | Louisiana Public<br>Service Commission                                     | American Electric<br>Power Co. & Central<br>South West Corp.              | Merger issues related to market power mitigation proposals.                                                        |  |
| 5/99<br>(Respon:<br>Testimo |                                        | KY                          | Kentucky Industrial<br>Utility Customers, Inc.                             | Louisville Gas<br>& Electric Co.                                          | Performance based regulation,<br>settlement proposal issues,<br>cross-subsidies between electric.<br>gas services. |  |
| 6/99                        | 98-0452                                | WV                          | West Virginia Energy<br>Users Group                                        | Appalachian Power,<br>Monongahela Power,<br>& Potomac Edison<br>Companies | Electric utility restructuring,<br>stranded cost recovery, rate<br>unbundling.                                     |  |
| 7/99                        | 99-03-35                               | СТ                          | Connecticut Industrial<br>\Energy Consumers                                | United Illuminating<br>Company                                            | Electric utility restructuring,<br>stranded cost recovery, rate<br>unbundling.                                     |  |
| 7/99                        | Adversary<br>Proceeding<br>No. 98-1065 | U.S.<br>Bankruptcy<br>Court | Louisiana Public<br>Service Commission                                     | Cajun Electric<br>Power Cooperative                                       | Motion to dissolve<br>preliminary injunction.                                                                      |  |
| 7/99                        | 99-03-06                               | СТ                          | Connecticut Industrial<br>Energy Consumers                                 | Connecticut Light<br>& Power Co.                                          | Electric utility restructuring,<br>stranded cost recovery, rate<br>unbundling.                                     |  |
| 10/99                       | U-24182                                | LA                          | Louisiana Public<br>Service Commission                                     | Entergy Gulf<br>States, Inc.                                              | Nuclear decommissioning, weather<br>normalization, Entergy System<br>Agreement.                                    |  |
| 12/99                       | U-17735                                | LA                          | Louisiana Public<br>Service Commission                                     | Cajun Electric<br>Power Cooperative,<br>Inc.                              | Ananlysi of Proposed<br>Contract Rates, Market Rates.                                                              |  |

Exhibit \_\_\_(SJB-1) Page 12 of 22

# Expert Testimony Appearances of Stephen J. Baron As of November 2014

| Date  | Case                                                            | Jurisdict.                  | Party                                                                                                         | Utility                                        | Subject                                                                                         |
|-------|-----------------------------------------------------------------|-----------------------------|---------------------------------------------------------------------------------------------------------------|------------------------------------------------|-------------------------------------------------------------------------------------------------|
| 03/00 | U~17735                                                         | LA                          | Louisiana Public<br>Service Commission                                                                        | Cajun Electric<br>Power Cooperative,<br>Inc.   | Evaluation of Cooperative<br>Power Contract Elections                                           |
| 03/00 | 99-1658-<br>EL-ETP                                              | OH                          | AK Steel Corporation                                                                                          | Cincinnati Gas &<br>Electric Co.               | Electric utility restructuring,<br>stranded cost recovery, rate<br>Unbundling,                  |
| 08/00 | 98-0452<br>E-GI                                                 | WVA                         | West Virginia<br>Energy Users Group                                                                           | Appalachian Power Co.<br>American Electric Co. | Electric utility restructuring rate unbundling.                                                 |
| 08/00 | 00-1050<br>E-T<br>00-1051-E-1                                   | WVA<br>r                    | West Virginia<br>Energy Users Group                                                                           | Mon Power Co.<br>Potomac Edison Co.            | Electric utility restructuring rate unbundling.                                                 |
| 10/00 | SOAH 473-<br>00-1020<br>PUC 2234                                | ΤX                          | The Dallas-Fort Worth<br>Hospital Council and<br>The Coalition of<br>Independent Colleges<br>And Universities | TXU, Inc.                                      | Electric utility restructuring rate unbundling.                                                 |
| 12/00 | U-24993                                                         | LA                          | Louisiana Public<br>Service Commission                                                                        | Entergy Gulf<br>States, Inc.                   | Nuclear decommissioning, revenue requirements.                                                  |
| 12/00 | EL00-66-<br>000 & ER00<br>EL95-33-002                           |                             | Louisiana Public<br>Service Commission                                                                        | Entergy Services Inc.                          | Inter-Company System<br>Agreement: Modifications for<br>retail competition, interruptible load. |
| 04/01 | U-21453,<br>U-20925,<br>U-22092<br>(Subdocket I<br>Addressing ( | LA<br>3)<br>Contested Issue | Louisiana Public<br>Service Commission<br>s                                                                   | Entergy Gulf<br>States, Inc.                   | Jurisdictional Business Separation -<br>Texas Restructuring Plan                                |
| 10/01 | 14000-U                                                         | GA                          | Georgia Public<br>Service Commission<br>Adversary Staff                                                       | Georgia Power Co.                              | Test year revenue forecast.                                                                     |
| 11/01 | U-25687                                                         | LA                          | Louisiana Public<br>Service Commission                                                                        | Entergy Gulf<br>States, Inc.                   | Nuclear decommissioning requirements<br>transmission revenues.                                  |
| 11/01 | U-25965                                                         | LA                          | Louisiana Public<br>Service Commission                                                                        | Generic                                        | Independent Transmission Company<br>("Transco"). RTO rate design.                               |
| 03/02 | 001148-Ei                                                       | FL .                        | South Florida Hospital<br>and Healthcare Assoc.                                                               | Florida Power & Light Company                  | Retail cost of service, rate<br>design, resource planning and<br>demand side management.        |

Exhibit (SJB-1) Page 13 of 22

#### Expert Testimony Appearances of Stephen J. Baron As of November 2014

| Date         | Case                                      | Jurisdic <u>t.</u> | Party                                           | Utility                                                                    | Subject                                                                                   |
|--------------|-------------------------------------------|--------------------|-------------------------------------------------|----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|
| 06/02        | U-25965                                   | LA                 | Louisiana Public<br>Service Commission          | Entergy Gulf States<br>Entergy Louisiana                                   | RTO issues                                                                                |
| 07/02        | U-21453                                   | LA                 | Louisiana Public<br>Service Commission          | SWEPCO, AEP                                                                | Jurisdictional Business Sep<br>Texas Restructuring Plan.                                  |
| 08/02        | U-25888                                   | LA                 | Louisiana Public<br>Service Commission          | Entergy Louisiana, Inc.<br>Entergy Gulf States, Inc.                       | Modifications to the Inter-<br>Company System Agreement,<br>Production Cost Equalization. |
| 08/02        | EL01-<br>88-000                           | FERC               | Louisiana Public<br>Service Commission          | Entergy Services Inc.<br>and the Entergy<br>Operating Companies            | Modifications to the Inter-<br>Company System Agreement,<br>Production Cost Equalization. |
| 11/02        | 02S-315EG                                 | CO                 | CF&I Steel & Climax<br>Molybdenum Co.           | Public Service Co. of<br>Colorado                                          | Fuel Adjustment Clause                                                                    |
| 01/03        | U-17735                                   | LA                 | Louisiana Public<br>Service Commission          | Louisiana Coops                                                            | Contract Issues                                                                           |
| 02/03        | 02S-594E                                  | СО                 | Cripple Creek and<br>Victor Gold Mining Co.     | Aquila, Inc.                                                               | Revenue requirements,<br>purchased power.                                                 |
| 04/03        | U-26527                                   | LA                 | Louisiana Public<br>Service Commission          | Entergy Gulf States, Inc.                                                  | Weather normalization, power<br>purchase expenses, System<br>Agreement expenses.          |
| <b>11/03</b> | ER03-753-01                               | 00 FERC            | Louisiana Public<br>Service Commission<br>Staff | Entergy Services, Inc.<br>and the Entergy Operating<br>Companies           | Proposed modifications to<br>System Agreement Tariff MSS-4.                               |
| 11/03        | ER03-583-0(<br>ER03-583-0(<br>ER03-583-0( | 01                 | Louisiana Public<br>Service Commission          | Entergy Services, Inc.,<br>the Entergy Operating<br>Companies, EWO Market- | Evaluation of Wholesale Purchased<br>Power Contracts.                                     |
|              | ER03-681-00<br>ER03-681-00                |                    |                                                 | Ing, L.P, and Entergy<br>Power, Inc.                                       |                                                                                           |
|              | ER03-682-00<br>ER03-682-00<br>ER03-682-00 | 01                 | -<br>-                                          |                                                                            |                                                                                           |
| 12/03        | U-27136                                   | LA                 | Louisiana Public<br>Service Commission          | Entergy Louisiana, Inc.                                                    | Evaluation of Wholesale Purchased<br>Power Contracts.                                     |
| 01/04        | E-01345-<br>03-0437                       | AZ                 | Kroger Company                                  | Arizona Public Service Co.                                                 | Revenue allocation rate design.                                                           |
| 02/04        | 00032071                                  | PA                 | Duquesne Industrial<br>Intervenors              | Duquesne Light Company                                                     | Provider of last resort issues.                                                           |

Exhibit (SJB-1) Page 14 of 22

#### Expert Testimony Appearances of Stephen J. Baron As of November 2014

| Date   | Case                                             | Jurisdict. | Party                                                                                                   | Utility                                                 | Subject                                                                                             |
|--------|--------------------------------------------------|------------|---------------------------------------------------------------------------------------------------------|---------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
|        |                                                  |            |                                                                                                         |                                                         |                                                                                                     |
| 03/04  | 03A-436E                                         | CO         | CF&I Steel, LP and<br>Climax Molybedenum                                                                | Public Service Company<br>of Colorado                   | Purchased Power Adjustment Clause.                                                                  |
| 04/04  | 2003-00433<br>2003-00434                         | KY         | Kentucky Industrial Utility<br>Customers, Inc.                                                          | Louisville Gas & Electric Co.<br>Kentucky Utilities Co. | Cost of Service Rate Design                                                                         |
| 0-6/04 | 03S-539E                                         | со         | Cripple Creek, Victor Gold<br>Mining Co., Goodrich Corp.,<br>Holcim (U.S.,), Inc., and<br>The Trane Co. | Aquila, Inc.                                            | Cost of Service, Rate Design<br>Interruptible Rates                                                 |
| 06/04  | R-00049255                                       | РА         | PP&L Industrial Customer<br>Alliance PPLICA                                                             | PPL Electric Utilities Corp.                            | Cost of service, rate design,<br>tariff issues and transmission<br>service charge.                  |
| 10/04  | 04S-164E                                         | со         | CF&I Steel Company, Climax<br>Mines                                                                     | Public Service Company<br>of Colorado                   | Cost of service, rate design,<br>Interruptible Rates.                                               |
| 03/05  | Case No.<br>2004-00426<br>Case No.<br>2004-00421 | KY         | Kentucky Industrial<br>Utility Customers, Inc.                                                          | Kentucky Utilities<br>Louisville Gas & Electric Co.     | Environmental cost recovery.                                                                        |
| 06/05  | 050045-EI                                        | FL         | South Florida Hospital<br>and Healthcare Assoc.                                                         | Florida Power & Light Company                           | Retail cost of service, rate design                                                                 |
| 07/05  | U-28155                                          | LA         | Louisiana Public<br>Service Commission Staff                                                            | Entergy Louisiana, Inc.<br>Entergy Gulf States, Inc.    | Independent Coordinator of<br>Transmission – Cost/Benefit                                           |
| 09/05  | Case Nos.<br>05-0402-E-C<br>05-0750-E-P          |            | West Virginia Energy<br>Users Group                                                                     | Mon Power Co.<br>Potomac Edison Co.                     | Environmental cost recovery,<br>Securitization, Financing Order                                     |
| 01/06  | 2005-00341                                       | KY         | Kentucky Industrial<br>Utility Customers, Inc.                                                          | Kentucky Power Company                                  | Cost of service, rate design,<br>transmission expenses, Congestion<br>Cost Recovery Mechanism       |
| 03/06  | U-22092                                          | LA         | Louisiana Public Service<br>Commission Staff                                                            | Entergy Gulf States, Inc.                               | Cost Recovery Mechanism<br>Separation of EGSI into Texas and<br>Louisiana Companies.                |
| 04/06  | U-25116                                          | LA         | Louisiana Public Service<br>Commission Staff                                                            | Entergy Louisiana, Inc.                                 | Transmission Prudence Investigation                                                                 |
| 06/06  | R-00061346<br>C0001-0005                         | PA         | Duquesne Industrial<br>Intervenors & IECPA                                                              | Duquesne Light Co.                                      | Cost of Service, Rate Design, Transmission<br>Service Charge, Tariff Issues                         |
| 06/06  | R-00061366<br>R-00061367<br>P-00062213           |            | Met-Ed Industrial Energy<br>Users Group and Penelec<br>Industrial Customer                              | Metropolitan Edison Co.<br>Pennsylvania Electric Co.    | Generation Rate Cap, Transmission Service<br>Charge, Cost of Service, Rate Design, Tariff<br>Issues |

Exhibit (SJB-1) Page 15 of 22

#### Expert Testimony Appearances of Stephen J. Baron As of November 2014

| Date  | Case                                             | Jurisdi <u>ct.</u> | Party                                            | Utility                                                          | Subject                                                                                         |
|-------|--------------------------------------------------|--------------------|--------------------------------------------------|------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
|       | P-00062214                                       |                    | Alliance                                         |                                                                  |                                                                                                 |
| 07/06 | U-22092<br>Sub-J                                 | LA                 | Louisiana Public Service<br>Commission Staff     | Entergy Gulf States, Inc.                                        | Separation of EGSI into Texas and Louisiana Companies.                                          |
| 07/06 | Case No.<br>2006-00130<br>Case No.<br>2006-00129 | KY                 | Kentucky Industrial<br>Utility Customers, Inc.   | Kentucky Utilities<br>Louisville Gas & Electric Co.              | Environmental cost recovery.                                                                    |
| 08/06 | Case No.<br>PUE-2006-0                           | VA<br>00065        | Old Dominion Committee<br>For Fair Utility Rates | Appalachian Power Co.                                            | Cost Allocation, Allocation of Rev Incr,<br>Off-System Sales margin rate treatment              |
| 09/06 | E-01345A-<br>05-0816                             | AZ                 | Kroger Company                                   | Arizona Public Service Co.                                       | Revenue alllocation, cost of service, rate design.                                              |
| 11/06 | Doc. No.<br>97-01-15RE                           | CT<br>02           | Connecticut Industrial<br>Energy Consumers       | Connecticut Light & Power<br>United Illuminating                 | Rate unbundling issues.                                                                         |
| 01/07 | Case No.<br>06-0960-E-4                          | WV<br>2T           | West Virginia Energy<br>Users Group              | Mon Power Co.<br>Potomac Edison Co.                              | Retail Cost of Service<br>Revenue apportionment                                                 |
| 03/07 | U-29764                                          | LA                 | Louisiana Public Service<br>Commission Staff     | Entergy Gulf States, Inc.<br>Entergy Louisiana, LLC              | Implementation of FERC Decision<br>Jurisdictional & Rate Class Allocation                       |
| 05/07 | Case No.<br>07-63-EL-UN                          | OH<br>C            | Ohio Energy Group                                | Ohio Power, Columbus<br>Southern Power                           | Environmental Surcharge Rate Design                                                             |
| 05/07 | R-00049255<br>Remand                             | PA                 | PP&L Industrial Customer<br>Alliance PPLICA      | PPL Electric Utilities Corp.                                     | Cost of service, rate design,<br>tariff issues and transmission<br>service charge.              |
| 06/07 | R-00072155                                       | PA                 | PP&L Industrial Customer<br>Alliance PPLICA      | PPL Electric Utilities Corp.                                     | Cost of service, rate design, tariff issues.                                                    |
| 07/07 | Doc. No. 0<br>07F-037E                           | 0                  | Gateway Canyons LLC                              | Grand Valley Power Coop.                                         | Distribution Line Cost Allocation                                                               |
| 09/07 | Doc. No. 1<br>05-UR-103                          | Ni                 | Wisconsin Industrial<br>Energy Group, Inc.       | Wisconsin Electric Power Co.                                     | Cost of Service, rate design, tariff issues, interruptible rates.                               |
| 11/07 | ER07-682-00                                      | 0 FERC             | Louisiana Public<br>Service Commission<br>Staff  | Entergy Services, Inc.<br>and the Entergy Operating<br>Companies | Proposed modifications to<br>System Agreement Schedule MSS-3.<br>Cost functionalization issues. |
| 1/08  | Doc. No.<br>20000-277-Ef                         | WY<br>R-07         | Cimarex Energy Company                           | Rocky Mountain Power<br>(PacifiCorp)                             | Vintage Pricing, Marginal Cost Pricing<br>Projected Test Year                                   |
| 1/08  | Case No.<br>07-551                               | OH                 | Ohio Energy Group                                | Ohio Edison, Toledo Edison<br>Cleveland Electric Illuminating    | Class Cost of Service, Rate Restructuring,<br>Apportionment of Revenue Increase to              |

