ELECTRONICALLY FILED DATE _____SEP 2 0 2006

STATE OF SOUTH DAKOTA

BEFORE THE SOUTH DAKOTA PUBLIC UTILITIES COMMISSION

UNREDACTED TESTIMONY CONTAINS CONFIDENTIAL INFORMATION SUPPLIED ONLY TO PARTIES AND HEARING OFFICER – REDACTED TESTIMONY FILED

DIRECT TESTIMONY OF W. CRAIG CONWELL ON BEHALF OF WWC LICENSE L.L.C.

Table of Contents

Торіс	Page
Introduction and Qualifications	3
Summary of Testimony and Recommendations	
The Role of ILEC Cost Studies and the ILEC Burden of Proof	
FCC Requirements for Transport and Termination Rates	
Review of Petitioners' Cost Studies and Proposed Rates	
Cost Study Results and Proposed Rates	
Switching Costs	
Adjustment 1 – Usage-sensitive portion of end office switching costs	
Adjustment 2 – Forward-looking weighted average cost of capital	
Adjustment 3 – Economic life for switching	
Adjustment 4 – Recognizing the normalization of deferred income taxes in	
calculating capital costs	
Adjustment 5 - Direct expense factor for switching	
Adjustment 6 – Forward-looking engineering fill for switching	
Transport Costs	
Adjustment 7 – Forward-looking interoffice cable lengths	
Adjustment 8 – Reflecting the shorter interoffice transport distances for	
mobile-to-land traffic	
Adjustment 9 – Forward-looking utilization levels for transport	
Adjustment 10 - Correct utilization measure for transport	
Adjustment 11 – Recognizing that mobile-to-land traffic involves multiple	
Petitioner networks	
Adjustment 12 – Proper method for computing transport cable costs	
Adjustment 13 – Proper method for computing transport transmission	
equipment costs	
Adjustment 14 – Corrected forward-looking economic costs for transport	
and termination	
Conclusion	

1		INTRODUCTION AND QUALIFICATIONS
2	Q.	Please state your name, business address and employer.
3	A.	My name is W. Craig Conwell. My business address is 405 Hammett Road,
4		Greer, South Carolina. I am self employed as an independent consultant,
5		specializing in telecommunications cost analysis.
6		
7	Q.	On whose behalf are you testifying in this case?
8	A.	I am testifying as the cost witness for WWC License L.L.C. ("Alltel") in
.9		connection with the Petition for Arbitration filed by seven local exchange carriers
10		("the Golden West Companies" or "the Petitioners") with the South Dakota
11		Public Utilities Commission ("the Commission") against Alltel on May 3, 2006. ¹
12		
13	Q.	Please describe your educational background.
14	A.	I have a Bachelors degree (1972) and Master of Science degree (1974) in
15		Industrial Engineering from Auburn University in Auburn, Alabama.
16		
17	Q.	Please describe your work background.
18	A.	I have included as Exhibit WCC-1 a copy of my current resume. I have over 30
19		years of experience in the telecommunications industry, with a broad background
20		in telecommunications costs analysis as an employee of the Bell System, with

¹ The Golden West Companies include Armour Independent Telephone Co., Bridgewater-Canistota Telephone Co., Golden West Telecommunications Cooperative, Kadoka Telephone Co., Sioux Valley Telephone Co., Union Telephone Co., and Vivian Telephone Co.

Arthur Andersen & Co. in its telecommunications consulting practice, and for the past ten years as an independent consultant.

3

4

5

6

7

8

9

2

1

In recent years, I have been extensively involved in negotiations and arbitrations of reciprocal compensation rates between incumbent local exchange carriers (ILECs) and wireless carriers. I have analyzed numerous ILEC cost studies for compliance with the FCC rules for Total Element Long Run Incremental Costs (TELRIC), and I have testified as an expert cost witness on behalf of wireless carriers in one or more arbitrations in five states.

10

I also was involved on behalf of the AT&T (previously SBC) local exchange carriers in the arbitrations establishing rates for unbundled network elements and collocation. I have provided expert testimony on one or more occasions in 12 states. Over the years, I have developed cost models, participated in the design of telecommunications cost accounting systems, and taught service cost courses for the United States Telephone Association and telephone company staffs.

17

18 Q. What are the other arbitrations between incumbent LECs and wireless
19 carriers in which you participated?

A. I was the cost witness for wireless carriers in two arbitrations in Oklahoma (Cause
Nos. PUD 200200150 and PUD 200300771), an arbitration in Tennessee (Docket
No. 03-00585), two arbitrations in Missouri (Case Nos. IO–2005-0468 and TO2006-0147), two arbitrations in Michigan (Case Nos. U-14678 and U-14889) and

1 an arbitration in California (A.06-02-028-038, 040). In each case, my role has 2 been to review incumbent LEC cost studies and their results to determine whether 3 they meet the FCC requirements for establishing reciprocal compensation rates. 4 5 Q. What is your consulting engagement with Alltel in this case? Alltel engaged me to review the cost studies and supporting documentation 6 A. 7 produced by the Golden West Companies, which are intended to measure their forward-looking economic costs to transport and terminate traffic originated on 8 9 Alltel's network and terminated on their networks – that is, mobile-to-land traffic. 10 The purpose of the review is to determine whether the Petitioners have met the 11 FCC requirements for computing forward-looking economic costs as the basis for 12 establishing transport and termination rates and, if they have not, to provide an assessment of what these costs should be. 13

14

15 SUMMARY OF TESTIMONY AND RECOMMENDATIONS

16 Q. Please summarize the main points of your testimony.

17 A. My testimony will address the following points.

The Golden West Companies have not properly computed forward-looking
 economic costs of transport and termination according to FCC Rules 51.505
 and 51.511. As a result, their cost estimates ranging from \$0.0088 to \$0.0253
 per minute are overstated.

1	• I have identified 14 primary adjustments that must be made to the Petitioners'
2	cost studies in order for the studies and their results to comply with FCC rules.
3	These include the following:
4	
$\begin{array}{c} 5\\ 6\\ 7\\ 8\\ 9\\ 10\\ 11\\ 12\\ 13\\ 14\\ 15\\ 16\\ 17\\ 18\\ 19\\ 20\\ 21\\ 22\\ 23\\ 24\\ 25\\ 26\\ 27\\ 28\\ 29\\ 30\\ \end{array}$	 The usage-sensitive portion of end office switching costs recoverable in transport and termination rates must reflect only the costs of switch trunk equipment. The forward-looking weighted average cost of capital should be 9.9 percent. The economic life for switching should be ten years. The normalization of deferred income taxes should be recognized in calculating capital costs, if applicable to Petitioners. A direct expense factor for switching of six percent should be used. Forward-looking engineering fill for switching should be 94 percent. Petitioners' interoffice cable lengths should reflect forward-looking, efficient network configurations. The shorter interoffice transport distances for mobile-to-land traffic should be used in determining transport cable costs. Forward-looking utilization levels for transport should reflect efficient utilization. Transport utilization should be measured in DS1 equivalents rather than "paths." Transport costs must recognize that mobile-to-land traffic involves multiple Petitioner networks. An alternative method for computing transport cable costs should be used. An alternative method for computing transport transmission equipment costs should be used. Petitioners' forward-looking economic costs for transport and termination must be corrected, after adjusting for the items above.
31	
32	I will describe each adjustment or correction to the studies and its importance
33	in determining valid costs. I request that the Hearing Examiner and the
34	Commission consider each modification and adopt the recommendations put
35	forth herein. This will enable forward-looking economic costs to be

1	determined	in	compliance	with	FCC	rules	and	cost-based	reciprocal
2	compensatio	on ra	ites to be esta	blished	1.				

I replicated the cost study and results for Vivian Telephone. The same
methodology is used by all Petitioners, and I will use the Vivian Telephone
study as an example. This should provide a good understanding of how
Petitioners estimated their costs, the basis for the adjustments that I have made
and the rationale for making them.

