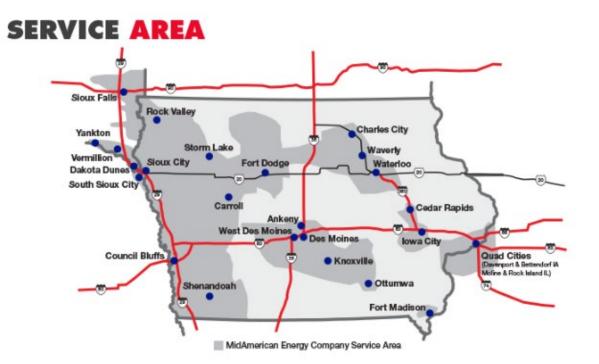

Gas Distribution Integrity Management Program Best Practices and Considerations

Dan Miller, Principal Engineer – Integrity Management at MidAmerican Energy March 11, 2025


Agenda

- MidAmerican Background
- ► DIMP Journey
- Best Practices & Considerations
 - Metrics
 - Goals
 - Tying DIMP to SMS
 - Risk Modeling
 - Interaction with Operator Qualifications
 - Continuous improvement
- ► Q&A

MidAmerican Overview

803,000 gas customers

30 towns with gas services in SD

623 miles of transmission gas mains

13,712 miles of distribution gas mains

MidAmerican's Gas System

- Unique aspects of MidAmerican's gas system:
 - Distribution pressures range from low pressure to 410 PSIG
 - Pipe sizes range from 0.5 inch to 24 inch
 - Materials include steel, polyethylene and copper (SD only)
 - Steel includes bare, coated, protected and unprotected
 - Polyethylene includes first and second generation plastics (Orangeburg, Aldyl A, Continental, Performance, Phillips, JM Eagle, Extron)

DIMP Journey

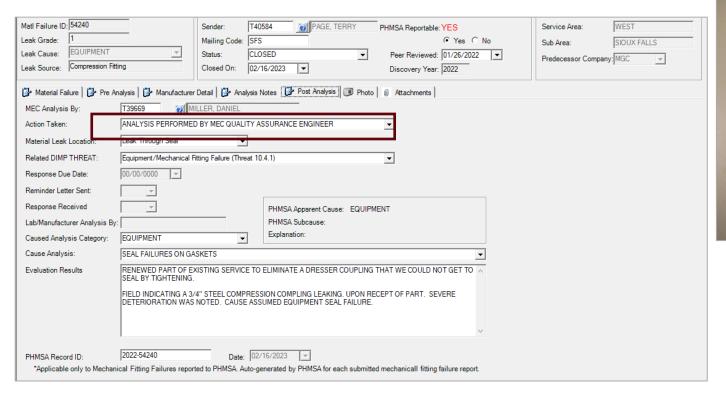
- Like all operators, MidAmerican has been on a journey with its DIMP.
- Consider adding a master table of program milestones to your written plans as a future reference.

MidAmerican Energy (Company	INDEX-PAGE NO. D 1.10	- 2
CANCELLING 08/0	1/23 GENERAL - HISTORY OF PLAN	EFFECTIVE 09/02/2	024
Chronology of	Proposed rule published	June 25, 2008	Т
Significant	Comments submitted to PHMSA	October 23, 2008	┨
Plan	Final rule published	December 4, 2009	7
Developments	Comments on additional reporting submitted to PHMSA	February 4, 2010	1
	Final rule became effective	February 12, 2010	7
	DIMP Advisory Team Formed	March 1, 2010	7
	1st Draft-DIMP plan for Advisory Approval Completed	June 1, 2010	1
	Modifications as required by Advisory Team completed – submitted to consultant for review	August 1, 2010	1
	Final review report received from consultant	September 1, 2010	1
	Advisory review and	October 1, 2010	\dashv
	implementation of consultant	.,2210	
	recommendations completed		
	DIMP Trial Inspection by PHMSA and state inspectors	November 15 -19, 2010	1
	Corrections based on federal/state recommendations made and management approval obtained	December 31, 2010	
	Initial DIMP written plan effective	January 3, 2011	٦
	Completed risk identification and 1st risk model to establish baseline	March 1, 2011]
	DIMP Program fully implemented	August 2, 2011	┨
	Initial Plan Inspection – NE/IA/IL/SD	February, 2012	1
	Revision 1.0 of the DIMP written plan effective	December 31, 2012	
	Implementation inspection by the SDPUC	May, 2013	
	Revision 2.0 of the DIMP written plan effective	December 31, 2013	7
	Revision 3.0 of the DIMP written plan effective	November 1, 2014	
	Revision 4.0 of the DIMP written plan effective	January 31, 2016	
	Revision 5.0 of the DIMP written plan effective	August 2, 2016	
	Received internal audit report	May, 2017	7