## Expert Testimony Appearances of Stephen J. Baron As of November 2014

|       |                                          | Jurisdict.     |                                                                                        | Utility                                                          | Subject                                                                                      |  |
|-------|------------------------------------------|----------------|----------------------------------------------------------------------------------------|------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--|
| 2/08  | ER07-956                                 | FERC           | Louisiana Public<br>Service Commission<br>Staff                                        | Entergy Services, Inc.<br>and the Entergy Operating<br>Companies | Rate Schedules<br>Entergy's Compliance Filing<br>System Agreement Bandwidth<br>Calculations. |  |
| 2/08  | Doc No.<br>P-00072342                    | PA             | West Penn Power<br>Industrial Intervenors                                              | West Penn Power Co.                                              | Default Service Plan issues.                                                                 |  |
| 3/08  | Doc No.<br>E-01933A-05                   | AZ<br>5-0650   | Kroger Company                                                                         | Tucson Electric Power Co.                                        | Cost of Service, Rate Design                                                                 |  |
| 05/08 | 08-0278<br>E-GI                          | WV             | West Virginia<br>Energy Users Group                                                    | Appalachian Power Co.<br>American Electric Power Co.             | Expanded Net Energy Cost "ENEC"<br>Analysis.                                                 |  |
| 6/08  | Case No.<br>08-124-EL-A                  | OH<br>TA       | Ohio Energy Group                                                                      | Ohio Edison, Toledo Edison<br>Cleveland Electric Illuminating    | Recovery of Deferred Fuel Cost                                                               |  |
| 7/08  | Docket No.<br>07-035-93                  | UT             | Kroger Company                                                                         | Rocky Mountain Power Co.                                         | Cost of Service, Rate Design                                                                 |  |
| 08/08 | Doc. No.<br>6680-UR-116                  | WI<br>S        | Wisconsin Industrial<br>Energy Group, Inc.                                             | Wisconsin Power<br>and Light Co.                                 | Cost of Service, rate design, tariff<br>Issues, Interruptible rates.                         |  |
| 09/08 | Doc. No.<br>6690-UR-119                  | Wi<br>)        | Wisconsin Industrial<br>Energy Group, Inc.                                             | Wisconsin Public<br>Service Co.                                  | Cost of Service, rate design, tariff<br>Issues, Interruptible rates.                         |  |
| )9/08 | Case No. (<br>08-936-EL-S                |                | Ohio Energy Group                                                                      | Ohio Edison, Toledo Edison<br>Cleveland Electric Illuminating    | Provider of Last Resort Competitive Solicitation                                             |  |
| )9/08 | Case No. (<br>08-935-EL-S                | -              | Ohio Energy Group                                                                      | Ohio Edison, Toledo Edison<br>Cleveland Electric Illuminating    | Provider of Last Resort Rate<br>Plan                                                         |  |
| )9/08 | Case No. (<br>08-917-EL-S<br>08-918-EL-S | SO             | Ohio Energy Group                                                                      | Ohio Power Company<br>Columbus Southern Power Co.                | Provider of Last Resort Rate .<br>, Plan                                                     |  |
| 0/08  | 2008-00251<br>2008-00252                 | КY             | Kentucky Industrial Utility<br>Customers, Inc.                                         | Louisville Gas & Electric Co.<br>Kentucky Utilities Co.          | Cost of Service, Rate Design                                                                 |  |
| 1/08  | 08-1511<br>E-GI                          | WV             | West Virginia<br>Energy Users Group                                                    | Mon Power Co.<br>Potomac Edison Co.                              | Expanded Net Energy Cost "ENEC"<br>Analysis.                                                 |  |
| 1/08  | M-2008-<br>2036188, M-<br>2008-2036197   | PA <sup></sup> | Met-Ed Industrial Energy<br>Users Group and Penelec<br>Industrial Customer<br>Alliance | Metropolitan Edison Co.<br>Pennsylvania Electric Co.             | Transmission Service Charge                                                                  |  |
| 1/09  | ER08-1056                                | FERC           | Louisiana Public<br>Service Commission                                                 | Entergy Services, Inc.<br>and the Entergy Operating<br>Companies | Entergy's Compliance Filing<br>System Agreement Bandwidth<br>Calculations.                   |  |

Exhibit \_\_\_(SJB-1) Page 17 of 22

#### Expert Testimony Appearances of Stephen J. Baron As of November 2014

| Date  | Case                       | Jurisdict. | Party                                            | Utility                                                       | Subject                                                              |
|-------|----------------------------|------------|--------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------------------------|
| 01/09 | E-01345A-<br>08-0172       | AZ         | Kroger Company                                   | Arizona Public Service Co.                                    | Cost of Service, Rate Design                                         |
| 02/09 | 2008-00409                 | KY         | Kentucky Industriał Utility<br>Customers, Inc.   | East Kentucky Power<br>Cooperative, Inc.                      | Cost of Service, Rate Design                                         |
| 5/09  | PUE-2009<br>-00018         | VA         | VA Committee For<br>Fair Utility Rates           | Dominion Virginia<br>Power Company                            | Transmission Cost Recovery<br>Rider                                  |
| 5/09  | 09-0177-<br>E-GI           | WV         | West Virginia Energy<br>Users Group              | Appalachian Power<br>Company                                  | Expanded Net Energy Cost<br>"ENEC" Analysis                          |
| 6/09  | PUE-2009<br>-00016         | VA         | VA Committee For<br>Fair Utility Rates           | Dominion Virginia<br>Power Company                            | Fuel Cost Recovery<br>Rider                                          |
| 6/09  | PUE-2009<br>-00038         | VA         | Old Dominion Committee<br>For Fair Utility Rates | Appalachian Power<br>Company                                  | Fuel Cost Recovery<br>Rider                                          |
| 7/09  | 080677-EI                  | FL         | South Florida Hospital and Healthcare Assoc.     | Florida Power &<br>Light Company                              | Retail cost of service, rate design                                  |
| 8/09  | U-20925<br>(RRF 2004)      | LA         | Louisiana Public Service<br>Commission Staff     | Entergy Louisiana<br>LLC                                      | Interruptible Rate Refund<br>Settlement                              |
| 9/09  | 09AL-299E                  | CO         | CF&I Steel Company<br>Climax Molybdenum          | Public Service Company<br>of Colorado                         | Energy Cost Rate issues                                              |
| 9/09  | Doc. No. 1<br>05-UR-104    | WI         | Wisconsin Industrial<br>Energy Group, Inc.       | Wisconsin Electric Power Co.                                  | Cost of Service, rate design, tariff<br>Issues, Interruptible rates. |
| 9/09  | Doc. No.<br>6680-UR-117    | WI<br>,    | Wisconsin Industrial<br>Energy Group, Inc.       | Wisconsin Power<br>and Light Co.                              | Cost of Service, rate design, tariff<br>Issues, Interruptible rates. |
| 10/09 | Docket No.<br>09-035-23    | UT         | Kroger Company                                   | Rocky Mountain Power Co.                                      | Cost of Service, Allocation of Rev Increase                          |
| 10/09 | 09AL-299E                  | СО         | CF&I Steel Company<br>Climax Molybdenum          | Public Service Company<br>of Colorado                         | Cost of Service, Rate Design                                         |
| 11/09 | PUE-2009<br>-00019         | VA         | VA Committee For<br>Fair Utility Rates           | Dominion Virginia<br>Power Company                            | Cost of Service, Rate Design                                         |
| 11/09 | 09-1485<br>E-P             | W          | West Virginia<br>Energy Users Group              | Mon Power Co.<br>Potomac Edison Co.                           | Expanded Net Energy Cost "ENEC"<br>Analysis.                         |
| 12/09 | Case No. (<br>09-906-EL-SS | DH<br>O    | Ohio Energy Group                                | Ohio Edison, Toledo Edison<br>Cleveland Electric Illuminating | Provider of Last Resort Rate<br>Plan                                 |
|       |                            |            |                                                  |                                                               |                                                                      |

Exhibit (SJB-1) Page 18 of 22

#### Expert Testimony Appearances of Stephen J. Baron As of November 2014

| Date  | Case                     | Jurisdict.  | Party                                              | Utility                                                          | Subject                                                                    |
|-------|--------------------------|-------------|----------------------------------------------------|------------------------------------------------------------------|----------------------------------------------------------------------------|
| 12/09 | ER09-1224                | FERC        | Louisiana Public<br>Service Commission             | Entergy Services, Inc.<br>and the Entergy Operating<br>Companies | Entergy's Compliance Filing<br>System Agreement Bandwidth<br>Calculations. |
| 12/09 | Case No.<br>PUE-2009-0   | VA<br>00030 | Old Dominion Committee<br>For Fair Utility Rates   | Appalachian Power Co.                                            | Cost Allocation, Allocation of Rev Increase,<br>Rate Design                |
| 2/10  | Docket No.<br>09-035-23  | UT          | Kroger Company                                     | Rocky Mountain Power Co.                                         | Rate Design                                                                |
| 3/10  | Case No.<br>09-1352-E-4  | WV<br>12T   | West Virginia Energy<br>Users Group                | Mon Power Co.<br>Potomac Edison Co.                              | Retail Cost of Service<br>Revenue apportionment                            |
| 3/10  | E015/<br>GR-09-1151      | MN          | Large Power Intervenors                            | Minnesota Power Co.                                              | Cost of Service, rate design                                               |
| 4/10  | EL09-61 FE               | RC          | Louisiana Public Service<br>Service Commission     | Entergy Services, Inc.<br>and the Entergy Operating<br>Companies | System Agreement Issues<br>Related to off-system sales                     |
| 4/10  | 2009-00459               | KY          | Kentucky Industrial<br>Utility Customers, Inc.     | Kentucky Power Company                                           | Cost of service, rate design, transmission expenses.                       |
| 4/10  | 2009-00548<br>2009-00549 | KY          | Kentucky Industrial Utility<br>Customers, Inc.     | Louisville Gas & Electric Co.<br>Kentucky Utilities Co.          | Cost of Service, Rate Design                                               |
| 7/10  | R-2010-<br>2161575       | PA          | Philadelphia Area Industrial<br>Energy Users Group | PECO Energy Company                                              | Cost of Service, Rate Design                                               |
| 09/10 | 2010-00167               | KY          | Kentucky Industrial Utility<br>Customers, Inc.     | East Kentucky Power<br>Cooperative, Inc.                         | Cost of Service, Rate Design                                               |
| 09/10 | 10M-245E                 | СО          | CF&I Steel Company<br>Climax Molybdenum            | Public Service Company<br>of Colorado                            | Economic Impact of Clean Air Act                                           |
| 11/10 | 10-0699-<br>E-42T        | WV          | West Virginia Energy<br>Users Group                | Appalachian Power<br>Company                                     | Cost of Service, Rate Design,<br>Transmission Rider                        |
| 11/10 | Doc. No.<br>4220-UR-116  | WI          | Wisconsin Industrial<br>Energy Group, Inc.         | Northern States Power<br>Co. Wisconsin                           | Cost of Service, rate design                                               |
| 12/10 | 10A-554EG                | CO          | CF&I Steel Company<br>Climax Molybdenum            | Public Service Company<br>of Colorado                            | Demand Side Management<br>Issues                                           |
| 12/10 | 10-2586-EL- (<br>SSO     | н           | Ohio Energy Group                                  | Duke Energy Ohio                                                 | Provider of Last Resort Rate Plan<br>Electric Security Plan                |
| 3/11  | 20000-384-<br>ER-10      | WY          | Wyoming Industrial Energy<br>Consumers             | Rocky Mountain Power<br>Wyoming                                  | Electric Cost of Service, Revenue<br>Apportionment, Rate Design            |

Exhibit \_\_\_(SJB-1) Page 19 of 22

#### Expert Testimony Appearances of Stephen J. Baron As of November 2014

| Date  | Case                                      | Jurisdict. | Party                                            | Utility                                                     | Subject                                                                                  |
|-------|-------------------------------------------|------------|--------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------------------------------------------|
| 5/11  | 2011-00036                                | KY         | Kentucky industrial Utility<br>Customers, Inc.   | Big Rivers Electric<br>Corporation                          | Cost of Service, Rate Design                                                             |
| 6/11  | Docket No.<br>10-035-124                  | UT         | Kroger Company                                   | Rocky Mountain Power Co.                                    | Class Cost of Service                                                                    |
| 6/11  | PUE-2011<br>-00045                        | VA         | VA Committee For<br>Fair Utility Rates           | Dominion Virginia<br>Power Company                          | Fuel Cost Recovery Rider                                                                 |
| 07/11 | U-29764                                   | LA         | Louisiana Public Service<br>Commission Staff     | Entergy Gulf States, Inc.<br>Entergy Louisiana, LLC         | Entergy System Agreement - Successor<br>Agreement, Revisions, RTO Day 2 Market<br>Issues |
| 07/11 | Case Nos.<br>11-346-EL-SS<br>11-348-EL-SS |            | Ohio Energy Group                                | Ohio Power Company<br>Columbus Southern Power Co.           | Electric Security Rate Plan,<br>Provider of Last Resort Issues                           |
| 08/11 | PUE-2011-<br>00034                        | VA         | Old Dominion Committee<br>For Fair Utility Rates | Appalachian Power Co.                                       | Cost Allocation, Rate Recovery<br>of RPS Costs                                           |
| 09/11 | 2011-00161<br>2011-00162                  | KY         | Kentucky Industrial Utility<br>Consumers         | Louisville Gas & Electric Co.<br>Kentucky Utilities Company | Environmental Cost Recovery                                                              |
| 09/11 | Case Nos.<br>11-346-EL-SS<br>11-348-EL-SS | SO 03      | Ohio Energy Group                                | Ohio Power Company<br>Columbus Southern Power Co.           | Electric Security Rate Plan,<br>Stipulation Support Testimony                            |
| 10/11 | 11-0452<br>E-P-T                          | WV         | West Virginia<br>Energy Users Group              | Mon Power Co.<br>Potomac Edison Co.                         | Energy Efficiency/Demand Reduction<br>Cost Recovery                                      |
| 11/11 | 11-1274<br>E-P                            | WV         | West Virginia<br>Energy Users Group              | Mon Power Co.<br>Potomac Edison Co.                         | Expanded Net Energy Cost "ENEC"<br>Analysis.                                             |
| 11/11 | E-01345A-<br>11-0224                      | AZ         | Kroger Company                                   | Arizona Public Service Co.                                  | Decoupling                                                                               |
| 12/11 | E-01345A-<br>11-0224                      | AZ         | Kroger Company                                   | Arizona Public Service Co.                                  | Cost of Service, Rate Design                                                             |
| 3/12  |                                           | KY         | Kentucky Industrial Utility<br>Consumers         | Kentucky Power Company                                      | Environmental Cost Recovery                                                              |
| 4/12  | 2011-00036<br>Rehearing Ca                |            | Kentucky Industrial Utility<br>Customers, Inc.   | Big Rivers Electric<br>Corporation                          | Cost of Service, Rate Design                                                             |
| 5/12  | 2011-346<br>2011-348                      | OH         | Ohio Energy Group                                | Ohio Power Company                                          | Electric Security Rate Plan<br>Interruptible Rate Issues                                 |
| 6/12  | PUE-2012<br>-00051                        | VA         | Old Dominion Committee<br>For Fair Utility Rates | Appalachian Power<br>Company                                | Fuel Cost Recovery<br>Rider                                                              |