Finally, I have corrected the Petitioners' transport and termination cost studies
using available information. When the cost studies are corrected, Petitioners'
transport and termination costs range from \$0.0006 to \$0.0014 per minute.
Costs in this range would be the maximum transport and termination rates that
can charged to Alltel per FCC 51.505(e).

13

14 THE ROLE OF ILEC COST STUDIES AND THE ILEC BURDEN OF PROOF

Q. Why are the incumbent LEC cost studies important in this arbitration proceeding?

A. FCC Rule 51.705(a)(1) specifies that an "incumbent LEC's rates for transport and
termination of telecommunications traffic shall be established" on the basis of the
"forward-looking economic costs of such offerings, using a cost study pursuant to
Sec. 51.505 and 51.511." FCC Rule 51.505(e), in turn, provides:

An incumbent LEC must prove to the state commission that the rates for each element it offers do not exceed the forward-looking economic cost per unit of providing the element, using a cost study that complies with the methodology set forth in this section and Sec. 51.511.

26

1

Q.

Are there parts of Rule 51.505(e) that merit highlighting?

2 Yes. Three parts of this rule should be emphasized. First, an incumbent LEC's Α. rates for transport and termination must "not exceed" its forward-looking 3 economic cost of providing transport and termination. Second, it is the incumbent 4 LEC that has the burden of proof. Each Petitioner in this arbitration has the 5 burden to demonstrate that its proposed rate for transport and termination does 6 "not exceed the forward-looking economic cost" of providing transport and 7 termination. As the FCC has stated, "Given the likely asymmetry of information 8 regarding network costs, we conclude that, in the arbitration process, incumbent 9 LECs shall have the burden to provide the specific nature and magnitude of these 10 Third, under FCC Rule 51.505(e), the forward-looking common costs."² 11 12 Petitioners must meet their burden of proof through use of "a cost study that complies with the methodology set forth in this section and Sec. 51.511." 13

14

15 Q. Do FCC rules require LECs to file their cost studies in the record of this proceeding?

A. Yes, FCC Rule 51.505(e)(2) states: "The record of any state proceeding in which
a state commission considers a cost study for purposes of establishing rates under
this section shall include any such cost study."

- 20
- Q. What are the Commission's obligations in developing a rate for transport
 and termination?

² Local Competition Order, 11 FCC Rcd 15499, 15852 ¶ 695 (1996).

A. As noted above, FCC Rule 51.505(e) specifies that an incumbent LEC's
 reciprocal compensation rate must "not exceed" its forward-looking economic
 costs of transport and termination. To make this determination, FCC Rule
 51.505(e)(2) specifies that the Commission shall create "a written factual record
 that is sufficient for purposes of review."

- 6
- 7

Q. What documentation must an incumbent LEC include in its cost study?

8 A. The FCC has held that an incumbent LEC cost study "must explain with 9 specificity why and how specific functions are necessary to provide network 10 elements and how the associated costs are developed."³ An incumbent LEC 11 "must prove to the state commission the nature and magnitude of any forward-12 looking costs that it seeks to recover in the prices of interconnection and 13 unbundled network elements."⁴ In the <u>Virginia Arbitration Cost Order</u>, the FCC 14 stated:

[A] cost model must include the capability to examine and modify the critical assumptions and engineering principles. Underlying data must be verifiable, network design assumptions must be reasonable, and model outputs must be plausible. All data, formulas, and other aspects of the models must be made available to other parties for their evaluation. In other words, a cost model must be transparent and verifiable.

<u>Virginia Arbitration Cost Order</u>, 18 FCC Rcd 17742-43 ¶ 38, 17747 ¶ 48 (2003).

26

15

16

17

18 19

20

21

22 23

24

25

³ Local Competition Order, 11 FCC Rcd at 15850 ¶ 691.

⁴ Id. at 15847 ¶ 680. See also id. at 15852 ¶ 695 ("[I]n the arbitration process, incumbent LECs shall have the burden to prove the specific nature and magnitude of these forward-looking common costs.").

Thus, the cost study documentation must include (1) an electronic copy of the cost model used to produce the study and (2) documentation containing source documents, supporting analyses or computations, *etc.* used to arrive at the assumptions and input data used in the model. The documentation should be organized so that it is not burdensome or costly to review the cost study.

6

5

1

2

3

4

7

8

Q. Have the Petitioners filed their cost studies in this proceeding or provided them to Alltel?

9 A. It is my understanding that as of the date of my direct testimony, the Golden West
10 Companies have not filed their cost studies in this proceeding. The Companies
11 have provided in response to Alltel requests for information electronic copies of
12 the cost model used to compute their claimed costs of transport and termination.
13 Petitioners also have responded, in part, to requests for information on cost study
14 assumptions, input data, *etc*.

15

Q. Have you reviewed the electronic cost model and cost support provided, and
if so, do you consider the cost study documentation to be adequate for
review?

A. I have reviewed the electronic cost model and the cost-related materials provided
in response to Alltel's requests for information. The information provided does
not represent what I consider to be cost study documentation. Cost study
documentation consists of descriptions of methods, work papers, supporting
analyses used to derive input values and source documents collected in an

organized document. The Petitioners did not provide this. Instead, Alltel had to 2 request this information by making specific requests. The responses were not 3 organized in the form of documentation; and more importantly, the responses in 4 many cases were incomplete or unclear.

6 For example, one of the key determinants of transport cable costs is the interoffice 7 route mileage from Petitioners' end office switches to the meet point with the 8 transit carrier delivering mobile-to-land traffic. This route mileage determines the 9 required cable investment and costs. The Petitioners provided "route miles to 10 meet point(s)" and a high level explanation of the mileages. However, I have not 11 been able to piece together the network diagrams, descriptions of fiber rings, 12 cable route mileage data, etc. to verify the accuracy or reasonableness of these 13 "route miles to meet point(s)" values.

14

1

5

15 The situation is analogous to reviewing the cost estimate for building a new 16 house. To do a complete review, you would expect a set of building plans, a list 17 of materials and labor showing quantities of each and their calculation, and source 18 documents for materials, labor and other costs. The Petitioners have provided 19 piecemeal and incomplete information on interoffice network design, the basis for 20 interoffice distance, routes traveled by mobile-to-land traffic, sources of cost data, 21 etc. This makes the review process more difficult, and in some cases, it is not 22 possible to verify key assumptions and input values.

23

Q. Have you been able to draw any conclusions regarding the validity of
 Petitioners' cost estimates from the information provided?

A. Yes, in spite of the poorly organized and incomplete information, I found
significant flaws in the cost studies. These flaws cause the Petitioners' transport
and termination cost estimates to be much too high. Consequently, I have
adjusted the cost studies to correct for the flaws, resulting in revised estimates of
their forward-looking economic costs to transport and terminate Alltel's mobileto-land traffic.

9

Q. In your opinion, have the Petitioners met their burden of proof that the
 transport and termination rates they propose do not exceed their forward looking economic costs?

13 A. No, they have not. The Petitioners have not provided adequate documentation for 14 review. More importantly, as I describe the adjustments necessary to the cost 15 studies, it should be clear that the Petitioners transport and termination costs are 16 based on methods, assumptions and input values, in key instances, that do not 17 comply with FCC Rules 51.505 and 511.

18

19 FCC REQUIREMENTS FOR TRANSPORT AND TERMINATION RATES

20 Q. What are the requirements for cost-based reciprocal compensation rates?

A. FCC Rule 51.705(a)(1) permits an incumbent LEC to charge reciprocal
 compensation to recover the costs for two elements involved in handling traffic
 originating on other carriers' networks: (1) transport, and (2) termination.

Transport and termination rates are to be based on forward-looking economic costs, which the FCC defines in Rule 51.505 as the sum of total element long-run incremental cost ("TELRIC") and a reasonable allocation of forward-looking common costs. As also noted earlier, FCC Rule 51.505(e) imposes on the incumbent LECs the burden of proving that their rates for transport and termination do "not exceed the forward-looking economic cost per unit" of providing each of these elements.