Metrics

- Consider a standard naming convention for performance metrics
- Example:
 - Primary Threat Category of 1 = External Corrosion for first decimal
 - Subthreat Category of 1 = Atmospheric Corrosion for second decimal
 - Metrics would use a third decimal
 - 1.1.1: No. of External Corrosion Leaks Above Grade
 - 1.1.2: No. of Conditions Reported as Grade 1 (Severe) Corrosion
- Can tie the threat ID system to events, such as material failures or reportable events for trending/analysis

Metrics Examples


Example threat listing from the plan, includes categories and measures

			Primary		Prior Yr	Proposed	Prior Yr	Proposed						
			Threat	Threat	Existing	Existing	Accelerated	Accelerated						
Pri :	# -	Sub# ▼	Category 🔻	Subcategory 🔻	Program 🔻	Program 🔻	Action (AA)	Action (AA)	Ref1 ▼	Measure 1	Ref2 ▼	Measure 2	Ref3 ▼	Measure 3 ▼
					Operations G	Operations G								
					30, Corrosion	30, Corrosion				Number of leaks				Number of
					Control G 50,	Control G 50,	Reference	Reference		categorized as				Conditions
					Post Top	Post Top	Capital table	Capital table		"External		Number of		reported grade
			External		Regulator	Regulator	DIMP4 for project	DIMP4 for project		Corrosion" cause		Conditions reported		red MAOP
	1	1	Corrosion	Atmospheric	Inspection	Inspection	list.	list.	1.1.1	above grade	1.1.2	grade red	1.1.3	compromised

Example listing of reportable incident and threat associated with event

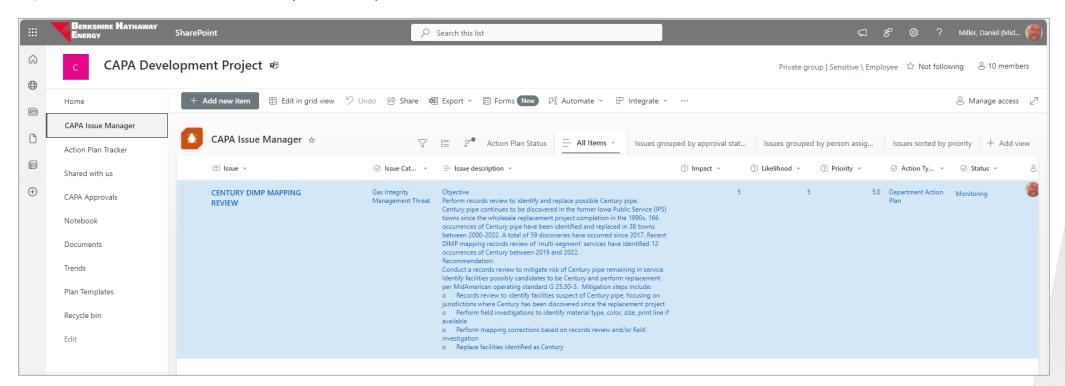
Incident	Date		6.1.1 Over Pressure	Failure to	6.9.1 Improper Valve Operation/Stopperin g/Squeezing.	8.1.2	8.7.2 Ice	Relief valve	10.2.2 Regulato r or valve malfun v	10.10.2	Other Reportable	7.1.4 Number of outage events due to excavaton
mciuem ·	Date	Description	riessuie	Tollow OQ	g/squeezing.	rioou	SHOW	manun	manun	Debits	Event	excavaton
		Pleasant Valley, Iowa - At approximately										
		7:30 a.m. on April 27, 2023, MidAmerican										
		determined that the number of										
		customers that would need to be shut										
		off due to Mississippi River flooding in										
		Pleasant Valley, Iowa would exceed the										
	4/27/2023	reportable threshold of 50 customers.				1						