) ---

#### Expert Testimony Appearances of Stephen J. Baron As of November 2014

| Date  | Case                     | Jurisdict. | Party                                                    | Utility                                                          | Subject                                                                 |
|-------|--------------------------|------------|----------------------------------------------------------|------------------------------------------------------------------|-------------------------------------------------------------------------|
| 6/12  | 12-00012<br>12-00026     | TN         | Eastman Chemical Co.<br>Air Products and Chemicals, Inc. | Kingsport Power<br>Company                                       | Demand Response Programs                                                |
| 6/12  | Docket No.<br>11-035-200 |            | Kroger Company                                           | Rocky Mountain Power Co.                                         | Class Cost of Service                                                   |
| 6/12  | 12-0275-<br>E-GI-EE      | <b>WV</b>  | West Virginia Energy<br>Users Group                      | Appalachian Power<br>Company                                     | Energy Efficiency Rider                                                 |
| 6/12  | 12-0399-<br>E-P          | W          | West Virginia Energy<br>Users Group                      | Appalachian Power<br>Company                                     | Expanded Net Energy Cost ("ENEC")                                       |
| 7/12  | 120015-EI                | FL         | South Florida Hospital<br>and Healthcare Assoc.          | Florida Power & .<br>Light Company                               | Retail cost of service, rate<br>design                                  |
| 7/12  | 2011-00063               | KY         | Kentucky Industrial Utility<br>Customers, Inc.           | Big Rivers Electric<br>Corporation                               | Environmental Cost Recovery                                             |
| 8/12  | Case No.<br>2012-00226   | KY         | Kentucky Industrial Utility<br>Consumers                 | Kentucky Power Company                                           | Real Time Pricing Tariff                                                |
| 9/12  | ER12-1384                | FERC       | Louisiana Public Service<br>Commission                   | Entergy Services, Inc.                                           | Entergy System Agreement, Cancelled<br>Plant Cost Treatment             |
| 9/12  | 2012-00221<br>2012-00222 | КY         | Kentucky Industrial Utility<br>Customers, Inc.           | Louisville Gas & Electric Co.<br>Kentucky Utilities Co.          | Cost of Service, Rate Design                                            |
| 11/12 | 12-1238<br>E-GI          | W          | West Virginia<br>Energy Users Group                      | Mon Power Co.<br>Potomac Edison Co.                              | Expanded Net Energy Cost<br>Recovery Issues                             |
| 12/12 | U-29764                  | LA         | Louisiana Public Service<br>Commission Staff             | Entergy Gulf States<br>Louisiana                                 | Purchased Power Contracts                                               |
| 12/12 | EL09-61 FE               | RC         | Louisiana Public Service<br>Service Commission           | Entergy Services, Inc.<br>and the Entergy Operating<br>Companies | System Agreement Issues<br>Related to off-system sales<br>Damages Phase |
| 12/12 | E-01933A-<br>12-0291     | AZ         | Kroger Company                                           | Tucson Electric Power Co.                                        | Decoupling                                                              |
| 1/13  | 12-1188<br>E-PC          | WV         | West Virginia Energy<br>Users Group                      | Appalachian Power<br>Company                                     | Securitization of ENEC Costs                                            |
| 1/13  | E-01933A-<br>12-0291     | AZ         | Kroger Company                                           | Tucson Electric Power Co.                                        | Cost of Service, Rate Design                                            |
| 4/13  | 12-1571<br>E-PC          | W          | West Virginia<br>Energy Users Group                      | Mon Power Co.<br>Potomac Edison Co.                              | Generation Resource Transition<br>Plan Issues                           |

Exhibit\_\_\_(SJB-1) Page 21 of 22

#### Expert Testimony Appearances of Stephen J. Baron As of November 2014

| Date  | Case                                  | Jurisdict. | Party                                            | Utility                                                          | Subject                                                                               |
|-------|---------------------------------------|------------|--------------------------------------------------|------------------------------------------------------------------|---------------------------------------------------------------------------------------|
| 4/13  | PUE-2012<br>-00141                    | VA         | Old Dominion Committee<br>For Fair Utility Rates | Appalachian Power<br>Company                                     | Generation Asset Transfer<br>Issues                                                   |
| 6/13  | 12-1655<br>E-PC                       | WV         | West Virginia Energy<br>Users Group              | Appalachian Power<br>Company                                     | Generation Asset Transfer<br>Issues                                                   |
| 06/13 | U-32675                               | LA         | Louisiana Public Service<br>Commission Staff     | Entergy Gulf States, Inc.<br>Entergy Louisiana, LLC              | MISO Joint Implementation Plan<br>Issues                                              |
| 7/13  | 130040-EI                             | FL         | WCF Health Utility Alliance                      | Tampa Electric Company                                           | Cost of Service, Rate Design                                                          |
| 7/13  | 13-0467-<br>E-P                       | WV         | West Virginia Energy<br>Users Group              | Appalachian Power<br>Company                                     | Expanded Net Energy Cost ("ENEC")                                                     |
| 7/13  | 13-0462-<br>E-P                       | WV         | West Virginia Energy<br>Users Group              | Appalachian Power<br>Company                                     | Energy Efficiency Issues                                                              |
| 8/13  | 13-0557-<br>E-P                       | Ŵ          | West Virginia Energy<br>Users Group              | Appalachian Power<br>Company                                     | Right-of-Way, Vegetation Control Cost<br>Recovery Surcharge Issues                    |
| 10/13 | 2013-00199                            | КҮ         | Kentucky Industrial Utility<br>Customers, Inc.   | Big Rivers Electric<br>Corporation                               | Ratemaking Policy Associated with<br>Rural Economic Reserve Funds                     |
| 10/13 | 13-0764-<br>E-CN                      | WV         | West Virginia Energy<br>Users Group              | Appalachian Power<br>Company                                     | Rate Recovery Issues – Clinch River<br>Gas Conversion Project                         |
| 11/13 | R-2013-<br>2372129                    | PA         | United States Steel<br>Corporation               | Duquesne Light Company                                           | Cost of Service, Rate Design                                                          |
| 11/13 | 13A-0686EG                            | CO         | CF&I Steel Company<br>Climax Molybdenum          | Public Service Company<br>of Colorado                            | Demand Side Management<br>Issues                                                      |
| 11/13 | 13-1064-<br>E-P                       | WV         | West Virginia Energy<br>Users Group              | Mon Power Co.<br>Potomac Edison Co.                              | Right-of-Way, Vegetation Control Cost<br>Recovery Surcharge Issues                    |
| 4/14  | ER-432-002                            | FERC .     | Louisiana Public Service<br>Service Commission   | Entergy Services, Inc.<br>and the Entergy Operating<br>Companies | System Agreement Issues<br>Related to Union Pacific Railroad<br>Litigation Settlement |
| 5/14  | 2013-2385<br>2013-2386                | ОН         | Ohio Energy Group                                | Ohio Power Company                                               | Electric Security Rate Plan<br>Interruptible Rate Issues                              |
| 5/14  | 14-0344-<br>E-P                       | WV         | West Virginia Energy<br>Users Group              | Appalachian Power<br>Company                                     | Expanded Net Energy Cost ("ENEC")                                                     |
| 5/14  | 14-0345-<br>E-PC                      | WV         | West Virginia Energy<br>Users Group              | Appalachian Power<br>Company                                     | Energy Efficiency Issues                                                              |
| 5/14  | <sup>-</sup> Docket No.<br>13-035-184 | UT         | Kroger Company                                   | Rocky Mountain Power Co.                                         | Class Cost of Service                                                                 |

Exhibit (SJB-1) Page 22 of 22

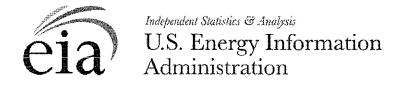
#### Expert Testimony Appearances of Stephen J. Baron As of November 2014

| Date  | Case               | Jurisdict. | Party                                            | Utility                               | Subject                                               |
|-------|--------------------|------------|--------------------------------------------------|---------------------------------------|-------------------------------------------------------|
| 7/14  | PUE-2014<br>-00007 | VA         | Old Dominion Committee<br>For Fair Utility Rates | Appalachian Power<br>Company          | Renewable Portfolio Standard<br>Rider tssues          |
| 7/14  | ER13-2483          | FERC       | Bear Island Paper WB LLC                         | Old Dominion Electric<br>Cooperative. | Cost of Service, Rate Design Issues                   |
| 8/14  | 14-0546-<br>E-PC   | WV         | West Virginia Energy<br>Users Group              | Appalachian Power<br>Company          | Rate Recovery Issues – Mitchell<br>Asset Transfer     |
| 8/14  | PUE-2014<br>-00026 | VA         | Old Dominion Committee                           | Appalachian Power<br>Company          | Biennial Review Case - Cost<br>of Service Issues      |
| 9/14  | 14-841-EL-<br>SSO  | ОН         | Ohio Energy Group                                | Duke Energy Ohio                      | Electric Security Rate Plan<br>Standard Service Offer |
| 10/14 | 14-0702-<br>E-42T  | W          | West Virginia Energy<br>Users Group              | Mon Power Co.<br>Potomac Edison Co.   | Cost of Service, Rate Design                          |
| 11/14 | 14-1550-<br>E-P    | W          | West Virginia Energy<br>Users Group              | Mon Power Co.<br>Potomac Edison Co.   | Expanded Net Energy Cost ("ENEC")                     |

## **BEFORE THE PUBLIC UTILITIES COMMISSION OF THE STATE OF SOUTH DAKOTA**

In the Matter of the Application of Black Hills Power, Inc. for Authority to Increase its Electric Rates Docket No. EL14-026

EXHIBIT\_(SJB-2)


OF

**STEPHEN J. BARON** 

# ON BEHALF OF THE BLACK HILLS INDUSTRIAL INTERVENORS

# J. KENNEDY AND ASSOCIATES, INC. ROSWELL, GEORGIA

December 2014



April 2014

1

# Levelized Cost and Levelized Avoided Cost of New Generation Resources in the Annual Energy Outlook 2014

This paper presents average values of levelized costs for generating technologies that are brought online in 2019<sup>1</sup> as represented in the National Energy Modeling System (NEMS) for the *Annual Energy Outlook 2014* (AEO2014) Reference case.<sup>2</sup> Both national values and the minimum and maximum values across the 22 U.S. regions of the NEMS electricity market module are presented.

Levelized cost of electricity (LCOE) is often cited as a convenient summary measure of the overall competiveness of different generating technologies. It represents the per-kilowatthour cost (in real dollars) of building and operating a generating plant over an assumed financial life and duty cycle. Key inputs to calculating LCOE include capital costs, fuel costs, fixed and variable operations and maintenance (O&M) costs, financing costs, and an assumed utilization rate for each plant type.<sup>3</sup> The importance of the factors varies among the technologies. For technologies such as solar and wind generation that have no fuel costs and relatively small variable O&M costs, LCOE changes in rough proportion to the estimated capital cost of generation capacity. For technologies with significant fuel cost, both fuel cost and overnight cost estimates significantly affect LCOE. The availability of various incentives, including state or federal tax credits, can also impact the calculation of LCOE. As with any projection, there is uncertainty about all of these factors and their values can vary regionally and across time as technologies evolve and fuel prices change.

It is important to note that, while LCOE is a convenient summary measure of the overall competiveness of different generating technologies, actual plant investment decisions are affected by the specific technological and regional characteristics of a project, which involve numerous other factors. The *projected utilization rate*, which depends on the load shape and the existing resource mix in an area where additional capacity is needed, is one such factor. The *existing resource mix* in a region can directly impact the economic viability of a new investment through its effect on the economics surrounding the displacement of existing resources. For example, a wind resource that would primarily displace existing natural gas generation will usually have a different economic value than one that would displace existing coal generation.

A related factor is the *capacity value*, which depends on both the existing capacity mix and load characteristics in a region. Since load must be balanced on a continuous basis, units whose output can be varied to follow demand (dispatchable technologies) generally have more value to a system than less

<sup>&</sup>lt;sup>1</sup> 2019 is shown because the long lead time needed for some technologies means that the plant could not be brought online prior to 2019 unless it was already under construction.

<sup>&</sup>lt;sup>2</sup> The full report is available at <u>http://www.eia.gov/forecasts/aeo/index.cfm</u>.

<sup>&</sup>lt;sup>3</sup> The specific assumptions for each of these factors are given in the *Assumptions to the Annual Energy Outlook*, available at <u>http://www.eia.doe.gov/oiaf/aeo/index.html</u>.

flexible units (non-dispatchable technologies), or those whose operation is tied to the availability of an intermittent resource. The LCOE values for dispatchable and nondispatchable technologies are listed separately in the tables, because caution should be used when comparing them to one another.

Since projected utilization rates, the existing resource mix, and capacity values can all vary dramatically across regions where new generation capacity may be needed, the direct comparison of LCOE across technologies is often problematic and can be misleading as a method to assess the economic competitiveness of various generation alternatives. Conceptually, a better assessment of economic competitiveness can be gained through consideration of avoided cost, a measure of what it would cost the grid to generate the electricity that is otherwise displaced by a new generation project, as well as its levelized cost. Avoided cost, which provides a proxy measure for the annual economic value of a candidate project, may be summed over its financial life and converted to a stream of equal annual payments. The avoided cost is divided by average annual output of the project to develop the "levelized" avoided cost of electricity (LACE) for the project.<sup>4</sup> The LACE value may then be compared with the LCOE value for the candidate project to provide an indication of whether or not the project's value exceeds its cost. If multiple technologies are available to meet load, comparisons of each project's LACE to its LCOE may be used to determine which project provides the best net economic value. Estimating avoided costs is more complex than estimating levelized costs because it requires information about how the system would have operated without the option under evaluation. In this discussion, the calculation of avoided costs is based on the marginal value of energy and capacity that would result from adding a unit of a given technology and represents the potential revenue available to the project owner from the sale of energy and generating capacity. While the economic decisions for capacity additions in EIA's long-term projections use neither LACE nor LCOE concepts, the LACE and net value estimates presented in this report are generally more representative of the factors contributing to the projections than looking at LCOE alone. However, both the LACE and LCOE estimates are simplifications of modeled decisions, and may not fully capture all decision factors or match modeled results.

Policy-related factors, such as environmental regulations and investment or production tax credits for specified generation sources, can also impact investment decisions. Finally, although levelized cost calculations are generally made using an assumed set of capital and operating costs, the inherent uncertainty about future fuel prices and future policies may cause plant owners or investors who finance plants to place a value on *portfolio diversification*. While EIA considers many of these factors in its analysis of technology choice in the electricity sector, these concepts are not included in LCOE or LACE calculations.

