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Abstract 
This article describes various statistical analyses of plume-length data to evaluate the hypothesis that the presence of ethanol 

in gasoline may hinder the natural attenuation or hydrocarbon releases. Plume dimensions were determined for gasoline-conta
minated sites to evaluate the effect of ethanol on benzene and toluene plume lengths. Data from 217 sites in Iowa (without ethanol; 
set 1) were compared to data from 29 sites in Kansas that were contaminated by ethanol-amended gasoline (I 0% ethanol by vol
ume; set 2). The data were log-normally distributed, with mean benzene plume lengths (± standard deviation) of 193 ± 135 feet 
for set l and 263 ± 103 feet for set 2 (36% longer). The median lengths were 156 feet and 263 feet (69% longer), respectively. 
Mean toluene plume lengths were 185 ± 131 feet for set I and 211±99 feel for set 2 ( 14% longer), and the median lengths were 
158 feet and 219 feet (39% longer), respectively. Thus, ethanol-containing BTEX plumes were significantly longer for benzene 
(p < 0.05), but not for toluene. A Wilcoxon signed rank test showed that toluene plumes were generally shmter than benzene plumes, 
which suggests that toluene was attenuated to a greater extent thrui benzene. This trend was more pronounced for set 2 (with ethanol), 
which may reflect that benzene attenuation is more sensitive to the depletion of electron acceptors caused by ethanol degradation. 
These resulls support the hypothesis that the presence of ethanol in gasoline can lead to longer benzene plumes. The importance 
of this effect, however, is probably site-specific, largely depending on the release scenario and the available electron acceptor pool. 

Introduction 
The use of ethanol as a gasoline additive is likely to 

increase in the near future as a substitute for the oxygenate 
MtBE (Powers et al. 2001a, 200lb). Regulatory renewable fuel 
requirements will also lead to additional ethanol use. There
fore, it is important to understand how ethanol affects the 
fate and transport of hydrocarbons in ground water. Previous 
laboratory studies have shown that the presence of ethanol 
could have undesirable effects on the biodegradation of BTEX 
(i.e., benzene, toluene, ethylbenzene, and ortho-, para-, and 
meta-xylene). Specifically, ethanol is often degraded prefer
entially and contributes lo the depletion of nutrients and elec
tron acceptors (e.g., 0 2) that would otherwise be available to 
support BTEX biodegradation (Corseuil et al. 1998; da Silva 
and Alvarez 2002; Ruiz-Aguilar et al. 2002). In addition, 
high ethanol concentrations (> l 0% ), which could occur initially 
at the source, could also enhance BTEX solubility and decrease 
sorption-related retardation, enhancing hydrocarbon migration 
(da Silva and Alvarez 2002; Powers et al. 200Ib; Rao et al. 
1990). These findings suggest that ethanol may hinder BTEX 
natural attenuation, which could result in longer BTEX plumes 
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and a greater risk of exposure. Nevertheless, little is known 
about the magnitude and significance of this potential plume
elongalion effect. 

Plume dimensions and stability are important parameters 
to characterize for risk management because they detc1minc 
the area of influence and the potential duration of exposure. 
Several investigators have developed mathematical models for 
predicting the effect of ethanol (added to gasoline at 10% by 
volume) on BTEX plume length (Table 1). These screening 
models predict that ethanol would increase the maximum 
BTEX plume length (i.e., when steady state is reached) by <my
where from ~10% to 150%. Whereas these models provide 
valuable insight into the potential ground water impacts of 
ethanol in gasoline, they are based on simplifying and influ
ential assumptions and have not yel been validated with field 
data. Therefore, there is a need for empirical evaluations of the 
effect of ethanol on BTEX plume length. 

This article describes statistical analyses of plume-length 
data to evaluate the general hypothesis that the presence of 
ethanol in gasoline hinders the natural attenuation of hydro
carbons, resulting in longer BTEX plumes com ared to re -

EXHIBIT 
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Table 1 
Modeling Efforts to Assess the Effect of Ethanol on Benzene Plume Length 

Increase in Benzene 
Citation Conceptual Model Plume Length 

Heermann and Powers (1996) 2-D transport from a pool of gasoline. 
Focus on cosolvency and interface 
mass transfer. Biodegradation not included. :5 + 10% (for xylene not benzene) 

Malcom Pirnie Inc. (1998) Steady-State, 2-D transport from a gasoline pool. 
First-order decay of benzene when CE108<3 mg 1-1• 