8

1

2

3

4

5

6

7

9

Q. How does the FCC define transport?

10 A. The FCC defines transport in Rule 51.701(c) as "the transmission and any 11 necessary tandem switching of telecommunications traffic subject to section 12 251(b)(5) of the Act from the interconnection point between the two carriers to 13 the terminating carrier's end office that directly serves the called party, or 14 equivalent facility provided by a carrier other than an incumbent LEC." Since Alltel and the Petitioners interconnect indirectly, transport includes the interoffice 15 cable and transmission equipment connecting the LECs' end offices to the "meet 16 point" where they connect to a transit carrier's network.⁵ 17

18

19 Q. How does the FCC define termination?

20

21

A. The FCC defines termination in Rule 51.701(d) as "the switching of telecommunications traffic at the terminating carrier's end office switch, or

⁵ FCC rules define a "meet point" as "a point of interconnection between two networks, designated by two telecommunications carriers, at which one carrier's responsibility for service begins and the other carrier's responsibility ends." 47 C.F.R. § 51.5.

equivalent facility, and delivery of such traffic to the called party's premises." 1 Congress has specified that incumbent LECs may recover in their transport and 2 termination rates only "the additional costs of terminating such calls." 47 U.S.C. 3 § 252(d)(2)(A)(ii). The FCC has interpreted this "additional cost" standard as 4 limiting recovery to usage-sensitive costs. Thus, the portions of an end office 5 6 switch that are not usage-sensitive are not recoverable in transport and termination rates, and an incumbent LEC must recover these non-usage sensitive 7 switch costs from other sources (e.g., end user customers).⁶ In addition. the costs 8 9 of loops from the end office to a customer's premises are not usage-sensitive and therefore are not recoverable in reciprocal compensation.⁷ 10

11

Q. What are the specific requirements for determining the TELRIC of
transport and termination and a reasonable allocation of forward-looking
common costs?

A. FCC Rules 51.505(b) and (c) define TELRIC and forward-looking common costs.
The FCC has described specific requirements related to calculating these costs
including the following:

Plant is to reflect forward-looking technology and costs. The costs of
 switching, transmission and cable plant are to reflect currently available
 equipment, at current vendor prices and company-specific discounts. FCC
 Rule 51.505(d)(1) specifically prohibits the use of embedded or historical

⁶ Local Competition Order, 11 FCC Rcd at 16025 ¶ 1057.

⁷ Loop plant capacity and costs are determined by the number of access lines or other local channels required to provide connections between customer premises and serving wire centers.

costs. For example, the cost study should reflect <u>today's cost</u> to construct a new end office switching system, representing the prices the incumbent LEC would currently pay its switch vendor to engineer, furnish and install the new switch. The study should not reflect switch costs that are either outdated or based on the original cost of existing switches.

End office switching costs must reflect only the usage-sensitive portion of 7 switching plant. The LEC must determine the portion of the costs of 8 purchasing and installing new switching systems caused by the minutes of 9 use, or call attempts, handled by the switches. This requires analyzing the 10 hardware, software and other charges for new switches, identifying fixed 11 12 charges versus charges affected by the volume of demand (lines, interoffice minutes of use, etc.), and categorizing the charges accordingly. Only the 13 14 portion of the total cost of a new switch attributable to usage may be included in end office switching costs; the portion of switch costs that does not vary 15 with usage may not be included in reciprocal compensation rates. 16

17

1

2

3

4

5

6

Plant capacity is to reflect an efficient network configuration. FCC Rule
 51.505(b)(1) specifies that the transport and termination technologies in the
 cost study should use "the most efficient telecommunications technology
 currently available and the lowest cost network configuration, given the
 existing location of the incumbent LEC's wire centers." In addition, the
 capacities of switching, transmission and cable plant in the study should be

sized for efficient forward-looking utilization. Transmission equipment and cables used for interoffice transport, for example, should not be sized so large in the cost study as to produce excessive spare capacity and costs. This would cause transport costs to exceed forward-looking economic costs, which Rule 51.505(e) prohibits.

Support asset costs and operating expenses are to be forward-looking, 7 • efficiently sized and directly attributable to transport and termination. 8 Support assets include land, buildings, power equipment and other plant used 9 10 to house and operate switching systems and transport equipment. In a TELRIC study, these assets are to be sized to support today's technologies, 11 rather than representing existing land, buildings and other assets acquired to 12 support operations and plant in the past. At the same time, support asset costs 13 are to reflect current, rather than embedded land, building and other costs. 14 Similarly, operating expenses for repair and maintenance of switching and 15 transport equipment, engineering, network administration, etc. are to reflect 16 today's business processes, productivity and labor costs. To the extent 17 support assets or various workgroups are employed in producing other 18 products, their costs should be attributed to those products and not to transport 19 20 and termination. [47 C.F.R. §51.505]

21

1

2

3

4

5

6

22 23 • Common costs are to be forward-looking and efficiently incurred. Common costs typically include executive, legal, accounting and other general and

administrative costs. These costs may be shared among all products and
 services. FCC rules call for a reasonable allocation of these costs to be added
 to the TELRIC of transport and termination in setting reciprocal compensation
 rates. [47 C.F.R. §51.505].

6 **REVIEW OF PETITIONERS' COST STUDIES AND PROPOSED RATES**

Q. How have you organized your testimony regarding the Petitioners' cost studies and proposed rates?

This portion of my testimony has four parts. First, I describe the results of the 9 A. Petitioner cost studies and their proposed rates. Second, I will describe the 10 methodology, key assumptions and input data used to compute switching or 11 termination costs and identify specific instances in the cost calculations where 12 they do not comply with the FCC rules. I also recommend changes to the studies 13 14 to comply with these rules. In the third part, a similar description of transport 15 costs will be given along with the necessary adjustments related to these costs. Fourth, I will provide corrected transport and termination costs for each 16 The corrected costs should be used to establish the reciprocal 17 Petitioner. compensation rates. 18

19

5

20 Cost Study Results and Proposed Rates

Q. What are the results of the Petitioners' cost studies and the resulting
transport and termination rates?

1	A.	Table 1 shown below summarizes the Petitioners' claimed transport and
2		termination costs. I understand the values in the "Total" column are their
3		proposed rates.
4		
5		
6		
7		
8		
9		
10		
11		
12	Q.	Please describe the cost study results.
13	A.	The total transport and termination costs estimated by the Petitioners range from
13 14	А.	The total transport and termination costs estimated by the Petitioners range from 0.9 cents per minute for Union Tel. and Sioux Valley Tel. to 2.5 cents per minute
	A.	
14	А.	0.9 cents per minute for Union Tel. and Sioux Valley Tel. to 2.5 cents per minute
14 15	A.	0.9 cents per minute for Union Tel. and Sioux Valley Tel. to 2.5 cents per minute for Bridgewater – Canistota Tel. The costs of the other companies range from 1.1
14 15 16	A.	0.9 cents per minute for Union Tel. and Sioux Valley Tel. to 2.5 cents per minute for Bridgewater – Canistota Tel. The costs of the other companies range from 1.1 cents to 1.7 cents per minute. The Petitioners' transport and termination costs
14 15 16 17	A.	0.9 cents per minute for Union Tel. and Sioux Valley Tel. to 2.5 cents per minute for Bridgewater – Canistota Tel. The costs of the other companies range from 1.1 cents to 1.7 cents per minute. The Petitioners' transport and termination costs consist of four components. <i>Transport–IO electronics</i> and <i>transport–IO plant</i>
14 15 16 17 18	A.	0.9 cents per minute for Union Tel. and Sioux Valley Tel. to 2.5 cents per minute for Bridgewater – Canistota Tel. The costs of the other companies range from 1.1 cents to 1.7 cents per minute. The Petitioners' transport and termination costs consist of four components. <i>Transport–IO electronics</i> and <i>transport–IO plant</i> correspond to "transport," and the <i>switch trunk</i> and <i>switch processor/matrix</i>
14 15 16 17 18 19	A.	0.9 cents per minute for Union Tel. and Sioux Valley Tel. to 2.5 cents per minute for Bridgewater – Canistota Tel. The costs of the other companies range from 1.1 cents to 1.7 cents per minute. The Petitioners' transport and termination costs consist of four components. <i>Transport–IO electronics</i> and <i>transport–IO plant</i> correspond to "transport," and the <i>switch trunk</i> and <i>switch processor/matrix</i>
14 15 16 17 18 19 20	A.	0.9 cents per minute for Union Tel. and Sioux Valley Tel. to 2.5 cents per minute for Bridgewater – Canistota Tel. The costs of the other companies range from 1.1 cents to 1.7 cents per minute. The Petitioners' transport and termination costs consist of four components. <i>Transport–IO electronics</i> and <i>transport–IO plant</i> correspond to "transport," and the <i>switch trunk</i> and <i>switch processor/matrix</i> correspond to "termination."
14 15 16 17 18 19 20 21	A.	0.9 cents per minute for Union Tel. and Sioux Valley Tel. to 2.5 cents per minute for Bridgewater – Canistota Tel. The costs of the other companies range from 1.1 cents to 1.7 cents per minute. The Petitioners' transport and termination costs consist of four components. <i>Transport–IO electronics</i> and <i>transport–IO plant</i> correspond to "transport," and the <i>switch trunk</i> and <i>switch processor/matrix</i> correspond to "termination."