The LCOE values shown for each utility-scale generation technology in Table 1 and Table 2 in this discussion are calculated based on a 30-year cost recovery period, using a real after tax weighted average cost of capital (WACC) of 6.5%. In reality, the cost recovery period and cost of capital can vary by technology and project type. In the AEO2014 reference case, 3 percentage points are added to the cost of capital when evaluating investments in greenhouse gas (GHG) intensive technologies like coal-

<sup>&</sup>lt;sup>4</sup> Further discussion of the levelized avoided cost concept and its use in assessing economic competitiveness can be found in this article: <u>http://www.eia.gov/renewable/workshop/gencosts/</u>.

3

fired power and coal-to-liquids (CTL) plants without carbon control and sequestration (CCS). In LCOE terms, the impact of the cost of capital adder is similar to that of an emissions fee of \$15 per metric ton of carbon dioxide (CO<sub>2</sub>) when investing in a new coal plant without CCS, which is representative of the costs used by utilities and regulators in their resource planning.<sup>5</sup> The adjustment should not be seen as an increase in the actual cost of financing, but rather as representing the implicit hurdle being added to GHG-intensive projects to account for the possibility that they may eventually have to purchase allowances or invest in other GHG-emission-reducing projects to offset their emissions. As a result, the LCOE values for coal-fired plants without CCS are higher than would otherwise be expected.

The levelized capital component reflects costs calculated using tax depreciation schedules consistent with permanent tax law, which vary by technology. Although the capital and operating components do not incorporate the production or investment tax credits available to some technologies, a subsidy column is included in Table 1 to reflect the estimated value of these tax credits, where available, in 2019. In the reference case, tax credits are assumed to expire based on current laws and regulations.

Some technologies, notably solar photovoltaic (PV), are used in both utility-scale generating plants and distributed end-use residential and commercial applications. As noted above, the LCOE (and also subsequent LACE) calculations presented in the tables apply only to the utility-scale use of those technologies.

In Table 1 and Table 2, the LCOE for each technology is evaluated based on the capacity factor indicated, which generally corresponds to the high end of its likely utilization range. Simple combustion turbines (conventional or advanced technology) that are typically used for peak load duty cycles are evaluated at a 30% capacity factor. The duty cycle for intermittent renewable resources, wind and solar, is not operator controlled, but dependent on the weather or solar cycle (that is, sunrise/sunset) and so will not necessarily correspond to operator dispatched duty cycles. As a result, their LCOE values are not directly comparable to those for other technologies (even where the average annual capacity factor may be similar) and therefore are shown in separate sections within each of the tables. The capacity factor for the marginal site in each region. These capacity factors can vary significantly by region and can represent resources that may or may not get built in EIA capacity projections. They should not be interpreted as representing EIA's estimate or projection of the gross generating potential of resources actually projected to be built.

As mentioned above, the LCOE values shown in Table 1 are national averages. However, as shown in Table 2, there is significant regional variation in LCOE values based on local labor markets and the cost and availability of fuel or energy resources such as windy sites. For example, LCOE for incremental wind capacity coming online in 2019 ranges from \$71.3/MWh in the region with the best available resources in 2019 to \$90.3/MWh in regions where LCOE values are highest due to lower quality wind resources and/or higher capital costs for the best sites that can accommodate additional wind capacity. Costs shown for wind may include additional costs associated with transmission upgrades needed to access

<sup>&</sup>lt;sup>5</sup> Morgan Stanley, "Leading Wall Street Banks Establish The Carbon Principles" (Press Release, February 4, 2008), www.morganstanley.com/about/press/articles/6017.html.

remote resources, as well as other factors that markets may or may not internalize into the market price for wind power.

As previously indicated, LACE provides an estimate of the cost of generation and capacity resources displaced by a marginal unit of new capacity of a particular type, thus providing an estimate of the value of building such new capacity. This is especially important to consider for intermittent resources, such as wind or solar, that have substantially different duty cycles than the baseload, intermediate and peaking duty cycles of conventional generators. Table 3 provides the range of LACE estimates for different capacity types. The LACE estimates in this table have been calculated assuming the same maximum capacity factor as in the LCOE. A subset of the full list of technologies in Table 1 is shown because the LACE value for similar technologies with the same capacity factor would have the same value (for example, conventional and advanced combined cycle plants will have the same avoided cost of electricity). Values are not shown for combustion turbines, because turbines are more often built for their capacity value to meet a reserve margin rather than to meet generation requirements and avoid energy costs.

When the LACE of a particular technology exceeds its LCOE at a given time and place, that technology would generally be economically attractive to build. While the build decisions in the real world, and as modeled in the AEO, are somewhat more complex than a simple LACE to LCOE comparison, including such factors as policy and non-economic drivers, the net economic value (LACE minus LCOE, including subsidy, for a given technology, region and year) shown in Table 4 provides a reasonable point of comparison of first-order economic competitiveness among a wider variety of technologies than is possible using either the LCOE or LACE tables individually. In Table 4, a negative difference indicates that the cost of the marginal new unit of capacity exceeds its value to the system, as measured by LACE; a positive difference indicates that the marginal new unit brings in value in excess of its cost by displacing more expensive generation and capacity options. The range of differences columns represent the variation in the calculation of the difference for each region. For example, in the region where the advanced combined cycle appears most economic in 2019, the LCOE is \$61.5/MWh and the LACE is \$62.3/MWh, resulting in a net difference of \$0.8/MWh. This range of differences is not based on the difference between the minimum values shown in Table 2 and Table 3, but represents the lower and upper bound resulting from the LACE minus LCOE calculations for each of the 22 regions.

The average net differences shown in Table 4 are for plants coming online in 2019, consistent with Tables 1-3, as well as for plants that could come online in 2040, to show how the relative competitiveness changes over the projection period. Additional tables showing the LCOE cost components and regional variation in LCOE and LACE for 2040 can be found in the Appendix. In 2019, the average net differences are negative for all technologies except geothermal, reflecting the fact that on average, new capacity is not needed in 2019. However, the upper value for both combined cycle technologies is at or above zero, indicating competiveness in a particular region. Geothermal cost data is site-specific, and the relatively large positive value for that technology results because there may be individual sites that are very cost competitive, leading to new builds, but there is a limited amount of capacity available at that cost. By 2040, the LCOE values for most technologies are lower, typically reflecting declining capital costs over time. All technologies receive cost reductions from learning over time, with newer, advanced technologies receiving larger cost reductions, while conventional

technologies will see smaller learning effects. Capital costs are also adjusted over time based on commodity prices, through a factor based on the metals and metal products index, which declines in real terms over the projection. However, the LCOE for natural gas-fired technologies rises over time, because rising fuel costs more than offset any decline in capital costs. The LACE values for all technologies increase by 2040 relative to 2019, reflecting higher energy costs and a greater value for new capacity. As a result, the difference between LACE and LCOE for almost all technologies gets closer to a net positive value in 2040, and there are several technologies (advanced combined cycle, wind, solar PV, hydro and geothermal) that have multiple regions with positive net differences.

|                                         |                | U.S. Average                             | LCOE (20)                                   | 12 \$/MWh) fo                                                 | or Plants Entering S                                                                | ervice in 201           | 9           |                                               |
|-----------------------------------------|----------------|------------------------------------------|---------------------------------------------|---------------------------------------------------------------|-------------------------------------------------------------------------------------|-------------------------|-------------|-----------------------------------------------|
| Diana Truc                              | Capacity       | Levelized<br>Capital                     | Fixed<br>O&M                                | Variable<br>O&M<br>(including                                 | Transmission<br>Investment                                                          | Total<br>System<br>LCOE | c. L + 4, 1 | Total LCOE<br>including                       |
| Plant Type<br>Dispatchable Technologies | Factor (%)     | Cost                                     | UQIVI                                       | fuel)                                                         | mvestment                                                                           | LCUE                    | Subsidy     | Subsidy                                       |
| Conventional Coal                       | 85             | 60.0                                     | 4.2                                         | 30.3                                                          | 1.2                                                                                 | 95.6                    |             |                                               |
| Integrated Coal-Gasification            |                | 00.0                                     |                                             |                                                               |                                                                                     |                         |             |                                               |
| Combined Cycle (IGCC)                   | 85             | 76.1                                     | 6.9                                         | 31.7                                                          | 1.2                                                                                 | 115.9                   |             |                                               |
| IGCC with CCS                           | 85             | 97.8                                     | 9.8                                         | 38.6                                                          | 1.2                                                                                 | 147.4                   |             |                                               |
| Natural Gas-fired                       |                |                                          |                                             |                                                               | , , , , , , , , , , , , , , , , , , ,                                               |                         | - A & Ar    | ///                                           |
| Conventional combined Cycle             | 87             | 14.3                                     | 1.7                                         | 49.1                                                          | 1.2                                                                                 | 66.3                    |             |                                               |
| Advanced Combined Cycle                 | 87             | 15.7                                     | 2.0                                         | 45.5                                                          | 1.2                                                                                 | 64.4                    |             |                                               |
| Advanced CC with CCS                    | 87             | 30.3                                     | 4.2                                         | 55.6                                                          | 1.2                                                                                 | 91.3                    |             |                                               |
| Conventional Combustion                 |                | 99 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - | ar e faithe de canadaidh de dhallacha da fh | an an aman a contra sa an | de dae seen oorde oorde oorde oorde de dade oorde oorde oorde de deren op de gegene |                         |             |                                               |
| Turbine                                 | 30             | 40.2                                     | 2.8                                         | 82.0                                                          | 3.4                                                                                 | 128.4                   |             |                                               |
| Advanced Combustion Turbine             | 30             | 27.3                                     | 2.7                                         | 70.3                                                          | 3.4                                                                                 | 103.8                   |             |                                               |
| Advanced Nuclear                        | <del>9</del> 0 | 71.4                                     | 11.8                                        | 11.8                                                          | 1.1                                                                                 | 96.1                    | -10.0       | 86.1                                          |
| Geothermal                              | 92             | 34.2                                     | 12.2                                        | 0.0                                                           | 1.4                                                                                 | 47.9                    | -3.4        | 44.5                                          |
| Biomass                                 | 83             | 47.4                                     | 14.5                                        | 39.5                                                          | 1.2                                                                                 | 102.6                   |             |                                               |
| Non-Dispatchable Technologies           |                |                                          |                                             |                                                               |                                                                                     |                         |             | anderska deleta in porto d'Academ Al o Alexan |
| Wind                                    | 35             | 64.1                                     | 13.0                                        | 0.0                                                           | 3.2                                                                                 | 80.3                    |             |                                               |
| Wind – Offshore                         | 37             | 175.4                                    | 22.8                                        | 0.0                                                           | 5.8                                                                                 | 204.1                   |             |                                               |
| Solar PV <sup>2</sup>                   | 25             | 114.5                                    | 11.4                                        | 0.0                                                           | 4.1                                                                                 | 130.0                   | -11.5       | 118.6                                         |
| Solar Thermal                           | 20             | 195.0                                    | 42,1                                        | 0.0                                                           | 6.0                                                                                 | 243.1                   | -19.5       | 223.6                                         |
| Hydroelectric <sup>3</sup>              | 53             | 72.0                                     | 4.1                                         | 6.4                                                           | 2.0                                                                                 | 84.5                    |             |                                               |

#### Table 1. Estimated levelized cost of electricity (LCOE) for new generation resources, 2019

<sup>1</sup>The subsidy component is based on targeted tax credits such as the production or investment tax credit available for some technologies. It only reflects subsidies available in 2019, which include a permanent 10% investment tax credit for geothermal and solar technologies, and the \$18.0/MWh production tax credit for up to 6 GW of advanced nuclear plants, based on the Energy Policy Acts of 1992 and 2005. EIA models tax credit expiration as in current laws and regulations: new solar thermal and PV plants are eligible to receive a 30% investment tax credit on capital expenditures if placed in service before the end of 2016, and 10% thereafter. New wind, geothermal, biomass, hydroelectric, and landfill gas plants are eligible to receive either: (1) a \$21.5/MWh (\$10.7/MWh for technologies other than wind, geothermal and closed-loop biomass) inflation-adjusted production tax credit over the plant's first ten years of service or (2) a 30% investment tax credit, if they are under construction before the end of 2013.

<sup>2</sup> Costs are expressed in terms of net AC power available to the grid for the installed capacity.

<sup>3</sup>As modeled, hydroelectric is assumed to have seasonal storage so that it can be dispatched within a season, but overall operation is limited by resources available by site and season.

Source: U.S. Energy Information Administration, Annual Energy Outlook 2014 Early Release, December 2013, DOE/EIA-0383ER(2014).

|                               |         | · Total Systei<br>D12 \$/MWh) |         | Range for Total LCOE with Subsidies <sup>1</sup><br>(2012 \$/MWh) |         |                                         |
|-------------------------------|---------|-------------------------------|---------|-------------------------------------------------------------------|---------|-----------------------------------------|
| Plant Type                    | Minimum | Average                       | Maximum | Minimum                                                           | Average | Maximum                                 |
| Dispatchable Technologies     |         |                               |         |                                                                   |         |                                         |
| Conventional Coal             | 87.0    | 95.6                          | 114.4   |                                                                   |         |                                         |
| IGCC                          | 106.4   | 115.9                         | 131.5   | ah an                                                             |         |                                         |
| IGCC with CCS                 | 137.3   | 147.4                         | 163.3   |                                                                   |         |                                         |
| Natural Gas-fired             |         |                               |         |                                                                   |         |                                         |
| Conventional Combined Cycle   | 61.1    | 66.3                          | 75.8    |                                                                   |         |                                         |
| Advanced Combined Cycle       | 59.6    | 64.4                          | 73.6    |                                                                   |         |                                         |
| Advanced CC with CCS          | 85.5    | 91.3                          | 105.0   |                                                                   |         |                                         |
| Conventional Combustion       |         |                               |         |                                                                   |         |                                         |
| Turbine                       | 106.0   | 128.4                         | 149.4   |                                                                   |         |                                         |
| Advanced Combustion Turbine   | 96.9    | 103.8                         | 119.8   |                                                                   |         |                                         |
| Advanced Nuclear              | 92.6    | 96.1                          | 102.0   | 82.6                                                              | 86.1    | 92.0                                    |
| Geothermal                    | 46.2    | 47.9                          | 50.3    | 43.1                                                              | 44.5    | 46.4                                    |
| Biomass                       | 92.3    | 102.6                         | 122.9   | ,                                                                 |         |                                         |
| Non-Dispatchable Technologies |         |                               |         |                                                                   |         | 1989 1994 1994 1994 1994 1994 1994 1994 |
| Wind                          | 71.3    | 80.3                          | 90.3    |                                                                   |         |                                         |
| Wind – Offshore               | 168.7   | 204.1                         | 271.0   |                                                                   |         |                                         |
| Solar PV <sup>2</sup>         | 101.4   | 130.0                         | 200.9   | 92.6                                                              | 118.6   | 182.6                                   |
| Solar Thermal                 | 176.8   | 243.1                         | 388.0   | 162.6                                                             | 223.6   | 356.7                                   |
| Hydroelectric <sup>3</sup>    | 61.6    | 84.5                          | 137.7   |                                                                   |         |                                         |

#### Table 2. Regional variation in levelized cost of electricity (LCOE) for new generation resources, 2019

<sup>1</sup>Levelized cost with subsidies reflects subsidies available in 2019, which include a permanent 10% investment tax credit for geothermal and solar technologies, and the \$18.0/MWh production tax credit for up to 6 GW of advanced nuclear plants, based on the Energy Policy Acts of 1992 and 2005.