Metrics Example – Material Failure Record Entry

Goals

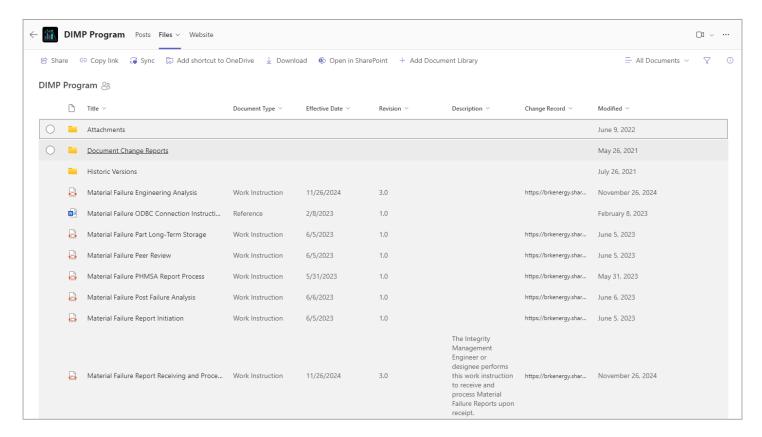
- PHMSA Advisory ADB-2012-10 suggests that operators should use goals as part of DIMP and that metrics should be meaningful and categorized into leading, deteriorating and lagging.
 - Shouldn't use all lagging metrics!
 - Consider adding categories to your forms/documents that collect metrics.
- ▶ Consider having a list of company goals for your program, including accelerated actions and other initiatives (like data closure projects) that might not be recorded.
 - This is a great place for documenting data gap closures, for example.