· 18

traffic.⁸ This is a usage-sensitive component of switching that is recoverable in transport and termination rates. The Petitioners' claimed costs range from $1/10^{\text{th}}$ to slightly less than $3/10^{\text{th}}$ of a cent, before necessary corrections.

The *switch processor/matrix* costs include capital costs and operating expenses for portions of the switch associated with the switch central processor, memory, the switch matrix used to provide connections between subscriber lines or between lines and interoffice trunks, and other elements. The Petitioners have treated switch processor/matrix costs as usage-sensitive. This is not correct given today's switch technology and pricing. I will explain later why these costs are not usage-sensitive, and therefore, are not recoverable in reciprocal compensation per the FCC rules. Because they are not usage-sensitive 2/10th to 7/10th of cent of claimed costs should be removed from the proposed reciprocal compensation rate.

14

1

2

3

4

5

6

7

8

9

10

11

12

13

Mobile-to-land traffic is carried among the Golden West Companies' switches over interoffice transport systems, consisting of fiber cables and transmission equipment at each central office used to "add" or "drop" circuits to the transport system.⁹ *Transport–IO electronics* refers to the capital costs and operating expenses of the interoffice (IO) transmission equipment, and *transport–IO plant*

⁸ Capital costs include depreciation expense for the recovery of plant investment, the cost of capital and income taxes.

⁹ The Golden West Companies' cost studies assume on a forward-looking basis the use of Synchronous Optical Networking (SONET). In addition to transporting mobile-to-land traffic, the interoffice transport system carries local, Extended Area Service and toll traffic, as well as a wide array of dedicated special circuits including cable TV, DSL and other broadband applications.

refers to the costs of fiber cable. When properly determined, these costs are recoverable in reciprocal compensation. The Petitioners claim these costs combined to be in the range of 0.5 to 1.7 cents. These costs are substantially overstated, and corrections are required for these costs.

5

6

7

1

2

3

4

Q. Wh

What cost model did the Golden West Companies use to produce their cost studies?

8 A. The Companies used an Excel-based model called the FLEC Telephone Model 9 3.7.1, which I understand was developed by TELEC Consulting Resources, Inc., 10 the same consultants who performed the cost studies on Petitioners' behalf.¹⁰ I 11 was provided an electronic copy of the model and Excel files containing model 12 input data for each of the Petitioners. I ran the model to reproduce the cost study 13 results shown in Table 1.

14

15

Q. What was your impression of the FLEC Model?

A. While it was possible to trace cost calculations from cost model input data to
model output, the calculation of transport and termination costs could be
performed more clearly and concisely. There are fifty spreadsheets in the model,
and the majority of these are not used to compute transport and termination costs.
For the spreadsheets actually used, the calculations could be laid out more
efficiently, in terms of not having to trace calculations across several
spreadsheets; and, the calculations could be presented in a more logical fashion.

¹⁰ FLEC is assumed to represent Forward-Looking Economic Costs.

I prepared Excel spreadsheets to replicate the Petitioners' transport and termination cost calculations and consolidate the key calculations in three spreadsheets – one each for switching, transport cable and transport termination equipment. I did this to confirm my understanding of the cost calculations, to provide a basis for more easily explaining the methodology used and errors that I found, and to simplify the corrections. I will start by describing the methodology, key assumptions and input data used to compute switching costs.

9

1

10 Switching Costs

11 **Q.**

. Please describe how the Petitioners calculated switching costs?

A. Exhibit WCC-2 contains a copy of the spreadsheet prepared to replicate the
Petitioners' cost calculations for switching. I will be using Vivian Telephone as
the example. Column and row headings are provided for reference.

15

Rows 6 through 23 of the spreadsheet show the calculations for the forward-16 looking switch investment for each of five switch clusters and the Custer 17 A switch "cluster" is a host switch and one or more 18 standalone switch. subtending remote switches. For example, the Freeman cluster includes a host 19 20 switch in Freeman, SD and remote switches in Marion, Lesterville, Avon, 21 Springfield, Scotland and Menno. The total switch investment in cell C23 is 22 intended to represent the current cost to purchase and install a new host switch 23 and six new remote switches.

Rows 25 through 35 show the annual costs attributable to switching. Annual costs include capital costs and operating expenses associated with the switching systems, as well as land, buildings and other assets supporting switch plant. Corporate operations expenses also are included (row 34).¹¹ The FLEC Model computes switching annual costs in total, rather than by individual switch cluster, so annual costs appear in the "Total" column (column I).

7 8

1

2

3

4

5

6

The next step in the calculations is important. Rows 37 through 44 specify the 9 portion of switch investment and annual costs that the Petitioners assumed to be 10 attributable to the switch processor/matrix and switch trunk components of the 11 12 switch. The Petitioners consider these switch components to be usage-sensitive and recoverable in transport and termination rates. The percentages in cells I38 13 and I39 are each multiplied by the total switch annual costs (cell I35) to determine 14 15 usage-sensitive annual costs (cells I43 and I44). To obtain the switch processor/matrix cost per minute of use (MOU) (cell I53), the switch 16 17 processor/matrix annual costs (cell I43) are divided by total annual minutes of use 18 handled by the switches (cell I50), which includes local, Extended Area Service 19 (EAS) and toll. To obtain the switch trunk cost per MOU, the switch trunk annual costs (cell I44) are divided by only the interoffice minutes or traffic that utilizes 20

¹¹ Corporate operations expenses include the costs of Executive, Finance, Legal and other functions "common" to ILEC services. After removing any portion of corporate operations expenses attributable to retail services or specific services, these expenses usually represent the forward-looking common costs added to TELRIC to produce forward-looking economic costs. See FCC Rule 51.505(a), (b) and (c).

1		switch trunk equipment, which is the sum of EAS and toll minutes of use (cells
2		148 and 149). This traffic includes some Commercial Mobile Radio Service
3		(CMRS) traffic.
4		
5	Adju	stment 1: Usage-sensitive portion of end office switching costs
6	Q.	Please describe the first adjustment or correction necessary for switching
7		costs?
8	А.	I will start with the most important issue, which relates to the portion of the
9		current cost to purchase and install a new standalone, host or remote switch that is
10		usage-sensitive. The Petitioners' cost studies assume that 70 percent of switch
11		investment is usage sensitive, of which two percent is attributed to Vertical
12		Services and 68 percent is attributed to local, EAS and toll calling (cell I40 of
13		Exhibit WCC-2). The two percent of switch investment for Vertical Services is
14		not included in transport and termination costs; however, 68 percent of switch
15		investment and annual costs are included in the calculation of these costs.
16		
17		FCC Rule 51.505(1) in defining the "efficient network configuration" requirement
18		of forward-looking economic costs requires costs to "be measured based on the
19		use of the most efficient telecommunications technology currently available".
20		The investment in currently available digital switches is driven almost entirely by
21		lines, not usage. The Petitioners assumption of 70% usage-sensitive switching is
22		outdated and results in usage-sensitive switching costs that are grossly overstated.
23		

1

O.