<sup>2</sup>Costs are expressed in terms of net AC power available to the grid for the installed capacity.

<sup>3</sup>As modeled, hydroelectric is assumed to have seasonal storage so that it can be dispatched within a season, but overall operation is limited by resources available by site and season.

Note: The levelized costs for non-dispatchable technologies are calculated based on the capacity factor for the marginal site modeled in each region, which can vary significantly by region. The capacity factor ranges for these technologies are as follows: Wind – 31% to 45%, Wind Offshore – 33% to 42%, Solar PV- 22% to 32%, Solar Thermal – 11% to 26%, and Hydroelectric – 30% to 65%. The levelized costs are also affected by regional variations in construction labor rates and capital costs as well as resource availability.

Source: U.S. Energy Information Administration, Annual Energy Outlook 2014 Early Release, December 2013, DOE/EIA-0383ER(2014).

 Table 3: Regional variation in levelized avoided costs of electricity (LACE) for new generation resources, 2019

|                                    | Range for LACE (2012 \$/MWh)                              |         |                                        |  |  |
|------------------------------------|-----------------------------------------------------------|---------|----------------------------------------|--|--|
| Plant Type                         | Minimum                                                   | Average | Maximum                                |  |  |
| Dispatchable Technologies          |                                                           |         |                                        |  |  |
| Coal-fired plant types without CCS | 54.6                                                      | 62.2    | 70.6                                   |  |  |
| IGCC with CCS <sup>1</sup>         | 54.6                                                      | 62.0    | 70.6                                   |  |  |
| Natural Gas-fired Combined Cycle   | 54.5                                                      | 62.9    | 74.2                                   |  |  |
| Advanced Nuclear                   | . 54.6                                                    | 61.7    | 70.5                                   |  |  |
| Geothermal                         | 58.3                                                      | 60.9    | 62.4                                   |  |  |
| Biomass                            | 54.5                                                      | 63.3    | 74.5                                   |  |  |
| Non-Dispatchable Technologies      | 19 19 7 9 19 19 7 9 19 19 19 19 19 19 19 19 19 19 19 19 1 |         | ************************************** |  |  |
| Wind                               | 51.7                                                      | 55.7    | 66.4                                   |  |  |
| Wind – Offshore                    | 55.1                                                      | 62.3    | 73.7                                   |  |  |
| Solar PV                           | 50.8                                                      | 73.4    | 89.6                                   |  |  |
| Solar Thermal                      | 48.2                                                      | 73.3    | 82.3                                   |  |  |
| Hydroelectric                      | 54.1                                                      | 59.9    | 69.5                                   |  |  |

<sup>1</sup>Coal without CCS cannot be built in California, therefore the average LACE for coal technologies without CCS is computed over fewer regions than the LACE for IGCC with CCS. Otherwise, the LACE for any given region is the same across coal technologies, with or without CCS.

 Table 4: Difference between levelized avoided costs of electricity (LACE) and levelized costs of electricity (LCOE), 2019 and 2040

|                                   | Comparison of LACE - LCOE (2012 \$/MWh) |                 |                       |                      |          |  |  |  |
|-----------------------------------|-----------------------------------------|-----------------|-----------------------|----------------------|----------|--|--|--|
| Plant Type                        | Average<br>LCOE                         | Average<br>LACE | Average<br>Difference | Range of Differences |          |  |  |  |
| 2019                              |                                         |                 | Difference            | Range of D           | merences |  |  |  |
| Zu19<br>Dispatchable Technologies |                                         |                 |                       |                      |          |  |  |  |
| Conventional Coal                 | 95.6                                    | 62.2            | -33.5                 | -48.9                | -25.1    |  |  |  |
| IGCC                              | 115.9                                   | 62.2            | -53.7                 | -66.1                | -43.9    |  |  |  |
| IGCC with CCS                     | 147.4                                   | 62.0            | -85.4                 | -104.7               | -74.8    |  |  |  |
| Natural Gas-fired                 | 2.07.1                                  |                 |                       |                      | , 4.0    |  |  |  |
| Conventional Combined Cycle       | 66.3                                    | 62.9            | -3.4                  | -13.7                | 0.0      |  |  |  |
| Advanced Combined Cycle           | 64.4                                    | 62.9            | -1.5                  | -11.2                | 0.8      |  |  |  |
| Advanced CC with CCS              | 91.3                                    | 62.9            | -28.4                 | -34.6                | -23.7    |  |  |  |
| Advanced Nuclear                  | 86.1                                    | 61.7            | -24.4                 | -33.0                | -13.0    |  |  |  |
| Geothermal                        | 44.5                                    | 60.9            | 16.4                  | 15.2                 | 18.1     |  |  |  |
| Biomass                           | 102.6                                   | 63.3            | -39.3                 | -57.2                | -28.5    |  |  |  |
| Non-Dispatchable Technologies     |                                         | 00.10           |                       |                      |          |  |  |  |
| Wind                              | 80.3                                    | 55.7            | -24.5                 | -37.6                | -6.3     |  |  |  |
| Wind - Offshore                   | 204.1                                   | 62.3            | -141.8                | -210.1               | -107.1   |  |  |  |
| Solar PV                          | 118.6                                   | 73.4            | -45.2                 | -96.5                | -21.2    |  |  |  |
| Solar Thermal                     | 223.6                                   | 73.3            | -150.3                | -279.3               | -83.4    |  |  |  |
| Hydro                             | 84.5                                    | 59.9            | -24.6                 | -54.7                | -1.0     |  |  |  |
| 2040                              |                                         |                 |                       |                      |          |  |  |  |
| Dispatchable Technologies         |                                         |                 |                       |                      |          |  |  |  |
| Conventional Coal                 | 87.0                                    | 76.4            | -10.7                 | -26.3                | -5,3     |  |  |  |
| IGCC                              | 99.7                                    | 76.4            | -23.3                 | -34.3                | -18.2    |  |  |  |
| IGCC with CCS                     | 121.2                                   | 77.0            | -44.3                 | -51.8                | -38.8    |  |  |  |
| Natural Gas-fired                 |                                         |                 |                       |                      |          |  |  |  |
| Conventional Combined Cycle       | 81.2                                    | 77.7            | -3.5                  | -7.7                 | -0.4     |  |  |  |
| Advanced Combined Cycle           | 77.8                                    | 77.7            | -0.1                  | -3.9                 | 2.0      |  |  |  |
| Advanced CC with CCS              | 103.0                                   | 77.7            | -25.3                 | -30.0                | -15.5    |  |  |  |
| Advanced Nuclear                  | 83.0                                    | 76.1            | -6.8                  | -10.1                | -0.2     |  |  |  |
| Geothermal                        | 63.5                                    | 78.7            | 47.0                  | 0.5                  | 75.2     |  |  |  |
| Biomass                           | 97.0                                    | 78.0            | -19.0                 | -38.4                | -9.4     |  |  |  |
| Non-Dispatchable Technologies     |                                         |                 |                       | 1                    |          |  |  |  |
| Wind                              | 73.1                                    | 70.8            | -2.3                  | -11.8                | 13.0     |  |  |  |
| Wind – Offshore                   | 170.3                                   | 77.4            | -92.9                 | -150.7               | -59.3    |  |  |  |
| Solar PV                          | 101.3                                   | 89.4            | -11.9                 | -58.4                | 10.6     |  |  |  |
| Solar Thermal                     | 188.7                                   | 96.5            | -92.2                 | -205.1               | -36.0    |  |  |  |
| lydro                             | 84.6                                    | 75.3            | -9.3                  | -27.8                | 11.0     |  |  |  |

9

#### Appendix: Tables for 2040

#### Table A5. Estimated levelized cost of electricity (LCOE) for new generation resources, 2040

|                               |                    | U.S. Average         | LCOE (201 | 2 \$/MWh) fo                  | r Plants Entering                       | Service in 2    | 040                                    |                            |
|-------------------------------|--------------------|----------------------|-----------|-------------------------------|-----------------------------------------|-----------------|----------------------------------------|----------------------------|
|                               | Capacity<br>Factor | Levelized<br>Capital | Fixed     | Variable<br>O&M<br>(including | Transmission                            | Total<br>Svstem |                                        | Total<br>LCOE<br>including |
| Plant Type                    | (%)                | Cost                 | 0&M       | fuel)                         | Investment                              | LCOE            | Subsidy <sup>1</sup>                   | Subsidy                    |
| Dispatchable Technologies     | ***********        |                      |           |                               | *************************************** |                 | ****                                   |                            |
| Conventional Coal             | 85                 | 52.0                 | 4.2       | 29.7                          | 1.1                                     | 87.0            |                                        |                            |
| Integrated Coal-Gasification  |                    |                      |           |                               |                                         |                 | ······································ |                            |
| Combined Cycle (IGCC)         | 85                 | 62.8                 | 6.9       | 28.9                          | 1.1                                     | 99.7            |                                        |                            |
| IGCC with CCS                 | 85                 | 77.2                 | 9.8       | 33.1                          | 1.2                                     | 121.2           |                                        |                            |
| Natural Gas-fired             |                    |                      |           |                               |                                         |                 |                                        |                            |
| Conventional Combined Cycle   | 87                 | 12.5                 | 1.7       | 65.8                          | 1.2                                     | 81.2            |                                        |                            |
| Advanced Combined Cycle       | 87                 | 13.0                 | 2.0       | 61.7                          | 1.2                                     | 77.8            |                                        |                            |
| Advanced CC with CCS          | 87                 | 23.4                 | 4.2       | 74.3                          | 1.2                                     | 103.0           |                                        | ,,,,,,                     |
| Conventional Combustion       |                    | *****                |           | ****                          |                                         |                 |                                        |                            |
| Turbine                       | 30                 | 35.2                 | 2.8       | 107.1                         | 3.4                                     | 148.5           |                                        |                            |
| Advanced Combustion Turbine   | 30                 | 21.8                 | 2.7       | 87.9                          | 3.4                                     | 115.8           |                                        |                            |
| Advanced Nuclear              | 90                 | 56.7                 | 11.8      | 13.3                          | 1.1                                     | 83.0            |                                        |                            |
| Geothermal                    | 94                 | 43.6                 | 22.9      | 0.0                           | 1.4                                     | 67.8            | -4.4                                   | 63.5                       |
| Biomass                       | 83                 | 39.8                 | 14.5      | 41.4                          | . 1.2                                   | 97.0            |                                        |                            |
| Non-Dispatchable Technologies |                    |                      |           |                               |                                         |                 |                                        |                            |
| Wind                          | 34                 | 56.6                 | 13.3      | 0.0                           | 3.2                                     | 73.1            |                                        |                            |
| Wind – Offshore               | 37                 | 141.7                | 22.8      | 0.0                           | 5.7                                     | 170.3           |                                        |                            |
| Solar PV <sup>2</sup>         | 25                 | 95.3                 | 11.4      | 0.0                           | 4.0                                     | 110.8           | -9.5                                   | 101.3                      |
| Solar Thermal                 | 20                 | 156.2                | 42.1      | 0.0                           | <b>5.9</b> -                            | 204.3           | -15.6                                  | 188.7                      |
| Hydroelectric <sup>3</sup>    | 51                 | 71.2                 | 4.5       | 7.0                           | 2.1                                     | 84.6            |                                        |                            |

<sup>1</sup>The subsidy component is based on targeted tax credits such as the production or investment tax credit available for some technologies. It only reflects subsidies available in 2040, which includes a permanent 10% investment tax credit for geothermal and solar technologies, based on the Energy Policy Act of 1992. EIA models tax credit expiration as in current laws and regulations: new solar thermal and PV plants are eligible to receive a 30% investment tax credit on capital expenditures if placed in service before the end of 2016, and 10% thereafter. New wind, geothermal, biomass, hydroelectric, and landfill gas plants are eligible to receive either: (1) a \$21.5/MWh (\$10.7/MWh for technologies other than wind, geothermal and closed-loop biomass) inflation-adjusted production tax credit over the plant's first ten years of service or (2) a 30% investment tax credit, if they are under construction before the end of 2013. <sup>2</sup>Costs are expressed in terms of net AC power available to the grid for the installed capacity.

<sup>3</sup>As modeled, hydroelectric is assumed to have seasonal storage so that it can be dispatched within a season, but overall operation is limited by resources available by site and season.

Source: U.S. Energy Information Administration, Annual Energy Outlook 2014 Early Release, December 2013, DOE/EIA-0383ER(2014).

|                                    | Range for Total System LCOE<br>(2012 \$/MWh) |         |                                                          | Range for Total LCOE with Subsidies <sup>2</sup><br>(2012 \$/MWh) |                                         |          |
|------------------------------------|----------------------------------------------|---------|----------------------------------------------------------|-------------------------------------------------------------------|-----------------------------------------|----------|
| Plant Type                         | Minimum                                      | Average | Maximum                                                  | Minimum                                                           | Average                                 | Maximum  |
| Dispatchable Technologies          |                                              |         | 1414144 (Jans Handle or cannon car cannon and cannon car |                                                                   |                                         |          |
| Conventional Coal                  | 78.9                                         | 87.0    | 106.7                                                    |                                                                   |                                         |          |
| IGCC                               | 90.8                                         | 99.7    | 114.7                                                    |                                                                   |                                         | <b>.</b> |
| IGCC with CCS                      | 113.0                                        | 121.2   | 135.7                                                    |                                                                   |                                         |          |
| Natural Gas-fired                  |                                              |         |                                                          |                                                                   |                                         |          |
| Conventional Combined Cycle        | 75.8                                         | 81.2    | 94.0                                                     |                                                                   |                                         |          |
| Advanced Combined Cycle            | 73.4                                         | 77.8    | 89.4                                                     |                                                                   |                                         |          |
| Advanced CC with CCS               | 97.8                                         | 103.0   | 114.8                                                    |                                                                   |                                         |          |
| Conventional Combustion<br>Turbine | 118.8                                        | 148.5   | 172.3                                                    |                                                                   |                                         |          |
| Advanced Combustion Turbine        | 108.9                                        | 115.8   | 132.3                                                    |                                                                   |                                         |          |
| Advanced Nuclear                   | 80.2                                         | 83.0    | 87.6                                                     |                                                                   |                                         |          |
| Geothermal                         | 54.4                                         | 67.8    | 81.3                                                     | 50.7                                                              | 63.5                                    | 76.3     |
| Biomass                            | 85.3                                         | 97.0    | 118.8                                                    | · · ·                                                             |                                         |          |
| Non-Dispatchable Technologies      |                                              |         |                                                          |                                                                   | *** (********************************** |          |
| Wind                               | 63.4                                         | 73.1    | 82.9                                                     |                                                                   |                                         |          |
| Wind – Offshore                    | 140.9                                        | 170.3   | 225.3                                                    |                                                                   |                                         |          |
| Solar PV <sup>2</sup>              | 86.5                                         | 110.8   | 170.2                                                    | 79.2                                                              | 101.3                                   | 155.0    |
| Solar Thermal                      | 148.6                                        | 204.3   | 325.6                                                    | 137.2                                                             | 188.7                                   | 300.5    |
| Hydroelectric <sup>3</sup>         | 63.6                                         | 84.6    | 122.4                                                    |                                                                   |                                         |          |

#### Table A6. Regional variation in levelized cost of electricity (LCOE) for new generation resources, 2040

<sup>1</sup>Levelized cost with subsidies reflects subsidies available in 2040, which includes a permanent 10% investment tax credit for geothermal and solar technologies, based on the Energy Policy Act of 1992.

<sup>2</sup>Costs are expressed in terms of net AC power available to the grid for the installed capacity.