Goal Examples


			ı	1						I				
				Goal	Modifications									
Coox	Establishe 🔻	Goal Description	CoalTun	Measureme >	to Goal	Met for 201 ▼	Met for 2017	Met for 2018 ▼	Met for 2019 ▼	Met for 2020 ▼	Met for 2021	Met for 2022 ▼	Met for 2023 ▼	Met for 2024 √
Gua ·	ESTADIISHE	Complete zone verification analysis of	Goal Type	Weasurelile	Goal Updated to		Met 101 2017	Yes, completed	Met for 2019	Wet for 2020	Wet for 2021	WELTOT 2022	Wet for 2025	Wet for 2024 👯
		500 zones annually – assumes		Number of	660,000 feet for		Yes, analyzed 739	analysis of 704		Yes, analyzed 510	Ves analyzed E22	Complete - verified	Yes - verified	Yes - verified
3	8/2015	completion by 2027	Leading	zones analyzed	2024	621 zones		zones	Yes, analyzed 1320	zones		1.56M feet	1.064.406	655,594 feet
-	8/2013	completion by 2027	Leading	Number of	No longer a KPI	021 Zones	zones	zones	res, analyzed 1520	zones	zones	1.30W Teet	1,004,400	055,554 feet
		Verify and collect FIDS for GTech data			but is									Yes, completed
		,		remaining gaps specified in			Vac completed	Vac samulated	Vac completed	Vac completed	Vac completed	Vac completed	Yes, completed	10,338 as of
_	8/2016	population for DIMP, 5000 for 2017,		1 '	continually monitored	n/a	Yes, completed	Yes, completed	Yes, completed	Yes, completed	Yes, completed	Yes, completed		
- 6	8/2016	6000 beyond (KPI)	Leading	plan		n/a	7952 gaps	9,383 gaps	12,822 gaps	11070 gaps	10235 gaps	12959 gaps	10,194 as of 12/5/23	12/11/2024
					Continue									
					replacement of								Yes, completed 24.9	
		Danier 20 miles of law account		Completion of	low pressure					Vac assessment of 54.2	Vac assemblets of 42		miles of main plus	
10	1/1/20	Replace 30 miles of low pressure	Leading		pipeline	N/A, 2020 Goal	N/A 2020 CI	N/A, 2020 Goal	N/A, 2020 Goal	miles of main	Yes, completed 42 miles of main	N/A 2021 KPI	service footage	
10	1/1/20	systems	Leading	replacements	systems Continue	N/A, 2020 G0ai	N/A, 2020 Goal	N/A, 2020 G0al	N/A, 2020 G0ai	miles of main	miles of main	N/A ZUZI KPI	service rootage	In progress
										V	V	V	V	Yes, completed 1.05
		Replace 5 miles of leaking and aging		Commission of	replacement of					miles including	miles including	miles including		miles of mains and
	1/1/20	' " " " " " " " " " " " " " " " " " "			legacy pipeline	N/A 2020 CI	N/A 2020 CI	N/A. 2020 Goal	N/A 2020 CI		_	_		
11	1/1/20	distribution to reduce gas emmissions	Leading	replacements	systems	N/A, 2020 Goal	N/A, 2020 Goal	N/A, 2020 G0al	N/A, 2020 Goal	mains and services Yes, write up	mains and services	mains and services	service footage	services
		Develop plan for probabilistic risk			Updated to go					completed and				
		modelling for transmission and		Completion of	live by Aug.					provided to Ralph				Completed with go
12	1/1/20	distribution assets	Leading	plan	2024.	N/A, 2020 Goal	N/A, 2020 Goal	N/A, 2020 Goal	N/A, 2020 Goal	Martens	N/A, 2020 Goal	N/A, 2020 Goal	N/A 2024 Goal	live on 8/28/24
12	1/1/20	Develop a process for discovering,	Leading	pian	2024.	N/A, 2020 G0ai	N/A, 2020 G0ai	N/A, 2020 G0al	N/A, 2020 G0ai	Martens	N/A, 2020 G0ai	N/A, 2020 G0al	N/A 2024 G0al	11VE 011 8/28/24
		tracking and replacing potential												
		Century pipe sections from service.												
		This includes a technical solution for												
		tracking beyond simple email requests.												
		Discoveries may be field or office-												
16	3/7/23	based.	Leading			N/A, 2023 Goal	N/A, 2023 Goal	N/A. 2023 Goal	N/A, 2023 Goal	N/A, 2023 Goal	N/A. 2023 Goal	N/A. 2023 Goal	Complete	N/A 2023 Goal
10	3///23	Daseu.	Leaunig			14/ A, 2023 GOdi	14/ A, 2023 GOBI	14/ M, 2025 GOdl	14/ M, 2023 GOdl	14/ A, 2023 GOBI	14/ A, 2023 GOdi	14/ A, 2023 GOdi	Complete	IN/ A ZUZO GUBI

Tying DIMP to PSMS

- Pipeline Safety Management Systems (PSMS) is an overarching program that should cover several elements.
- ▶ DIMP does not have to be contained within PSMS, but there should be ties as one of the PSMS elements is Safety Risk Management.
- ► For process or procedural items that don't necessarily fit well in a written DIMP plan, PSMS may be the perfect home.


Tying DIMP to SMS

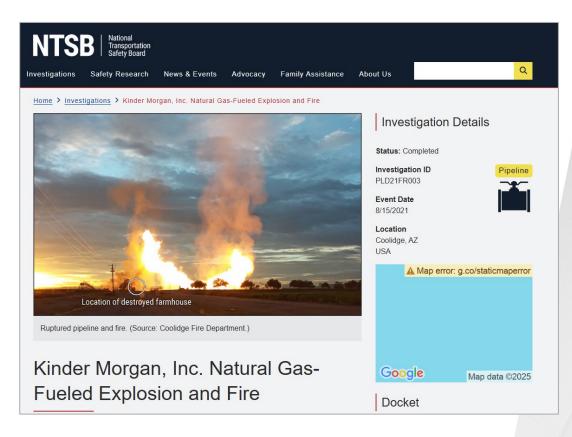
Century Pipe Elimination Project is now tracked via SMS as a corrective and preventative action (CAPA) item.