First-order decay of ethanol. + 17-34 % 

McNab et al. ( 1999) 3-D aqueous transport. 
Continuous slow release of gasoline (up to 3 gpd) 
to a growing NAPL pool at the water table. 
First-order decay of ethanol and benzene. 
Benzene degradation rate constant defined by 
inverse correlation to BOD cone. at the source. ~+ 100% 

Molson et al. (2002) 3-D transport from a gasoline source at the water 
table at a residual saturation. 
Aerobic decay with 0 2 as the sole electron acceptor 
quantified by Monad kinetics. 
Microbial growth incorporated. + 10-150 % 

ular-gasoline releases. This article also addresses the likelihood 
that ethanol would hinder the natural attenuation of benzene 
to a greater extent than toluene due to differences in their 
biodegradability under the strictly anaerobic conditions induced 
by ethanol. 

Methodology 

Plume Data 

Two sets of ground water data were collected from about 
600 gasoline-contaminated sites. One of the data sets (set 1) 
was obtained from the Iowa Department of Natural Resources, 
Underground Storage Tanks Section (IDNR TIER-2 data
base). This database contained no info1mation about the pres
ence of ethanol; thus, the data were screened to exclude sites 
with suspected contamination by ethanol-amended gasoline. 
A review of site investigation reports and telephone surveys 
were conducted for this purpose. Many of the set 1 sites were 
also discarded because of insufficient data to plot the required 
plume contours (e.g., plumes not bracketed by downgradient 
wells) or because contamination resulted from multiple sources 
(e.g., overlapping plumes). Therefore, only 217 Iowa sites 
(contaminated with regular gasoline) were included in set 1. 
The other data set (set 2) was obtained from the Kansas 
Department of the Environment and Health (KDEH), and 
corresponded to 29 sites contaminated with gasohol (i.e., 
gasoline with 10% ethanol by volume). Site investigation 
reports did not show salient difterences between the two data 
sets regarding release and response scenario (e.g., amount 
released, age of spill, or remedial activities). None of these sites 
repo11ed MTBE contamination. In addition, MTBE is unlikely 
Lo affect BTEX or ethanol degradation in contaminated aquifers 

(da Silva and Alvarez 2002; Deeb et al. 2001; Ruiz-Aguilar et 
al. 2002). Thus, MTBE was not a factor in this study. 

Determination of Plume Lengths 

Benzene and toluene plume lengths were determined by 
contouring data from monitoring wells (which were typically 
separated by about 100 feet), using a computer algorithm 
based on Hardy's multiquadric method for plotting two
dimensional concentration contours (Saunderson 1994). This 
algorithm was incorporated into the Iowa RBCA TIER2 Inter
polation Program version 2.17, which interfaces with the 
IDNR TIER-2 database. This approach eliminated subjectiv
ity associated with drawing the plumes by hand. Selected 
computer-generated plumes were compared to the corre
sponding hand-drawn plumes for validation purposes. Plume 
lengths were then measured as the longest distance between 
lhe identified source and the 5 µg/L contour, which conesponds 
to the drinking water standard for benzene. 

Statistical Analyses 

Plume length data were imported into Minitab (version 
13.1, State College, Pennsylvania), which was used to calcu
late population statistics for each data set. These statistics 
included the population mean, standard deviation, median, 
maximum, and minimum. Distribution analyses were per
formed using the Anderson-Darling test for log-normality at 
the 95% significance level (Freedman et al. 1998). A Kmskal
Wallis test was also performed to determine whether BTEX 
plumes were significantly longer in set 2 (with ethanol) than 
in set l (without ethanol). This nonparametric test, which 
ranks plume lengths from low to high and then analyzes the 
ranks (Lehmann 1975), is ve1y robust to test differences in pop
ulation medians (Johnson and Mizoguchi 1978). Two-sample 
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Figure 1. Cumulative distribution of (a) benzene and (b) toluene 
plume lengths for set 1 (Iowa data, without ethanol) and set 2 
(Kansas data, with ethanol). 

Student's t-tests (Freedman et al. 1998) were also perfonned 
to determine if average benzene and toluene plume lengths 
were significantly different between the two data sets. Finally, 
a Wilcoxon signed-rank test was performed to test if benzene 
plumes were generally longer than toluene plumes, and to 
determine if this trend was statistically significant. 