<sup>3</sup>As modeled, hydroelectric is assumed to have seasonal storage so that it can be dispatched within a season, but overall operation is limited by resources available by site and season.

Note: The levelized costs for non-dispatchable technologies are calculated based on the capacity factor for the marginal site modeled in each region, which can vary significantly by region. The capacity factor ranges for these technologies are as follows: Wind – 32% to 41%, Wind Offshore – 33% to 42%, Solar PV- 22% to 32%, Solar Thermal – 11% to 26%, and Hydroelectric – 35% to 65%. The levelized costs are also affected by regional variations in construction labor rates and capital costs as well as resource availability.

Source: U.S. Energy Information Administration, Annual Energy Outlook 2014 Early Release, December 2013, DOE/EIA-0383ER(2014).

 Table A7: Regional variation in levelized avoided costs of electricity (LACE) for new generation resources, 2040

|                                    | Range for LACE (2012 \$/MWh) |         |         |  |  |
|------------------------------------|------------------------------|---------|---------|--|--|
| Plant Type                         | Minimum                      | Average | Maximum |  |  |
| Dispatchable Technologies          |                              |         |         |  |  |
| Coal-fired plant types without CCS | 72.3                         | 76.4    | 80.7    |  |  |
| IGCC with CCS <sup>1</sup>         | 72.3                         | 77.0    | 88.6    |  |  |
| Natural Gas-fired Combined Cycle   | 72.2                         | 77.7    | 88.4    |  |  |
| Advanced Nuclear                   | 72.2                         | 76.1    | 80.6    |  |  |
| Geothermal                         | 75.0                         | 78.7    | 88.0    |  |  |
| Biomass                            | 72.3                         | 78.0    | 88.7    |  |  |
| Non-Dispatchable Technologies      |                              |         |         |  |  |
| Wind                               | 65.8                         | 70.8    | 84.1    |  |  |
| Wind – Offshore                    | 71.9                         | 77.4    | 88.1    |  |  |
| Solar PV                           | 83.2                         | 89.4    | 96.5    |  |  |
| Solar Thermal                      | 87.7                         | 96.5    | 104.4   |  |  |
| Hydroelectric                      | 71.0                         | 75.3    | 88.0    |  |  |

<sup>1</sup>Coal without CCS cannot be built in California, therefore the average LACE for coal technologies without CCS is computed over fewer regions than the LACE for IGCC with CCS. Otherwise, the LACE for any given region is the same across coal technologies, with or without CCS.

# **BEFORE THE PUBLIC UTILITIES COMMISSION OF THE STATE OF SOUTH DAKOTA**

In the Matter of the Application of Black Hills Power, Inc. for Authority to Increase its Electric Rates Docket No. EL14-026

EXHIBIT\_(SJB-3)

OF

**STEPHEN J. BARON** 

# ON BEHALF OF THE BLACK HILLS INDUSTRIAL INTERVENORS

# J. KENNEDY AND ASSOCIATES, INC. ROSWELL, GEORGIA

December 2014

# ELECTRIC UTILITY COST ALLOCATION MANUAL



# NATIONAL ASSOCIATION OF REGULATORY UTILITY COMMISSIONERS

January, 1992

# PREFACE

This project was jointly assigned to the NARUC Staff Subcommittees on Electricity and Economics in February, 1985. Jack Doran, at the California PUC had led a task force in 1969 that wrote the original Cost Allocation Manual; the famous "Green Book". I was asked to put together a task force to revise it and include a Marginal Cost section.

I knew little about the subject and was not sure what I was getting into so I asked Jack how he had gone about drafting the first book. "Oh" he said, "There wasn't much to it. We each wrote a chapter and then exchanged them and rewrote them." What Jack did not tell me was that like most NARUC projects, the work was done after five o'clock and on weekends because the regular work always takes precedence. It is a good thing we did not realize how big a task we were tackling or we might never have started.

There was great interest in the project so when I asked for volunteers, I got plenty. We split into two working groups; embedded cost and marginal cost. Joe Jenkins from the Florida PSC headed up the Embedded Cost Working Group and Sarah Voll from the New Hampshire PUC took the Marginal Cost Working Group. We followed Jack's suggestions but, right from the beginning, we realized that once the chapters were technically correct, we would need a single editor to cast them all "into one hand" as Joe Jenkins put it. Steven Mintz from the Department of Energy volunteered for this task and has devoted tremendous effort to polishing the book into the final product you hold in your hands. Victoria Jow at the California PUC took Steven's final draft and desktop published the entire document using Ventura Publisher.

We set the following objectives for the manual:

- It should be simple enough to be used as a primer on the subject for new employees yet offer enough substance for experienced witnesses.
- It must be comprehensive yet fit in one volume.
- The writing style should be non-judgmental; not advocating any one particular method but trying to include all currently used methods with pros and cons.

It is with extreme gratitude that I acknowledge the energy and dedication contributed by the following task force members over the last five years.

Steven Mintz, Department of Energy, Editor; Joe Jenkins, Florida PSC, Leader, Embedded Cost Working Group; Sarah Voll, New Hampshire PUC, Leader, Marginal Cost Working Group; Victoria Jow, California PUC; John A. Anderson, ELCON; Jess Galura, Sacramento MUD; Chris Danforth, California PUC; Alfred Escamilla, Southern California Edison; Byron Harris, West Virginia CAD; Steve Houle, Texas Utility Electric Co.; Kevin Kelly, formally NRRI; Larry Klapow California PUC; Jim Ketter PE, Missouri PSC; Ed Lucero, Price Waterhouse; J. Robert Malko, Utah State University; George McCluskey, New Hampshire PUC; Marge Meeter, Florida PSC; Gordon Murdock, The FERC; Dennis Nightingale, North Carolina UC; John Orecchio, The FERC; Carl Silsbee, Southern California Edison; Ben Turner, North Carolina UC; Dr. George Parkins, Colorado PUC; Warren Wendling, Colorado PUC; Schef Wright, formally Florida PSC; IN MEMORIAL Bob Kennedy Jr., Arkansas PSC.

Julian Ajello California PUC

# **CHAPTER 6**

# CLASSIFICATION AND ALLOCATION OF DISTRIBUTION PLANT

**D**istribution plant equipment reduces high-voltage energy from the transmission system to lower voltages, delivers it to the customer and monitors the amounts of energy used by the customer.

Distribution facilities provide service at two voltage levels: primary and secondary. Primary voltages exist between the substation power transformer and smaller line transformers at the customer's points of service. These voltages vary from system to system and usually range between 480 volts to 35 KV. In the last few years, advances in equipment and cable technology have permitted the use of higher primary distribution voltages. Primary voltages are reduced to more usable secondary voltages by smaller line transformers installed at customer locations along the primary distribution circuit. However, some large industrial customers may choose to install their own line transformers and take service at primary voltages because of their large electrical requirements.

In some cases, the utility may choose to install a transformer for the exclusive use of a single commercial or industrial customer. On the other hand, in service areas with high customer density, such as housing tracts, a line transformer will be installed to serve many customers. In this case, secondary voltage lines run from pole-to-pole or from handhole-to-handhole, and each customer is served by a drop tapped off the secondary line leading directly to the customer's premise.

# I. COST ACCOUNTING FOR DISTRIBUTION PLANT AND EXPENSES

The Federal Energy Regulatory Commission (FERC) Uniform System of Accounts requires separate accounts for distribution investment and expenses. Distribution plant accounts are summarized and classified in Table 6-1. Distribution expense accounts are summarized and classified in Table 6-2. Some utilities may choose to establish subaccounts for more detailed cost reporting.

# TABLE 6-1

# $\textbf{CLASSIFICATION OF DISTRIBUTION PLANT}^1$

| FERC Uniform<br>System of<br>Accounts No. | Description                                   | Demand<br>Related | Customer<br>Related |
|-------------------------------------------|-----------------------------------------------|-------------------|---------------------|
|                                           | Distribution Plant <sup>2</sup>               |                   |                     |
| 360                                       | Land & Land Rights                            | X                 | x                   |
| 361                                       | Structures & Improvements                     | X                 | x                   |
| 362                                       | Station Equipment                             | X                 | -                   |
| 363                                       | Storage Battery Equipment                     | X                 | -                   |
| 364                                       | Poles, Towers, & Fixtures                     | x                 | x                   |
| 365                                       | Overhead Conductors & Devices                 | X                 | x                   |
| 366                                       | Underground Conduit                           | X                 | x                   |
| 367                                       | Underground Conductors & Devices              | x                 | X                   |
| 368                                       | Line Transformers                             | X                 | x                   |
| 369                                       | Services                                      |                   | x                   |
| 370                                       | Meters                                        | +                 | x                   |
| 371                                       | Installations on Customer Premises            |                   | X                   |
| 372                                       | Leased Property on Customer Premises          | · <b></b>         | X                   |
| 373                                       | Street Lighting & Signal Systems <sup>1</sup> |                   | -                   |

<sup>1</sup>Assignment or "exclusive use" costs are assigned directly to the customer class or group which exclusively uses such facilities. The remaining costs are then classified to the respective cost components.

<sup>2</sup>The amounts between classification may vary considerably. A study of the minimum intercept method or other appropriate methods should be made to determine the relationships between the demand and customer components.

÷--

# TABLE 6-2

# CLASSIFICATION OF DISTRIBUTION EXPENSES<sup>1</sup>

| FERC Uniform<br>System of<br>Accounts No. | Description                                                 | Demand<br>Related | Customer<br>Related |  |
|-------------------------------------------|-------------------------------------------------------------|-------------------|---------------------|--|
|                                           | Operation <sup>2</sup>                                      |                   |                     |  |
| 580                                       | Operation Supervision & Engineering                         | X                 | X                   |  |
| 581                                       | Load Dispatching                                            | X                 | -                   |  |
| 582                                       | Station Expenses                                            | X                 |                     |  |
| 583                                       | Overhead Line Expenses                                      | X                 | x                   |  |
| 584                                       | Underground Line Expenses                                   | X                 | X                   |  |
| 585                                       | Street Lighting & Signal System Expenses <sup>1</sup>       |                   | =                   |  |
| 586                                       |                                                             |                   |                     |  |
| 587                                       | Customer Installation Expenses                              | •                 | X                   |  |
| 588                                       | Miscellaneous Distribution Expenses                         | x                 | X                   |  |
| 589                                       | Rents                                                       | X                 | X                   |  |
|                                           | Maintenance <sup>2</sup>                                    |                   |                     |  |
| 590                                       | Maintenance Supervision & Engineering                       | X                 | х                   |  |
| 591                                       | Maintenance of Structures                                   | x                 | X                   |  |
| 592                                       | Maintenance of Station Equipment                            | X                 | -                   |  |
| 593                                       | Maintenance of Overhead Lines                               | x                 | Х                   |  |
| 594                                       | Maintenance of Underground Lines                            | x                 | X                   |  |
| 595                                       |                                                             |                   | х                   |  |
| 596                                       | 596 Maint. of Street Lighting & Signal Systems <sup>1</sup> |                   | -                   |  |
| 597                                       |                                                             |                   |                     |  |
| 598                                       | Maint. of Miscellaneous Distribution Plants                 | x                 | x                   |  |

<sup>1</sup>Direct assignment or "exclusive use" costs are assigned directly to the customer class or group which exclusively uses such facilities. The remaining costs are then classified to the respective cost components.

<sup>2</sup>The amounts between classifications may vary considerably. A study of the minimum intercept method or other appropriate methods should be made to determine the relationships between the demand and customer components.

88\_

To ensure that costs are properly allocated, the analyst must first classify each account as demand-related, customer-related, or a combination of both. The classification depends upon the analyst's evaluation of how the costs in these accounts were incurred. In making this determination, supporting data may be more important than theoretical considerations.

Allocating costs to the appropriate groups in a cost study requires a special analysis of the nature of distribution plant and expenses. This will ensure that costs are assigned to the correct functional groups for classification and allocation. As indicated in Chapter 4, all costs of service can be identified as energy-related, demand-related, or customer-related. Because there is no energy component of distribution-related costs, we need consider only the demand and customer components.

To recognize voltage level and use of facilities in the functionalization of distribution costs, distribution line costs must be separated into overhead and underground, and primary and secondary voltage classifications. A typical functionalization and classification of distribution plant would appear as follows:

> Substations: Distribution:

Demand Overhead Primary Demand Customer

Overhead Secondary Demand Customer

Underground Primary Demand Customer

Underground Secondary Demand Customer

Line Transformers Demand Customer

Services:

Meters: Street Lighting: Customer Accounting: Sales: Overhead Demand Customer

Underground Demand Customer Customer Customer Customer Customer

89

From this breakdown it can be seen that each distribution account must be analyzed before it can be assigned to the appropriate functional category. Also, these accounts must be classified as demand-related, customer-related, or both. Some utilities assign distribution to customer-related expenses. Variations in the demands of various customer groups are used to develop the weighting factors for allocating costs to the appropriate group.

# II. DEMAND AND CUSTOMER CLASSIFICATIONS OF DISTRIBUTION PLANT ACCOUNTS

When the utility installs distribution plant to provide service to a customer and to meet the individual customer's peak demand requirements, the utility must classify distribution plant data separately into demand- and customer-related costs.

Classifying distribution plant as a demand cost assigns investment of that plant to a customer or group of customers based upon its contribution to some total peak load. The reason is that costs are incurred to serve area load, rather than a specific number of customers.

Distribution substations costs (which include Accounts 360 -Land and Land Rights, 361 - Structures and Improvements, and 362 -Station Equipment), are normally classified as demand-related. This classification is adopted because substations are normally built to serve a particular load and their size is not affected by the number of customers to be served.

Distribution plant Accounts 364 through 370 involve demand and customer costs. The customer component of distribution facilities is that portion of costs which varies with the number of customers. Thus, the number of poles, conductors, transformers, services, and meters are directly related to the number of customers on the utility's system. As shown in Table 6-1, each primary plant account can be separately classified into a demand and customer component. Two methods are used to determine the demand and customer components of distribution facilities. They are, the minimum-size-of-facilities method, and the minimum-intercept cost (zero-intercept or positive-intercept cost, as applicable) of facilities.

# A. The Minimum-Size Method

Classifying distribution plant with the minimum-size method assumes that a minimum size distribution system can be built to serve the minimum loading requirements of the customer. The minimum-size method involves determining the minimum size pole, conductor, cable, transformer, and service that is currently installed by the utility. Normally, the average book cost for each piece of equipment determines

the price of all installed units. Once determined for each primary plant account, the minimum size distribution system is classified as customer-related costs. The demand-related costs for each account are the difference between the total investment in the account and customer-related costs. Comparative studies between the minimum-size and other methods show that it generally produces a larger customer component than the zero-intercept method (to be discussed). The following describes the methodologies for determining the minimum size for distribution plant Accounts 364, 365, 366, 367, 368, and 369.

#### 1. Account 364 - Poles, Towers, and Fixtures

- Determine the average installed book cost of the minimum height pole currently being installed.
- Multiply the average book cost by the number of poles to find the customer component. Balance of plant account is the demand component.

### 2. Account 365 - Overhead Conductors and Devices

- Determine minimum size conductor currently being installed.
- O Multiply average installed book cost per mile of minimum size conductor by the number of circuit miles to determine the customer component. Balance of plant account is demand component. (Note: two conductors in minimum system.)
- 3. Accounts 366 and 367 Underground Conduits, Conductors, and Devices
  - Determine minimum size cable currently being installed.
  - O Multiply average installed book cost per mile of minimum size cable by the circuit miles to determine the customer component. Balance of plant Account 367 is demand component. (Note: one cable with ground sheath is minimum system.) Account 366 conduit is assigned, basedon ratio of cable account.
  - Multiply average installed book cost of minimum size transformer by number of transformers in plant account to determine the customer component. Balance of plant account is demand component.