Why is the usage-sensitive portion of end office switching costs important?

2 Section 252(d)(2)(A)(ii) of the Communications Act permits an incumbent LEC Α. to recover in its reciprocal compensation rates "the additional costs of terminating 3 [mobile-to-land] calls." As noted earlier, the FCC has held that under this 4 "additional cost" standard, incumbent LECs may recover in reciprocal 5 compensation only the usage-sensitive portion of their end office switch costs 6 (and not the non-traffic sensitive costs).¹² This means that Petitioners' transport 7 and termination rates may recover only those costs of a new switch that are 8 9 caused by usage. Any new switch costs that remain the same regardless of usage cannot be recovered through Petitioners' transport and termination rates. 10 Accordingly, the Petitioners have the burden of demonstrating what portion of 11 12 new switch costs would be attributable to usage.

13

14 Q. What was the basis for the Petitioners' assumption of 70 percent usage15 sensitive switching?

16 A. In response to an interrogatory, the Petitioners gave the following explanation for
17 their split of switching investment:

¹² See Local Competition Order, 11 FCC Rcd 15499, 16025 ¶ 1057 (1996)("We conclude that such non-traffic sensitive costs should not be considered 'additional costs' when a LEC terminates a call that originated on the network of a competing carrier. For the purposes of setting rates under section 252(d)(2), only that portion of the forward-looking, economic costs of end-office switching that is recovered on a usage-sensitive basis constitutes an 'additional cost' to be recovered through termination charges."); *Local Competition Reconsideration Order*, 11 FCC Rcd 13042, 13045 ¶ 6 (1996)("[T]he 'additional cost' to the incumbent LEC of terminating a call that originates on another network includes only usage-sensitive costs . . . but not the non-traffic sensitive costs . . . Such non-traffic-sensitive costs, by definition, do not vary in proportion to the number of calls terminating over the LEC's facilities and, thus, are not 'additional costs."").

Response 8h: The switch investments are split into several components. The split was made primarily to allow for the elimination of the non-traffic sensitive line portion of the switch from the study. The switch components were split based on knowledge of typical small company switches. The components are line (30%), trunk (10%), matrix (23%) and processor (37%). The 30% line portion is consistent with the FCC's MAG order. 47 C.F.R. Sec. 69.306(d)(2).¹³

9 10

1

2

3

4 5

6

7 8

Q. Did the Petitioners provide any analysis of switch engineering on which their

11

"knowledge of typical small company switches" was based?

12 No, they did not. The important parameters in switch engineering are the number Α. 13 of subscriber lines terminated on the switch, the peak or busy hour (BH) call 14 attempts per line, and the BH call duration in minutes or hundred call seconds (CCS) per line. The switch processors and switch matrices of modern digital 15 switches have more than ample capacity to handle BH call attempts and BH CCS 16 loads, such that the switch exhausts due to line limitations. The Petitioners 17 offered no evidence that in developing the 70 percent usage-sensitive assumption 18 they contacted switch manufacturers to determine current switch capacity 19 20 limitations and drivers of exhaust. Instead, it appears they relied upon outdated "rules of thumb" about switch components and the parameters that cause their 21 22 exhaust.

23

Q. Does FCC Rule 69.306(d)(2) substantiate the use of 70 percent as the usage sensitive portion of today's switch technology?

A. No. FCC Rule 69.306(d)(2) states as follows:

¹³ "Golden West Companies' Objections and Responses to First Set of Interrogatories and Requests for Production of Documents Propounded to Golden West Companies," response to interrogatory 8h.

(2) Beginning January 1, 2002, for non-price cap local exchange carriers, line-side port costs shall be assigned to the Common Line rate element. Such amount shall be determined after any local switching support has been removed from the interstate Local Switching revenue requirement. Non-price cap local exchange carriers may use thirty percent of the interstate Local Switching revenue requirement, minus any local switching support, as a proxy for allocating line port costs to the Common Line category.

12 The FCC Rules in Part 69, including (61,306)(d)(2), deal with the allocation of 13 embedded costs for purposes of establishing interstate access charges. The rules 14 are not intended to provide methods or input data for use in computing forwardlooking economic costs, which are governed by rules in §§51.505 and 51.511. In 15 16 addition, the FCC has specifically found that "[n]either the interstate access 17 charges described in part 69 of this chapter nor comparable intrastate access 18 charges shall be assessed by an incumbent LEC on purchasers of elements that 19 offer telephone exchange or exchange access service." 47 C.F.R. §51.515(a).

20

1 2

3

4

5

6

7

8

9

10 11

Q. In your opinion have the Petitioners met their burden of proof with respect
this issue?

A. No, they have not. The Petitioners have provided no information on current
switch component capacities, especially switch processors and switch matrices,
nor have they demonstrated that component capacities are exhausted by usage,
rather than lines. Secondly, the FCC rules for establishing interstate access
charges are not relevant in determining the cost basis for transport and termination
rates.

1

Q. Has the FCC taken a position on usage-sensitive switching in the context of

3

5

7

8 9

10

11

12

13

14 15

16

17

18

19

20

21

22

23

24

2

forward-looking economic costs or a TELRIC study?

4 A. The most recent FCC decision is the 2003 Virginia Arbitration Cost Order. The

FCC ruled that none of the "getting started" costs of today's modern switches are

6 usage sensitive:¹⁴

We conclude . . . that the "getting started" cost of the switch is a fixed cost, meaning that it does not vary with the number of ports or the level of usage on the switch. We find here that the "getting started" costs of the switch should be recovered on a per line port "Getting started" costs are incurred for capacity that is basis. shared among subscribers. Verizon incurs these costs to be ready to provide service upon demand. Given the record evidence that modern switches typically have large amounts of excess central processor and memory capacity, the usage by any one subscriber or group of subscribers is not expected to press so hard on processor or memory capacity at any one time as to cause call blockage, or a need for additional capacity to avoid such blockage. Thus, no one subscriber or group of subscribers is any more or any less causally responsible for the processor or memory capacity costs. Principles of cost causation, therefore, support a per line port cost recovery approach because, more than any other approach, it spreads getting started costs to carriers in a manner that treats equally all subscribers served by a switch.¹⁵

¹⁴ "The 'getting started' cost of the switch, also known as the 'first cost,' represents the costs of the central processor, memory, maintenance, administrative, test, and spare equipment, and other common equipment. Similarly, "getting started" investment refers to investment for such equipment, and 'getting started' equipment refers to this equipment." *Virginia Arbitration Cost Order*, 18 FCC Rcd 17722, 17871 n.988 (2003).

¹⁵ Virginia Arbitration Cost Order, 18 FCC Rcd at 17903-04 ¶463. See also id. at 17877-78 ¶ 391 ("We agree with AT&T/WorldCom that . . . the 'getting started' costs are fixed costs. That is, they are costs that do not vary with the number of lines, trunks, or usage on the switch. Verizon agreed with AT&T/ WorldCom that switch manufactures today design switches that are limited only in the number of lines that they can serve."); *id.* at 17904 ¶ 465 ("Principles of cost causation do not, therefore, support a per MOU price. . . .").