Results and Discussion 
Plume length data were log-normally distributed (p = 

0.275 for benzene and 0.394 for toluene) according to an 
Anderson-Darling test. The cumulative distribution of the 
plume lengths shows that benzene plumes were generally 
longer for set 2 (with ethanol) than for set l (without ethanol) 
(Figure la). For example, 92% of benzene plumes in set 2 were 
longer than 150 feet, compared to only 74% for set I. The same 
trend was observed for plumes longer than 250 feet. Jn this case, 
69% of benzene plumes in set 2 were longer than 250 feet, 
compared to 45% for set l. However, none of the 29 plumes 
in set2 was longer than 500 feet, compared to 12% of the 217 
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Figure 2. Box plots of the benzene and toluene plume length 
data. The line across the box represents the median. The bottom 
and top of the box represent the first and third quartiles (Q1 and 
03). The whiskers extend to the lowest and highest observations 
inside the region defined by Q1 -1.5(QJ-Q1) and 03 +1.5(Q3-
Q1). Individual points with values outside these limits (outliers) 
are plotted with asterisks. 

plumes in set 1. This trend reversal reflects that set 1 was a 
much larger data set and contained both the smallest and 
largest plumes. Note that these longer plumes are statistical out
liers, as dete1mined by the Tukey method (Tukey 1977; Fig
ure 2). Similar results were observed for toluene, although the 
apparent elongation effect of ethanol was not as pronounced 
(Figure 1 b). 

Box plots cmroborated that BTEX plumes with ethanol (set 
2) were generally longer than those from set 1, without ethanol 
(Figure 2). A Kruskal-Wallis test showed that the median 
length of benzene plumes was significantly longer for set 2 than 
for set 1 (263 versus 156 ftp < 0.00 l; Figure 3). On the other 
hand, the difference for toluene plumes was not statistically sig
nificant (219 versus 158 feet, p = 0.073). Note that the median 
length for benzene and toluene plumes without ethanol is 
within 15% of that reported by Newell and Connor (1998) (i.e., 
132 feet). This value was obtained from a compilation of 
four surveys (Groundwater Services 1997; Mace et al. 1997; 
Rice et al. 1995; Newell and Connor 1990), covering a total 
of 604 sites presumably contaminated with gasoline without 
ethanol. 
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Table 2 
Summary Statistics for Benzene 
and Toluene Plume Length Data 

Compound 
Benzene Toluene 

Seti Sct2 Set 1 Set 2 
Parameters (no EtOH) (with EtOH) (noEtOH) (with EtOH) 

Number of sites 217 29 211 26 
Minimum(ft) 18 90 14 75 
Median (ft) 156 263 158 219 
Maximum (ft) 1005 500 973 450 

Mean (ft) ±Std. 
deviution 193± 135 263± 103 185± 131 211 ±99 

p-valuc 0.002* 0.243 

*Dala were significantly rliffcrenl (p < 0.05) as dc1cnnincd by a lWO·samplc studcnl"s 
t-test. 

Benzene 

Toluene 

0 75 150 225 300 

Median plume length (ft) 

Figure 3. Median length of set 1 (Iowa data, without ethanol) 
versus set 2 plumes (Kansas data, with ethanol). The difference 
was significantly different for benzene (p < 0.001 ), but not for 
toluene (p = 0.073), as established by a Kruskal-Wallis test. 

Table 2 summarizes the central tendencies of benzene 
and toluene plume lengths. The average length of BTEX 
plumes with ethanol was higher than the co1Tesponding value 
without ethanol (by 36% or 70 feet for benzene, and by 17% 
or 26 feet for toluene). Similar to the Kruskal-Wallis test, 
two-sample student's t-tests showed that these differences 
were statistically significant for benzene (p = 0.002) but not for 
toluene (p = 0.243). Whereas an increase of70 feet in the aver
age length of benzene plumes is statistically significant, this 
does not imply that the co1Tesponding increase in public health 
risk will also be significant. 

Benzene plumes were generally longer than toluene 
plumes, and this difference was more pronounced for the data 
set with ethanol (set 2). Specifically, the average benzene 
plume was 20% longer than the average toluene plume for set 
2, compared to a 4% difference for the data set without ethanol 
(set l ). A Wilcoxon signed rank test showed that both of these 

Table 3 
Predominant Lithologic Characteristics 

of the Sites Considered in This Study 

Percent of Sites Where Material was Dominant 
Set1 Set 2 

Material (no etlrnnol) (with ethanol) 

Clay 40 31 
Limestone 4 0 
Mixed 28 34 
Sand 15 23 
Shale 0 3 
No data available 13 9 