#### 4. Account 368 - Line Transformers

• Determine minimum size transformer currently being installed.

• Multiply average installed book cost of minimum size transformer by number of transformers in plant account to determine the customer component.

## 5. Account 369 - Services

- Determine minimum size and average length of services currently being installed.
- Estimate cost of minimum size service and multiply by number of services to get customer component.
- If overhead and underground services are booked separately, they should be handled separately. Most companies do not book service by size. This requires an engineering estimate of the cost of the minimum size, average length service. The resultant estimate is usually higher than the average book cost. In addition, the estimate should be adjusted for the average age of service, using a trend factor.

# B. <u>The Minimum-Intercept Method</u>

The minimum-intercept method seeks to identify that portion of plant related to a hypothetical no-load or zero-intercept situation. This requires considerably more data and calculation than the minimum-size method. In most instances, it is more accurate, although the differences may be relatively small. The technique is to relate installed cost to current carrying capacity or demand rating, create a curve for various sizes of the equipment involved, using regression techniques, and extend the curve to a no-load intercept. The cost related to the zero-intercept is the customer component. The following describes the methodologies for determining the minimum intercept for distribution-plant Accounts 364, 365, 366, 367, and 368.

1. Account 364 - Poles, Towers, and Fixtures

- Determine the number, investment, and average installed book cost of distribution poles by height and class of pole. (Exclude stubs for guying.)
- Determine minimum intercept of pole cost by creating a regression equation, relating classes and heights of poles, and using the Class 7 cost intercept for each pole of equal height weighted by the number of poles in each height category.
- Multiply minimum intercept cost by total number of distribution poles to get customer component.

- Balance of pole investment is assigned to demand component.
- Total account dollars are assigned based on ratio of pole investment. (Transformer platforms in Account 364 are all demand-related. They should be removed before determining the account ratio of customerand demand-related costs, and then they should be added to the demand portion of Account 364.)

## 2. Account 365 - Overhead Conductors and Devices

- If accounts are divided between primary and secondary voltages, develop a customer component separately for each. The total investment is assigned to primary and secondary; then the customer component is developed for each. Since conductors generally are of many types and sizes, select those sizes and types which represent the bulk of the investment in this account, if appropriate.
- When developing the customer component, consider only the investment in conductors, and not such devices as circuit breakers, insulators, switches, etc. The investment in these devices will be assigned later between the customer and demand component, based on the conductor assignment.
  - Determine the feet, investment, and average installed book cost per foot for distribution conductors by size and type.
  - Determine minimum intercept of conductor cost per foot using cost per foot by size and type of conductor weighted by feet or investment in each category, and developing a cost for the utility's minimum size conductor.
  - Multiply minimum intercept cost by the total number of circuit feet times 2. (Note that circuit feet, not conductor feet, are used to get customer component.)
  - Balance of conductor investment is assigned to demand.
  - Total primary or secondary dollars in the account, including devices, are assigned to customer and demand components based on conductor investment ratio.
- 3. Accounts 366 and 367 Underground Conduits, Conductors, and Devices
  - The customer demand component ratio is developed for conductors and applied to conduits. Underground conductors are generally booked by type and size of conductor for both one-conductor (I/c) cable and three-conductor (3/c) cables. If conductors are booked by voltage, as between primary and secondary, a customer component is

developed for each. If network and URD investments are segregated, a customer component must be developed for each.

• The conductor sizes and types for the customer component derivation are restricted to I/c cable. Since there are generally many types and sizes of I/c cable, select those sizes and types which represent the bulk of the investment, when appropriate.

- Determine the feet, investment, and average installed book cost per foot for I/c cables by size and type of cable.
- Determine minimum intercept of cable cost per foot using cost per foot by size and type of cable weighted by feet of investment in each category.
- Multiply minimum intercept cost by the total number of circuit feet (I/c cable with sheath is considered a circuit) to get customer component.
- Balance of cable investment is assigned to demand.
- Total dollars in Accounts 366 and 367 are assigned to customer and demand components based on conductor investment ratio.

#### 4. Account 368 - Line Transformers

O The line transformer account covers all sizes and voltages for singleand three-phase transformers. Only single-phase sizes up to and including 50 KVA should be used in developing the customer components. Where more than one primary distribution voltage is used, it may be appropriate to use the transformer price from one or two predominant, selected voltages.

- Determine the number, investment, and average installed book cost per transformer by size and type (voltage).
- Determine zero intercept of transformer cost using cost per transformer by type, weighted by number for each category.
- Multiply zero intercept cost by total number of line transformers to get customer component.
- Balance of transformer investment is assigned to demand component.
- Total dollars in the account are assigned to customer and demand components based on transformer investment ratio from customer and demand components.

94

# C. The Minimum-System vs. Minimum-Intercept Approach

When selecting a method to classify distribution costs into demand and customer costs, the analyst must consider several factors. The minimum-intercept method can sometimes produce statistically unreliable results. The extension of the regression equation beyond the boundaries of the data normally will intercept the Y axis at a positive value. In some cases, because of incorrect accounting data or some other abnormality in the data, the regression equation will intercept the Y axis at a negative value. When this happens, a review of the accounting data must be made, and suspect data deleted.

The results of the minimum-size method can be influenced by several factors. The analyst must determine the minimum size for each piece of equipment: "Should the minimum size be based upon the minimum size equipment currently installed, historically installed, or the minimum size necessary to meet safety requirements?" The manner in which the minimum size equipment is selected will directly affect the percentage of costs that are classified as demand and customer costs.

Cost analysts disagree on how much of the demand costs should be allocated to customers when the minimum-size distribution method is used to classify distribution plant. When using this distribution method, the analyst must be aware that the minimum-size distribution equipment has a certain load-carrying capability, which can be viewed as a demand-related cost.

When allocating distribution costs determined by the minimum-size method, some cost analysts will argue that some customer classes can receive a disproportionate share of demand costs. Their rationale is that customers are allocated a share of distribution costs classified as demand-related. Then those customers receive a second layer of demand costs that have been mislabeled customer costs because the minimum-size method was used to classify those costs.

Advocates of the minimum-intercept method contend that this problem does not exist when using their method. The reason is that the customer cost derived from the minimum-intercept method is based upon the zero-load intercept of the cost curve. Thus, the customer cost of a particular piece of equipment has no demand cost in it whatsoever.

## D. Other Accounts

I he preceding discussion of the merits of minimum-system versus the zero-intercept classification schemes will affect the major distribution-plant accounts for FERC Accounts 364 through 368. Several other plant accounts remain to be classified. While the classification of the following distribution-plant accounts is an important step.

it is not as controversial as the classification of substations, poles, transformers, and conductors.

#### 1. Account 369 - Services

This account is generally classified as customer-related. Classification of services may also include a demand component to reflect the fact that larger customers will require more costly service drops.

#### 2. Account 370 - Meters

Meters are generally classified on a customer basis. However, they may also be classified using a demand component to show that larger-usage customers require more expensive metering equipment.

#### 3. Account 371 - Installations on Customer Premises

This account is generally classified as customer-related and is often directly assigned. The kind of equipment in this account often influences how this account is treated. The equipment in this account is owned by the utility, but is located on the customer's side of the meter. A utility will often include area lighting equipment in this account and assign the investment directly to the lighting customer class.

#### 4. Account 373 - Street Lighting and Signal Systems

This account is generally customer-related and is directly assigned to the street customer class.

# III. ALLOCATION OF THE DEMAND AND CUSTOMER COMPONENTS OF DISTRIBUTION PLANT

After completing the classification of distribution plant accounts, the next major step in the cost of service process is to allocate the classified costs. Generally, determining the distribution-demand allocator will require more data and analysis than determining the customer allocators. Following are procedures used to calculate the demand and customer allocation factors.

# A. Development of the Distribution Demand Allocators

I here are several factors to consider when allocating the demand components of distribution plant. Distribution facilities, from a design and operational perspective, are installed primarily to meet localized area loads. Distribution substations are designed to meet the maximum load from the distribution feeders emanating from the substation.

Similarly, when designing primary and secondary distribution feeders, the distribution engineer ensures that sufficient conductor and transformer capacity is available to meet the customer's loads at the primary- and secondary-distribution service levels. Local area loads are the major factors in sizing distribution equipment. Consequently, customer-class noncoincident demands (NCPs) and individual customer maximum demands are the load characteristics that are normally used to allocate the demand component of distribution facilities. The customer-class load characteristic used to allocate the demand component of distribution plant (whether customer class NCPs or the summation of individual customer maximum demands) depends on the load diversity that is present at the equipment to be allocated. The load diversity at distribution substations and primary feeders is usually high. For this reason, customer-class peaks are normally used for the allocation of these facilities. The facilities nearer the customer, such as secondary feeders and line transformers, have much lower load diversity. They are normally allocated according to the individual customer's maximum demands. Although these are the methods normally used for the allocation of distribution demand costs, some exceptions exist.

The load diversity differences for some utilities at the transmission and distribution substation levels may not be large. Consequently, some large distribution substations may be allocated using the same method as the transmission system. Before the cost analyst selects a method to allocate the different levels of distribution facilities, he must know the design and operational characteristics of the distribution system, as well as the demand losses at each level of the distribution system.

As previously indicated, the distribution system consists of several levels. The first level starts at the distribution substation, and the last level ends at the customer's meters. Power losses occur at each level and should be included in the demand allocators. Power losses are incorporated into the demand allocators by showing different demand loss factors at each predominant voltage level. The demand loss factor used to develop the primary-distribution demand allocator will be slightly larger than the demand loss factor used to develop the secondary demand allocator. When developing the distribution demand allocator, be aware that some customers take service at different voltage levels.

Cost analysts developing the allocator for distribution of substations or primary demand facilities must ensure that only the loads of those customers who benefit from these facilities are included in the allocator. For example, the loads of customers who take service at transmission level should not be reflected in the distribution substation or primary demand allocator. Similarly, when analysts develop the allocator for secondary demand facilities, the loads for customers served by the primary distribution system should not be included.

Utilities can gather load data to develop demand allocators, either through their load research program or their transformer load management program. In most cases, the load research program gathers data from meters on the customers' premises. A more complex procedure is to use the transformer load management program. This procedure involves simulating load profiles for the various classes of equipment on the distribution system. This provides information on the nature of the load diversity between the customer and the substation, and its effect on equipment cost. Determining demand allocators through simulation provides a first-order load approximation, which represents the peak load for each type of distribution equipment.

The concept of peak load or "equipment peak" for each piece of distribution equipment can be understood by considering line transformers. If a given transformer's loading for each hour of a month can be calculated, a transformer load curve can be developed. By knowing the types of customers connected to each load management transformer, a simulated transformer load profile curve can be developed for the system. This can provide each customer's class demand at the time of the transformer's peak load. Similarly, an equipment peak can be defined for equipment at each level of the distribution system. Although the equipment peak obtained by this method may not be ideal, it will closely approximate the actual peak. Thus, this method should reflect the different load diversities among customers at each level of the distribution system. An illustration of the simulation procedure is provided in Appendix 6-A.

# B. Allocation of Customer-Related Costs

When the demand-customer classification has been completed, most of the assumptions will have been made that affect the results of the completed cost of service study.

The allocation of the customer-related portion of the various plant accounts is based on the number of customers by classes of service, with appropriate weightings and adjustments. Weighting factors reflect differences in characteristics of customers within a given class, or between classes. Within a class, for instance, we may want to give more weighting of a certain plant account to rural customers, as compared to urban customers. The metering account is a clear example of an account requiring weighting for differences between classes. A metering arrangement for a single industrial customer may be 20 to 80 times as costly as the metering for one residential customer.

While customer allocation factors should be weighted to offset differences among various types of customers, highly refined weighting factors or detailed and time consuming studies may not seem worthwhile. Such factors applied in this final step of the cost study may affect the final results much less than such basic assumptions as the demand-allocation method or the technique for determining demand-customer classifications.

Expense allocations generally are based on the comparable plant allocator of the various classes. For instance, maintenance of overhead lines is generally assumed to be directly related to plant in overhead conductors and devices. Exceptions to this rule will occur in some accounts. Meter expenses, for example, are often a function of

maintenance and testing schedules related more to revenue per customer than to the cost of the meters themselves.

# **BEFORE THE PUBLIC UTILITIES COMMISSION OF THE STATE OF SOUTH DAKOTA**

In the Matter of the Application of Black Hills Power, Inc. for Authority to Increase its Electric Rates Docket No. EL14-026

EXHIBIT\_(SJB-4)

OF

**STEPHEN J. BARON** 

# ON BEHALF OF THE BLACK HILLS INDUSTRIAL INTERVENORS

# J. KENNEDY AND ASSOCIATES, INC. ROSWELL, GEORGIA

December 2014

#### BLACK HILLS POWER, INC. SD PUC DOCKET: EL-14-026 RATE CASE

REQUEST DATE:June 30, 2014RESPONSE DATE:July 28, 2014REQUESTING PARTY:Black Hills Industrial Intervenors

**<u>BHII Request No. 36</u>**: Please provide all work papers (including all electronic work papers with formulas intact) supporting the development of the factors used to classify distribution accounts 364, 365, 366, and 367 between Primary and Secondary.

#### **Response to BHII Request No. 36**:

The factors used to classify distribution account 364, 365, 366 and 367 between Primary and Secondary were from a borrowed study from Black Hills Power's sister utility, Black Hills/Colorado Electric Utility Company, LP. The same factors used were previously used in the 2012 Black Hills Power rate case.

Black Hills Power was unable to locate all electronic work papers with formulas intact. Copies of the available work papers are attached as Attachment 36.