1		The FCC similarly ruled that software right-to-use (RTU) costs do not vary by
2		usage and should not be recovered on a per-minute basis. ¹⁶
3		
4	Q.	How have State commissions addressed this subject in recent years?
5	A.	In 2003, the Minnesota Public Utilities Commission set an incumbent LEC's rate
6		for termination at zero because it had determined in an earlier UNE docket that
7		modern switches have no usage-sensitive component that impacts the cost of the
8		switch:
9 10 11 12 13 14 15 16 17 18 19		Reciprocal compensation rates must be set "on the basis of a reasonable approximation of the additional costs of terminating such calls." * * * The Commission sees no justification for retaining reciprocal compensation rates that reflect clearly outdated cost estimates The Commission will therefore adjust the end-office switching component of reciprocal compensation rates based on the new unbundled network element rate for that function This results in a new zero rate for one element of reciprocal compensation, due to the adoption of flat-rate pricing for the local switching element Flat-rate pricing, and the resulting zero rate for end-office switching, are just and reasonable ¹⁷
20		The Eighth Circuit Court of Appeals recently affirmed the Minnesota
21		Commission's order, noting that "if no additional costs are incurred, there is
22		nothing to pay":
23 24 25 26 27 28 29		Under federal law, the MPUC was to base the RCR [reciprocal compensation rate] on "a reasonable approximation of the additional costs" of termination The MPUC thus had reason to believe in the RCR proceeding that the costs of modern end-office switching did not vary significantly with usage. Multiple parties in the earlier [UNE] proceeding had introduced evidence consistent with that supposition. On this record the MPUC

¹⁶ See id. at 17907 ¶¶ 472. See also id. at 17906 ¶ 471 (EPHC costs also do not vary by usage).

¹⁷ Investigation into Reciprocal Compensation Rates, Docket No. P-421/CI-03-384, 2003 Minn. PUC LEXIS 99 (Sept. 24, 2003). See also id., 2003 Minn. PUC LEXIS 144 (Dec. 24, 2003) (MPUC denies CLEC reconsideration petition).

1 2		reasonably concluded that the additional costs of terminating a telephone call were approximately zero. ¹⁸
3 4		It should be noted that other State commissions have made similar determinations
5		regarding end office switching costs.
6		
7	Q.	The decisions you have discussed so far involved large incumbent LECs. Are
8		there State commission decisions involving rural ILECs and the portion of
9		usage-sensitive costs for the switches they would use?
10	A.	Yes. In a recent arbitration between seven rural LECs and Verizon Wireless in
11		Illinois, the LECs argued that 70 percent of their switching costs are usage-sensitive
12		and as a result should be included in transport and termination costs. Earlier this
13		year, the Illinois Commerce Commission rejected this argument and held that none
14		of the costs of rural LEC switches are traffic sensitive:
15 16 17 18 19 20 21 22		The Commission is of the opinion that the record is lacking clear evidence that the switch costs at issue here are usage sensitive, sufficient to have us alter our view expressed in the SBC [UNE] case that, in general, switching costs are not traffic sensitive That being the case, we see insufficient reason to depart from our reasoning in the SBC UNE case, 00-0700, and the analysis of the 8 th Circuit Court of Appeals [in <i>Ace Telephone</i>]. Accordingly, we determine that this input should be set at 0%. ¹⁹
23		The Missouri Public Service Commission reached the same result four months
24		ago, in a case involving Cingular Wireless and T-Mobile USA, in rejecting the
25		rural LEC proposal to treat 70 percent of switching costs as usage-sensitive:

¹⁸ Ace Telephone v. Koppendrayer, 432 F.3d 876, 880-81 (8th Cir. 2005). The Eighth Circuit reversed the decision of the district court that had held the MPUC had erred. See Ace Telephone v. Koppendrayer, No. 04-154, 2004 U.S. Dist. LEXIS 24632 (D. Minn., Dec. 6, 2004).

¹⁹ Hamilton County Telephone Co-op/Verizon Wireless Arbitration Order, Docket 05-644 et. al, at 38, 2006 Ill. PUC LEXIS 5 *94-95 (Jan. 25, 2006).

Issue No. 4 – What is the appropriate value for the usagesensitive portion of Petitioners forward-looking end office switching cost?

Petitioners – The HAI [5.0a] Model's input value assigns 70% of switch costs to usage sensitive costs. This is consistent with the FCC's Tenth Report and Order in CC Docket 96-45 and the FCC's "MAG Order."

T-Mobile/Cingular – Usage-sensitive costs for switches have fallen dramatically. The current version of HAI [5.3] uses a 0% end office, non-port fraction. No additional costs are appropriate except interoffice trunk equipment. No more than \$18.33 per line should be used as a flat, monthly rate.

Commission Decision: Consistent with the Arbitrator's Final Decision, the Commission adopts T-Mobile/Cingular's position. The "MAG Order" allows, but does not require, an input value of 70%, but also does not preclude a 0% input value. The Commission agrees that switching costs are no longer traffic sensitive.²⁰

20

1 2

3

4 5

6

7

8 9

10

11

12

13

14 15

16

17

18

19

21 Note in the Missouri arbitration, the Missouri Commission specifically addressed

22 the MAG Order, stating the order "allows, but does not require, an input value of

23 70%, but also does not preclude a 0% input value. The Commission agrees that

24 switching costs are no longer traffic sensitive."

25 Q. What is your position on the usage-sensitive portion of end office switching?

A. I agree with the findings of the FCC and State commissions that I have cited. Based on my research on this issue, switch processors, switch matrices and other getting started components of modern digital electronic switches are sized with sufficient capacity such that the BH call attempts and BH minutes of use or CCS per line in normal, and even high-use situations, do not cause exhaust. Rather, the

²⁰ BPS Telephone Company/Cingular Wireless/T-Mobile Arbitration Order, Case No. TO-2006-1047, at 7, 2006 Mo. PSC LEXIS 342 (March 23, 2006).

quantity of lines terminating on the switch determines the exhaustion of switch 1 2 capacity, and therefore, is the causer of switch investment. The exception to this 3 is the switch trunk equipment that provides the interface to interoffice trunks for outgoing and incoming traffic to other switches. The volume of peak traffic over 4 5 interoffice trunks affects the number of trunk ports required on the switch and the 6 investment in interoffice trunk equipment. I regard these switch components and their investment to be usage-sensitive. Based on my analysis of switches of 7 8 varying sizes, the usage-sensitive trunk equipment investment typically is 10 9 percent or less of total end office switch investment.

10

11 Q. Have the Petitioners provided information that supports your position?

12 A. Yes. The switch investments shown in rows 7-21 of Exhibit WCC-2 were 13 obtained from the Petitioners' response to Interrogatory 23 in Alltel's first set of 14 discovery requests. The response consisted of worksheets showing the 15 development of switch investments. For example, Exhibit WCC-3 shows the 16 switch investment calculations for the Freeman cluster shown in column C of 17 Exhibit WCC-2.

18

The first four line items (two levels of COE startup costs, the cost of the switch controller/server and the cost of LAMA / billing software) are fixed costs per switch. These are costs the FCC in the *Virginia Arbitration Cost Order* called "getting started costs" and concluded were not usage-sensitive. These switch

investments represent 40 percent of total switch investment for the Freeman cluster.

The next two line items are for DS1 trunk units used to interface with interoffice and host-remote transport systems.²¹ The quantity of DS1 trunk units is determined by the volume of interoffice traffic, so the investment for these switch components is usage-sensitive. In this case, switch trunk investment is six percent of total switch investment.

9

1

2

3

10 All of the remaining line items, except the single CLASS/Intercept 11 Announcement Unit, are associated with digital, analog and VoIP line ports, 12 which are not usage-sensitive. Together, the line port investment is 44 percent of 13 total switch investment. (The CLASS/Intercept Announcement Unit is two 14 percent of total switch investment.)

15

Therefore, only six percent of the Freeman switch investment is usage-sensitive, not the 70 percent assumed in the Vivian Tel.'s cost study. The same situation applies to all Vivian Tel. switch clusters, with the usage-sensitive switch trunk investment running from five to seven percent of total switch investment.

20

21

Q. What change do you recommend to correct the cost studies?

²¹ A DS-1 trunk unit has the capacity for 24 voice trunks.