Table 4 
Benzene Plume Length Statistics, Segregated 

by Dominant Type of Aquifer Material* 

Dominant Num!Jer Benzene Plume Length 
Aquifer of Average Standard 
Material sites (ft) Deviation (ft) 

Set 1 (no ethanol, Iowa) 
Clay 85 184 !07 
Limestone 8 155 !05 
Mixed 59 172 84 
Sand 35 249 215 
No data available 31 199 164 

Set 2 (with ethanol, Kansas) 
Clay 8 242 89 
Mixed 9 283 !05 
Sand 8 250 92 
Shale I 288 0 
No data available 3 292 201 

"'For a given set. differences between cutcgories were not significantly different. 

differences were statistically significant (p < 0.05), which 
suggests that the potential elongating effect of ethanol could 
be more pronounced for benzene than for toluene (Figure 3). 
Benzene, which is the most toxic of the BTEX compounds, is 
relatively recalcitrant under the anaerobic conditions exacer
bated by an ethanol-driven consumption of electron acceptors 
(Corseuil et al. 1998; Heider et al. 1998). Toluene is more fre
quently reported to degrade under anaerobic conditions. The 
methyl group in toluene is electrophilic and facilitates nucle
ophilic attack by water (Alvarez and Vogel 1995) or by anaer
obic catabolic enzymes such as benzyl suceinate synthase 
(Heider et al. 1998). This facilitates the initiation of degrada
tion without the action of an oxygen requiring oxygenase 
enzyme. The higher biodegradability of toluene and its higher 
tendency than benzene to be retarded by sorption (Alvarez et 
al. 1998) are conducive to shorter plumes. 

As is commonly the case for many epidemiological stud
ies, it should be pointed out that the inferences of our statis
tical analysis are constrained by other factors besides the 
presence of ethanol that could influence plume length. 
Although Iowa and Kansas have a similar geologic history, 
unaccounted confounding factorn include hydrogeologic and 
geochemical characteristics that control the rates of advection, 
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dilution, sorption, volatilization, and biodegradation, as well 
as site heterogeneity and the release and response scenarios. 
Unfo1tunately, logistical and cost constraints often preclude the 
quantification of these processes at gasoline-contaminated 
sites. Therefore, these factors could not be included in our sta
tistical analysis, with the exception of considering borehole data 
that permitted the categorization of the sites according to the 
dominant type of aquifer material (Table 3). These data sug
gest that a slightly higher percentage of sites in set 1 were less 
permeable than in set 2 (i.e., 46% vs. 33% were clay-rich 
and 19% vs. 24% were sandy). Although plumes were gener
ally longer in sandy than in clay-rich aquifers, the standard devi
ations for a given lithologic category were relatively large, as 
illustrated for benzene plumes (Table 4 ). Therefore, the dom
inant type of aquifer material did not have a statistically sig
nificant effect on plume length. This finding is consistent 
with previous plume studies (Rice et al. 1995; Mace et al. 
1997). This does not mean that the type of aquifer material (and 
its associated permeability and sorption capacity) does not 
affect plume length. Rather, it implies that other factors that 
were not quantified could be more influential. 

Jn spite of the many potentially confounding factors asso
ciated with field data, it should be recognized that ( 1) such con
founding factors were likely randomized by the relatively 
large data set considered; (2) Kansas plumes were longer 
even though temperatures tend to be slightly wanner in Kansas 
than in Iowa, which is conducive to faster biodegradation; and 
(3) the results of the statistical analysis show a strong consis
tency of association with experimental and modeling results 
and with biologically plausible explanations discussed previ
ously. Therefore, this work supports the hypothesis that the 
presence of ethanol in gasoline can lead to longer benzene 
plumes. These results should provide a basis for further field 
studies involving controlled gasohol releases to improve our 
gasohol-release risk assessment capabilities. 

Conclusion 
This study investigated the potential magnitude and sig

nificance of BTEX plume elongation by the presence of 
ethanol in gasoline. There was a statistically significant dif
ference in mean benzene plume lengths between gasoline- ver
sus gasohol-contaminated sites. The mean toluene plume 
lengths were not significantly different. Ethanol apparently hin
ders the biodegradation of benzene to a greater extent than 
toluene because benzene is less degradable under strictly 
anaerobic conditions that are exacerbated by the depletion of 
electron acceptors during ethanol degradation. The significance 
of this effect, however, is probably site-specific, largely 
depending on the release scenario and the available electron 
acceptor pool. 
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