Tying DIMP to SMS Example

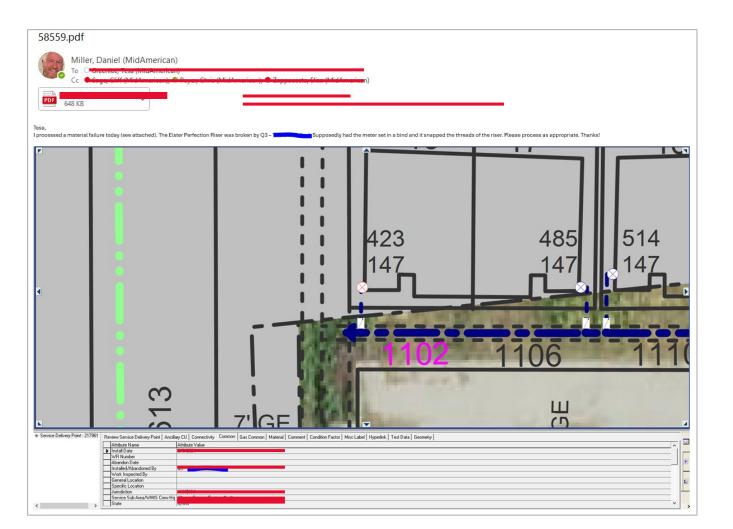
▶ Material failure procedures are held in SMS plan rather than DIMP.

Risk Modeling

- 49 CFR Part 192.1007(c) requires that risks to the distribution system are evaluated and ranked
- While PHMSA does not require any mathematical method for ranking risks, the use of a consistent calculation tool is recommended, especially for operators of medium to large size.
- ▶ When choosing a model for risk evaluation, consider the questions:
 - Is your model based on actual performance history of the system?
 - Does your model provide a way to evaluate/predict risk reduction over time?
 - For those with both distribution and transmission assets, do your integrity models provide a basis for comparison of risks between assets?
- MidAmerican implemented a probabilistic risk model for transmission in December 2023 and for distribution in August 2024.


Risk Modeling Examples*

	Model Category										
Decision Type	A. Qualitative Model	B. Relative Assessment/ Index Model	C. Quantitative System Model	D. Probabilisti Model							
Risk Priorities for Baseline Integrity Assessment	А	А	А	BP							
Preventive and Mitigative Measure Identification	А	А	А	BP							
Preventive and Mitigative Measure Evaluation and Comparison	Al	Al	А	ВР							
Benefit-Cost Analysis for Risk Reduction Options	Al	Al	А	BP							
Integrity Assessment Interval Determination	Al	Al	А	BP							
General Risk Management Decision Making	Al	Al	А	BP							
y:											
an be Applicable with Addition	al Inputs to Risk As	sessment Process		Al							
an be Applicable				Α							
	ar imputed to make Ad	occoment rocco									

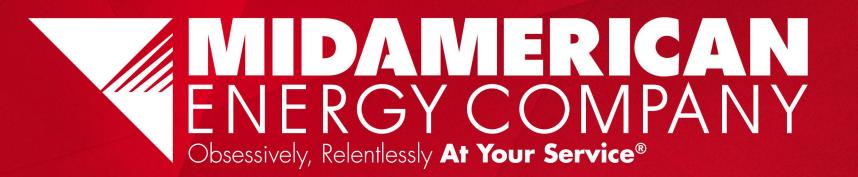

^{*}Taken from PHMA's whitepaper Pipeline Risk Modelling Overview of Methods and Tools for Improved Implementation, February 2020

Interaction with OQ

- ► The QA/QC processes of field personnel have a direct impact on risk within a gas distribution system.
- Consider the following interactions with your Operator Qualification group/department:
 - Share performance metrics, especially construction-caused failures
 - Share industry lessons learned, event reviews
 - Have someone from integrity management participate in OQ committees or boards

Example of Hypothetical Material Failure Record

Continual Improvement


- ▶ 49 CFR Part 192.1007(f) requires that operators periodically evaluate and improve their DIMP plans.
- Since DIMP is a mature program subject to tunnel vision, consider the following:
 - Have internal corporate audits of the plan
 - Procure a third-party audit through a third-party contractor
 - If you are part of a larger organization with affiliates, have affiliate participation in DIMP meetings
 - Develop an advisory team or "board" for the DIMP program, ideally composed of employees from operations, engineering, compliance/standards, gas control and measurement/regulation.
 - This group can be an asset for not only reviewing/approving program changes, but also for championing the DIMP program companywide.

Finally, because this is a joint state event...

GO BISON!

Questions?