1 Α. I recommend that only switch trunk investment be treated as usage-sensitive. 2 This change can be made in the switching cost spreadsheet shown in Exhibit 3 WCC-2 by changing the switch processor / matrix percentage in cell I38 to zero 4 percent and the switch trunks percentage in cell I39 to the percentage derived by 5 dividing the sum of cells I11 and I12 by cell I23. This represents the actual switch trunk portion of total switch investment. For Vivian Tel. the usage-6 7 sensitive percentage is 6.1 percent. 8 9 Adjustment 2 – Forward-looking weighted average cost of capital 10 **Q**. What is the weighted average cost of capital, and how does it affect 11 **Petitioners' costs?** 12 The cost of capital is the return requirement on debt and equity capital. It reflects A. 13 a weighting of the forward-looking cost of debt (interest on long term bonds) and 14 cost of equity (return required by stockholders through dividends and stock price 15 appreciation). The weighting is based on the expected proportions of debt and 16 equity capital invested in the Petitioners' businesses. The cost of capital is 17 included in transport and termination costs as a return requirement on the plant 18 investment in switches, cable, transmission equipment and other assets. 19 20 Q. What assumptions do the cost studies make with respect to capital mix and 21 the costs of debt and equity?

A. The cost studies assume that Petitioners will have no long-term debt and a
forward-looking cost of equity of 11.25 percent. Since they assumed no debt,

there is no cost of debt in the studies. The weighted average cost of capital is 11.25 percent after tax, and 17.05 percent before tax.²²

These assumptions are questionable, because in a response to Alltel's first request for information, Golden West Telecommunications Cooperative indicated that in 2004 it had \$64.7 million in long term debt, which represented 38 percent of its long term debt and equity capital.²³ The Petitioners also provided no basis for the 11.25 percent cost of equity assumption. This value actually appears to be somewhat low.

10

1

2

3

In a decision earlier this year based on an extensive record on telephone company costs of capital, the California Public Utilities Commission (CPUC) adopted a 12.3 percent cost of equity for Verizon.²⁴ In that same decision, the CPUC noted a previous cost of equity it had set for SBC of 11.78 percent. The CPUC also adopted for Verizon a 33.56 percent ratio of debt to total investor-supplied capital and a 6.15% cost of debt.

17

23

18 Q. What is your recommendation for the weighted average cost of capital to use
19 in the studies?

²² 17.05% = 11.25 percent equity return requirement after tax / (1 - 34%) effective income tax rate).

²⁴ Opinion Establishing Unbundled Network Element Rates and Price Floors for Verizon California and Modifying Decision 99-11-050 Regarding Monopoly Building Blocks, Rulemaking, D.06-03-025, 03/15/06, p. 58-61.

1	A.	I recommend a 38 percent debt ratio. This is the actual debt ratio of the Golden
2		West Telecommunications Cooperative at the end of 2004, and the value is within
3		4.4 percentage points of the debt ratio determined by the CPUC earlier this year.
4		
5		For the cost of debt, a 6.0 percent cost of debt should be used. This is consistent
6		with the interest rates the Golden West Companies currently pay, based on their
7		response to Alltel's second request for information and in line with the CPUC
8		finding in D.06-03-025. ²⁵ For the cost of equity, a 12.3 percent cost of equity is
9		appropriate. This is the value determined by the CPUC and is 1.05 percentage
10		points higher than in the Petitioners' cost studies.
11		
12		These parameters result in a 9.9 percent weighted average cost of capital after tax,
13		and 13.8 percent cost of capital before tax. ²⁶
14		
15	Adju	stment 3 – Economic life for switching
16	Q.	How do economic lives affect transport and termination costs?
17	A.	One component of transport and termination costs is the depreciation expense
18		used to recover capital investment in telephone plant over the life of the plant.
19		Economic lives are used to compute depreciation expenses for switching, cable,
20		transmission equipment and other plant.

²⁵ "Golden West Companies' Objections and Responses to Alltel's Second Set of Interrogatories and Requests for Production of Documents Propounded to Golden West Companies," 07/31/06, response to Interrogatory 33.

²⁶ 9.9% = 38% X 6% + (1 – 38%) X 12.3%. 14.2% = 38% X 6% + (1 – 38%) X (12.3% / (1 – 34% effective income tax rate)).

1		
2	Q.	What did the Petitioners assume for the economic life of switches?
3	A.	The cost studies assume an eight year life for digital electronic switching. From
4		reviewing the cost studies and the responses to Alltel's requests for information, I
5		have not found any substantiation for this assumption.
6		
7	Q.	Is eight years a reasonable estimate for the switching economic life?
8	А.	No, it is too short. Expected lives for switching equipment have declined in
9		recent years. The life assumption in the FCC's USF Inputs Order (Appendix A)
10		from 1999 was 16.17 years. ²⁷ In the Verizon case in California that I described
11		earlier, the CPUC adopted Verizon's current financial reporting life for switching
12		of 12 years. Previously, it adopted SBC's financial reporting life of 10 years. ²⁸
13		The eight year life assumed by the Petitioners, though, is 20 percent shorter than
14		the shortest of these lives.
15		
16		In discussing the basis for its decision to adopt Verizon's proposal for a 12 year
17		switching life, the CPUC noted the following:
18 19 20 21 22 23 24		According to Verizon, the asset lives it proposes consider current network modernization strategies, the impact of technology and competition, regulatory commitments, state demographics, and wear and tear. (Verizon/Sovereign, 11/3/03. p.9) Verizon asserts that competition spurs technological development, shortens the economic life of existing assets, and makes them obsolete.

²⁷ In the Matter of Federal-State Joint Board on Universal Service, CC Docket No. 96-45, Forward-looking Mechanism for High Cost Support for Non-Rural LECs, CC Docket No. 97-160, Tenth Report and Order, adopted 10/21/99.

²⁸ *Id.*, pp.58-59.

1 2 3 4 5 6 7 8		Further, facilities-based competition diverts traffic from the ILEC's network to competitive local carriers' (CLCs) networks. (<i>Id.</i> , p. 11.) Verizon compares its proposed asset lives to those forecast by Technology Futures Inc. (TFI), an independent research organization that specializes in technology market forecasts. Verizon indicates that its proposed lives fall within the range of lives proposed by TFI. (<i>Id.</i> , pp.20-21.)
9		Thus, Verizon considered a 12 year life as taking into consideration factors such
10		as modernization, competition, etc.
11		
12	Q.	What is the recommended life for switching?
13	A.	I recommend a 10 year economic life for switching. This is the same as the
14		CPUC found for SBC in D.04-09-063.
15		
16	Adju	stment 4 – Recognizing the normalization of deferred income taxes in
17	calcu	lating capital costs
17 18	calcu Q.	lating capital costs Please explain this adjustment.
18	Q.	Please explain this adjustment.
18 19	Q.	Please explain this adjustment. In my experience, telephone companies use accelerated tax depreciation for
18 19 20	Q.	Please explain this adjustment. In my experience, telephone companies use accelerated tax depreciation for income tax purposes. The depreciation amounts used to compute taxable income
18 19 20 21	Q.	Please explain this adjustment. In my experience, telephone companies use accelerated tax depreciation for income tax purposes. The depreciation amounts used to compute taxable income are based on shorter lives than book depreciation lives and accelerated
18 19 20 21 22	Q.	Please explain this adjustment. In my experience, telephone companies use accelerated tax depreciation for income tax purposes. The depreciation amounts used to compute taxable income are based on shorter lives than book depreciation lives and accelerated depreciation formula, compared to straight-line book depreciation. This results in
18 19 20 21 22 23	Q.	Please explain this adjustment. In my experience, telephone companies use accelerated tax depreciation for income tax purposes. The depreciation amounts used to compute taxable income are based on shorter lives than book depreciation lives and accelerated depreciation formula, compared to straight-line book depreciation. This results in lower income taxes in the early years of an asset's life. Rather than "flow-
 18 19 20 21 22 23 24 	Q.	Please explain this adjustment. In my experience, telephone companies use accelerated tax depreciation for income tax purposes. The depreciation amounts used to compute taxable income are based on shorter lives than book depreciation lives and accelerated depreciation formula, compared to straight-line book depreciation. This results in lower income taxes in the early years of an asset's life. Rather than "flow-through" the benefits of lower income taxes, telephone companies "normalize"

supplied capital requirements and the cost of capital. In the later years of the
 assets life the effect is reversed, as tax depreciation amounts are less than book
 depreciation.