Attachments: 36 - Distribution Plant Account 364 367 Allocation Factors.pdf

BHP-BHII-000385

# **BEFORE THE PUBLIC UTILITIES COMMISSION OF THE STATE OF SOUTH DAKOTA**

In the Matter of the Application of Black Hills Power, Inc. for Authority to Increase its Electric Rates Docket No. EL14-026

EXHIBIT\_(SJB-5)

OF

**STEPHEN J. BARON** 

## ON BEHALF OF THE BLACK HILLS INDUSTRIAL INTERVENORS

# J. KENNEDY AND ASSOCIATES, INC. ROSWELL, GEORGIA

December 2014

# BLACK HILLS INDUSTRIAL INTERVENORS CORRECTED PRO FORMA CLASS COST OF SERVICE STUDY FOR THE TEST YEAR ENDED SEPTEMBER 30, 2013

| LINE<br>NO. | DESCRIPTION                                        | ALLOCATION<br>BASIS | TOTAL<br>SOUTH<br>DAKOTA | RESIDENTIAL<br>SERVICE | GENERAL     | GS LARGE/<br>INDUSTRIAL<br>CONTRACT | LIGHTING<br>SERVICE | WATER PUMP |
|-------------|----------------------------------------------------|---------------------|--------------------------|------------------------|-------------|-------------------------------------|---------------------|------------|
|             | (a)                                                | (b)                 | (c)                      | (d)                    | (e)         | (h)                                 | (i)                 | 0          |
| 1           | SUMMARY AT PRESENT RATES                           |                     |                          |                        |             |                                     |                     |            |
| 2           |                                                    |                     |                          |                        |             |                                     |                     |            |
| 3           | DEVELOPMENT OF RETURN                              |                     |                          |                        |             |                                     |                     |            |
| 4           |                                                    |                     |                          |                        |             |                                     |                     |            |
| 5           |                                                    | Sched O-1 Reference |                          |                        |             |                                     |                     |            |
| 6           | Base Sales of Electricity                          |                     | 124,169,353              | 49,009,989             | 41,997,396  | 29,828,727                          | 1,702,416           | 1,630,824  |
|             | Contract Revenues                                  |                     | 19,288,845               | 7,350,394              | 5,857,566   | 5,751,361                           | 106,151             | 223,374    |
| 8           | Other Operating Revenue<br>TOTAL OPERATING REVENUE |                     | 5,800,779                | 3,478,253              | 1,209,889   | 928,155                             | 131,091             | 53,392     |
| 9<br>10     |                                                    |                     | 149,258,977              | 59,838,635             | 49,064,851  | 36,508,243                          | 1,939,658           | 1,907,590  |
| 11          |                                                    |                     |                          |                        |             |                                     |                     |            |
| 12          |                                                    |                     | 67,628,526               | 32,165,655             | 18,601,295  | 15,552,318                          | 587,592             | 721,667    |
| 13          | •                                                  |                     | 26,137,533               | 11,979,102             | 7,295,360   | 6,275,606                           | 291,762             | 295,703    |
| 14          |                                                    |                     | 4,031,631                | 1,980,627              | 1,085,427   | 888,252                             | 35,436              | 41,889     |
| 15          |                                                    |                     | 4,199,038                | 1,923,263              | 1,172,479   | 1,007,551                           | 47,845              | 47,902     |
| 16          |                                                    |                     | 0                        | 0                      | 0           | 0                                   | 0                   | 0          |
| 17          | Federal Income Tax                                 |                     | 10,753,377               | 1,415,317              | 5,723,640   | 3,113,140                           | 285.057             | 216.223    |
| 18          | TOTAL OPERATING EXPENSES                           |                     | 112,750,105              | 49,463,963             | 33,878,201  | 26,836,866                          | 1,247,691           | 1,323,385  |
| 19          | )                                                  |                     |                          |                        | •           |                                     | ···                 |            |
| 20          | OPERATING INCOME (RETURN)                          |                     | 36,508,872               | 10,374,672             | 15,186,649  | 9,671,377                           | 691,968             | 584,205    |
| 21          | i i i i i i i i i i i i i i i i i i i              |                     |                          |                        |             |                                     |                     |            |
| 22          |                                                    |                     |                          |                        |             |                                     |                     |            |
| 23          |                                                    |                     |                          |                        |             |                                     |                     |            |
| 24          |                                                    |                     | 901,099,320              | 412,869,069            | 251,496,019 | 216,167,196                         | 10,294,636          | 10,272,399 |
| 25          |                                                    |                     | 251,710,991              | 117,394,415            | 69,368,736  | 58,651,647                          | 3,415,356           | 2,880,837  |
| 26          |                                                    |                     | 2,835,303                | 1,080,448              | 861,014     | 845,403                             | 15,603              | 32,834     |
| 27          | 3 - +                                              |                     | 13,863,167               | 5,602,535              | 3,841,110   | 4,071,969                           | 155,094             | 192,459    |
| 28<br>29    |                                                    |                     | 117,714,228              | 54,469,729             | 32,969,748  | 27,521,751                          | 1,426,478           | 1,326,522  |
| 28          |                                                    |                     | 542,701,964              | 245,527,012            | 152,137,631 | 433 000 364                         | E 600 000           | 0.004.004  |
| 31          |                                                    |                     | 342,701,904              | 243,327,012            | 102,137,031 | 133,220,364                         | 5,592,293           | 6,224,664  |
| 32          |                                                    |                     |                          |                        |             |                                     |                     |            |
|             | RATE OF RETURN (PRESENT)                           |                     | 6.73%                    | 4.23%                  | 9,98%       | 7,26%                               | 12,37%              | 9,39%      |
| 34          |                                                    |                     | 0.7010                   | 1.0070                 | 0.0070      | 1,20,0                              | 12,0770             | 0,00 %     |
| 35          | INDEX RATE OF RETURN (PRESENT)                     |                     | 1.00                     | 0.63                   | 1.48        | 1.08                                | 1.84                | 1.40       |
| 36          |                                                    |                     |                          |                        |             |                                     |                     |            |
| 37          | 7                                                  |                     |                          |                        |             |                                     |                     |            |
| 38          | 3                                                  |                     |                          |                        |             |                                     |                     |            |

- 39 40
- 41 42 43

#### BLACK HILLS INDUSTRIAL INTERVENORS CORRECTED PRO FORMA CLASS COST OF SERVICE STUDY FOR THE TEST YEAR ENDED SEPTEMBER 30, 2013

| LINE     | DECODIDATION                            | ALLOCATION          | TOTAL<br>SOUTH | RESIDENTIAL | GENERAL     | GS LARGE/<br>INDUSTRIAL |            |               |
|----------|-----------------------------------------|---------------------|----------------|-------------|-------------|-------------------------|------------|---------------|
| NO.      | DESCRIPTION                             | BASIS               |                |             | SERVICE     | CONTRACT                | SERVICE    | IRRIGATION    |
| 44       | (a)                                     | (b)                 | (c)            | (d)         | (e)         | (h)                     | (i)        | 0             |
| 45       |                                         |                     |                |             |             |                         |            |               |
| 46       |                                         |                     |                |             |             |                         |            |               |
| 47       | EQUALIZED RETURN AT PROPOSED ROR        |                     |                |             |             |                         |            |               |
| 48       |                                         |                     |                |             |             |                         |            |               |
| 49       | DEVELOPMENT OF RETURN (EQUALIZED RATE   | LEVELS)             |                |             |             |                         |            |               |
| 50       |                                         |                     |                |             |             |                         |            |               |
|          | RATE BASE                               |                     | 542,701,964    | 245,527,012 | 152,137,631 | 133,220,364             | 5,592,293  | 6,224,664     |
| 52       |                                         |                     |                | + 104       |             | 6 Jos                   | 0 (04)     | <b>•</b> •••• |
| 53       | RATE OF RETURN                          |                     | 8.48%          | 8.48%       | 8.48%       | 8.48%                   | 8.48%      | 8.48%         |
| 54<br>55 | RETURN (RATE BASE * ROR)                |                     | 46.021.127     | 20,820,691  | 12,901,271  | 11,297,087              | 474,226    | 527,852       |
| 56       | RETORIN (RATE BASE ROR)                 |                     | 40,021,127     | 20,020,001  | 12,001,271  | 11,201,007              | 474,220    | 021,002       |
|          | LESS:                                   |                     |                |             |             |                         |            |               |
|          | OPERATING EXPENSES                      | Sched O-1 Reference |                |             |             |                         |            |               |
| 59       | Operation and Maintenance Expense       |                     | 67,628,526     | 32,165,655  | 18,601,295  | 15,552,318              | 587,592    | 721,667       |
| 60       | Depreciation Expense                    |                     | 26,137,533     | 11,979,102  | 7,295,360   | 6,275,606               | 291,762    | 295,703       |
| 61       | Amortization Expense                    |                     | 4,031,631      | 1,980,627   | 1,085,427   | 888,252                 | 35,436     | 41,889        |
| 62       | Taxes Other Than Income Taxes           |                     | 4,199,038      | 1,923,263   | 1,172,479   | 1,007,551               | 47,845     | 47,902        |
| 63       | State Income Tax                        | CALCULATED          | 0              | 0           | 0           | 0                       | 0          | 0             |
| 64       | Federal Income Tax                      | CALCULATED          | 15,875,361     | 7,040,096   | 4,493,052   | 3,988,522               | 167,811    | 185,879       |
| 65       | TOTAL OPERATING EXPENSES                |                     | 117,872,089    | 55,088,742  | 32,647,613  | 27,712,248              | 1,130,445  | 1,293,041     |
| 66<br>67 | EQUALS TOTAL COST OF SERVICE            |                     | 163,893,215    | 75,909,432  | 45,548,884  | 39,009,335              | 1,604,672  | 1,820,892     |
| 68<br>68 | EQUALS TOTAL COST OF SERVICE            |                     | 103,083,215    | 70,808,402  | -0,040,004  | 38,008,333              | 1,004,072  | 1,020,002     |
|          | LESS:                                   |                     |                |             |             |                         |            |               |
| 70       | OTHER OPERATING REVENUES                |                     | 25,089,624     | 10,828,647  | 7,067,454   | 6,679,516               | 237,242    | 276,765       |
| 71       |                                         |                     |                |             |             |                         |            |               |
| 72       | EQUALS:                                 |                     |                |             | ,           |                         |            |               |
| 73       |                                         | ROR                 | 138,803,591    | 65,080,786  | 38,481,430  | 32,329,819              | 1,367,430  | 1,544,127     |
| 74       |                                         |                     |                |             |             |                         |            |               |
| 75       |                                         | _                   |                |             |             |                         | (00 / 007) | (00.007)      |
| 76       |                                         | jE                  | 14,634,238     | 16,070,797  | (3,515,966) | 2,501,091               | (334,987)  | (86,697)      |
| 77<br>78 |                                         |                     | 124,169,353    | 49,009,989  | 41,997,396  | 29,828,727              | 1.702.416  | 1.630.824     |
| 70       |                                         |                     | 33,682,213     | 11,594,018  | 9,158,128   | 12,053,051              | 323,929    | 553.088       |
|          | 80 TOTAL CURRENT RETAIL REVENUES        |                     | 157,851,566    | 60,604,006  | 51,155,524  | 41,881,778              | 2,026,346  | 2,183,912     |
| 81       |                                         |                     |                |             |             | ,,                      | _,,010     |               |
|          | REVENUE INCREASE TO RETAIL REVENUES (%) | )                   | 9.27%          | 26.52%      | -6.87%      | 5.97%                   | -16,53%    | -3.97%        |
| 83       |                                         | -                   |                |             |             |                         |            |               |
| 84       |                                         |                     |                |             |             |                         |            |               |

ĩ

- 85 86
- 87

88 89

90 91

#### BLACK HILLS INDUSTRIAL INTERVENORS CORRECTED PRO FORMA CLASS COST OF SERVICE STUDY FOR THE TEST YEAR ENDED SEPTEMBER 30, 2013

| LINE       |                                               | ALLOCATION               | TOTAL<br>SOUTH  | RESIDENTIAL              | GENERAL        | GS LARGE/<br>INDUSTRIAL | LIGHTING             | WATER PUMP  |
|------------|-----------------------------------------------|--------------------------|-----------------|--------------------------|----------------|-------------------------|----------------------|-------------|
| NO.        | DESCRIPTION                                   | BASIS                    | DAKOTA          | SERVICE                  | SERVICE        | CONTRACT                | SERVICE              | IRRIGATION  |
|            | (a)                                           | (b)                      | (c)             | (d)                      | (e)            | (h)                     | (i)                  | ()          |
| 92         |                                               |                          |                 |                          |                |                         |                      |             |
| 93<br>94   | RETURN AT PROPOSED RATES                      |                          |                 |                          | ·              |                         |                      |             |
|            | DEVELOPMENT OF RETURN AT PROPOSED RATE LI     | EVELS                    |                 |                          |                |                         |                      |             |
| 96         | Bevelor Ment of Mershin Art from obes (offer  |                          |                 |                          |                |                         |                      |             |
| 97         | OPERATING REVENUE                             |                          |                 |                          |                |                         |                      |             |
| 98         | Sales of Electricity                          |                          | 138,803,636     | 55,546,653               | 45,733,753     | 33,896,966              | 1,851,073            | 1,775,191   |
| 99         | Contract Revenues                             |                          | 19,288,845      | 7,350,394                | 5,857,566      | 5,751,361               | 106,151              | 223,374     |
| 100        | Other Operating Revenue                       |                          | 5,800,779       | 3,478,253                | 1,209,889      | 928,155                 | 131,091              | 53,392      |
| 101        | TOTAL OPERATING REVENUE                       |                          | 163,893,260     | 66,375,300               | 52,801,207     | 40,576,482              | 2,088,315            | 2,051,956   |
| 102        |                                               |                          |                 |                          |                |                         |                      |             |
| 103        | OPERATING EXPENSES                            |                          |                 |                          |                |                         |                      |             |
| 104        | Operation and Maintenance Expense             | •                        | 67,628,526      | 32,165,655               | 18,601,295     | 15,552,318              | 587,592              | 721,667     |
| 105        | Depreciation Expense                          |                          | 26,137,533      | 11,979,102               | 7,295,360      | 6,275,606               | 291,762              | 295,703     |
| 106        | Amortization Expense                          |                          | 4,031,631       | 1,980,627                | 1,085,427      | 888,252                 | 35,436               | 41,889      |
| 107        | Taxes Other Than Income Taxes                 |                          | 4,199,038       | . 1,923,263              | 1,172,479      | 1,007,551               | 47,845               | 47,902      |
| 108<br>109 |                                               | CALCULATED<br>CALCULATED | 0<br>15,875,376 | 0                        | 0<br>7,031,365 | 0                       | 0                    | 0           |
| 110        |                                               | CALCULATED               | 117,872,104     | 3,703,150<br>51,751,795  | 35,185,926     | 4,537,023<br>28,260,749 | 337,087<br>1,299,720 | 266,752     |
| 111        | TOTAL OPERATING EXPENSES                      |                          | 117,072,104     | 31,751,795               | 35,163,820     | 26,200,749              | 1,299,720            | 1,373,913   |
|            | 2 OPERATING INCOME (RETURN) AT PROPOSED RATES |                          | 46,021,156      | 14,623,504               | 17,615,281     | ·12,315,733             | 788,595              | 678,043     |
| 113        |                                               |                          | 40,021,100      | 14,023,004               | 17,010,201     | 12,010,100              | 100,000              | 070,040     |
| 114        |                                               |                          |                 |                          |                |                         |                      |             |
|            | RATE BASE                                     |                          | 542,701,964     | 245,527,012              | 152,137,631    | 133,220,364             | 5,592,293            | 6,224,664   |
| 116        |                                               |                          | • i=j: • i,cc i | 1.010011010              | 1021101,000    |                         | 5,002,200            | 0,EE (,00 ) |
| 117        |                                               |                          |                 |                          |                |                         |                      |             |
| 118        | RATE OF RETURN                                |                          | 8.48%           | 5,96%                    | 11.58%         | 9.24%                   | 14,10%               | 10.89%      |
| 119        |                                               |                          |                 |                          |                |                         |                      |             |
| 120        | INDEX RATE OF RETURN                          |                          | 1.00            | 0.70                     | 1.37           | 1.09                    | 1.66                 | 1.28        |
| 121        |                                               |                          |                 |                          |                |                         |                      |             |
| 122        |                                               | •                        |                 |                          |                |                         |                      |             |
| 123        |                                               |                          | 14,634,283      | 6,536,664                | 3,736,357      | 4,068,239               | 148,657              | 144,367     |
| 124        |                                               |                          |                 |                          |                |                         |                      |             |
| 125        |                                               |                          | 124,169,353     | 49,009,989               | 41,997,396     | 29,828,727              | 1,702,416            | 1,630,824   |
| 126<br>127 |                                               | 13 ENERGY2               | 33,682,213      | 11,594,018<br>60,604,006 | 9,158,128      | 12,053,051              | 323,929              | 553,088     |
| 127        |                                               |                          | 157,851,566     | 00,004,000               | 51,155,524     | 41,881,778              | 2,026,346            | 2,183,912   |
|            | PROPOSED TOTAL REVENUE INCREASE (%)           | ÷                        | 9.27%           | 10.79%                   | 7.30%          | 9.71%                   | 7.34%                | 6,61%       |
|            |                                               |                          | 0.2175          | 10.7070                  | 7.5676         | 0.7170                  | ,.54%                | 0.0178      |