4

5 Typically in TELRIC studies, capital costs are computed to reflect the benefits of 6 deferred income taxes due to accelerated tax depreciation. It results in lower 7 capital costs and income taxes. The Petitioners' cost studies do not take this 8 benefit into consideration. If the Petitioners use accelerated tax depreciation and 9 normalize the deferred income taxes, their capital costs should be reduced 10 accordingly.

11

12 Q. In correcting Petitioners' switching costs, have you reduced capital costs and 13 income taxes for the effect of normalized deferred income taxes?

14 Yes. The capital cost factor for switching (depreciation, cost of capital and Α. 15 income taxes) computed by the Petitioners is 24 percent (23.8%) (cell J26, Exhibit 16 WCC-2). Assuming normalized deferred income taxes, this value becomes 20.6 17 percent. The capital cost factor is 16.4 percent after further adjusting for the 18 recommended cost of capital and economic life. This is the value that I used in correcting the Petitioners' switching costs. While I did not change the economic 19 lives for cable plant and transmission equipment, I did correct the capital cost 20 factors for these types of plant for the cost of capital and the effect of normalized 21 deferred income taxes. 22

1 Adjustment – Direct expense factor for switching

2 Q. What are direct switching expenses?

A. These are the expenses incurred in maintaining, repairing and rearranging switch
plant. They are charged to account 6212. The expense factor represents the ratio
of expenses in account 6212 to the embedded switching investment in account
2212. Vivian's direct expense factor for switching The other
Petitioners' factors are as follows:

- 8 Armour –
- 9 Bridgewater Canistota –
- 10 Golden West Golden West –
- Sioux Valley –

Kadoka —

- 13 Union **11**
- 14

11

15 Q. What are benchmarks for the expense factor?

A. The ratio of digital electronic switching expenses to investment for Qwest – South
 Dakota in 2005 was only 2.2 percent.²⁹ Similarly, the *alternative CO switching factor* from the FCC USF Inputs Order (Appendix A) was 2.69 percent.

- 19
- Q. Is it reasonable for the Petitioners' expense factors to be so much higher than
 the benchmarks?

²⁹ From ARMIS 43-03 Report, Qwest Corporation, South Dakota, 2005. 2.2% = \$3,027,000 account 6212 / \$138,788,000 account 2212.

1 A. I would expect their switching expenses per dollar of investment to be somewhat 2 higher than those of Qwest in South Dakota, but not as much as 4.6 times higher. One of the reasons for Petitioners' expenses, other than Sioux Valley, being so 3 high is that account 6212 includes not only recurring maintenance and repair 4 expenses (recoverable in transport and termination rates), but also non-recurring 5 service provisioning expenses. The latter are largely for retail services and should 6 7 not be attributed to transport and termination. A second reason, depending on the Petitioners' accounting practices, is that account 6212 also may include software 8 expenditures that are expensed. These software expenditures are non-recurring 9 10 and would cause a Petitioners' expense factor to be high in the year they are The Petitioners apparently did not analyze their digital switching 11 incurred. expenses to remove retail service provisioning expenses and to adjust for one-12 13 time software expenditures, if any.

14

15 Q. What do you recommend for the direct expense factor for switching?

A. I recommend a factor of six percent be used for all Petitioners. This will increase
switching expenses for Sioux Valley. The expenses for Armour and Bridgewater
Canistota will change very little. And, the expenses of the other four Petitioners
will be reduced to what is closer to a forward-looking level of switch maintenance
and repair.

21

22 Adjustment 6 – Forward-looking engineering fill for switching

23 Q. What is switch engineering fill?

A. This is the ratio of lines in service to lines of equipped capacity for the line peripheral equipment of switches (primarily line cards). It is sometimes referred to as the *switch port administrative fill*. Switch line equipment is normally added as line growth occurs. Because line peripheral equipment is relatively easy to augment, the engineering fill factor normally can be maintained at a fairly high level. A factor of 94 percent is a good benchmark.³⁰

7

8 Q. How does engineering fill affect Petitioners' cost study results?

9 Switch investments for line equipment are determined by the amount of equipped Α. 10 line capacity. If too much equipped capacity is provided, switch investments and costs will be higher than necessary, resulting in higher termination costs than 11 permitted by the FCC rules. The switch investments on lines 15, 17 and 19 of 12 Exhibit WCC-2 are based on total equipped lines for Vivian of lines. 13 Vivian's assigned lines (lines in service) total **service**, so the engineering fill 14 reflected in the model is 87 percent. This is the same for all Petitioners. 15

16

17 Q. What is your recommendation for switch engineering fill?

A. The engineering fill or *switch port administrative fill* ordered by the FCC in the
 USF Inputs Order of 94 percent should be used in the cost studies. This will
 lower the equipped line capacity and lower switch investments and costs.

21

³⁰ FCC USF Inputs Order, paragraph 330.

2

О.

Based on the recommendations for switching, have you corrected Vivian's switching costs as shown in Exhibit WCC-2?

A. Yes. After correcting Vivian's switching costs for Adjustments 2-6, the switch
costs per minute of use decrease from \$0.0032 to \$0.0018. Removing switch
processor/matrix costs, which are not usage-sensitive, for Adjustment 1 further
reduces switch costs to \$0.0004 per minute of use. The corrected cost
calculations for Vivian are shown in Exhibit WCC-8. (The final, corrected cost of
\$0.0004 per minute is in cell I54.)

9

10 Transport Costs

11 Q. Please describe again the network elements required for transport?

Transport in the Petitioners' studies consists of two elements – interoffice (IO) 12 Α. 13 plant and IO electronics. IO plant is the fiber cabling connecting switches 14 throughout the Golden West Companies' networks and connecting to meet points 15 with Qwest and the South Dakota Network (SDN) tandem switch. (Alltel mobile-16 to-land traffic does not use the SDN tandem). IO electronics is the transmission 17 equipment at each central office or network node used to add and drop circuits to 18 the interoffice transport systems, to convert electrical to optical signals and 19 provide other functions. I will describe each element separately, beginning with 20 the IO plant or what I will call transport cable costs.

21

Q. Did you prepare an Excel spreadsheet to replicate the Petitioners' transport cable cost calculations?

1	А.	Yes, Exhibit WCC-4 shows the transport cable cost calculations for Vivian
2		Telephone. This spreadsheet displays the method, assumptions and input data
3		used to compute \$0.0060 per minute for Vivian's claimed IO-plant costs shown in
4		Table 1.
5		
6	Q.	Please describe the method used to compute transport cable costs?
7	A.	Vivian indicates that it has 78 interoffice cable routes throughout its network used
8		by interoffice transport systems. I show the first ten of these cable routes for
9		illustration in rows 7 through 16. ³¹ For each cable route, a fiber cable investment
10		(column D) is computed based on the route miles of cable and an installed fiber
11		cable cost of \$2.21 per foot.
12		
13		Cables sizes vary by the number of fibers in the cable. Column E shows that for
14		the first ten cable routes, sizes range from eight to 20 fiber cables. These fibers
15		are used for interoffice transport systems, carrying local, EAS, toll and mobile
16		traffic, as well as digital loop carriers, cable TV and other uses ("Special"). In
17		any cable, a portion of the cables are not in service or "Dark." In column L, the
18		average cable investment per fiber in service is computed, and then in column M
19		the cable investment attributable to transport systems is determined based on the
20		product of the average cable investment per fiber and the fibers used by transport
21		systems (column F). For example, the total fiber cable investment for "Bonesteel
22		to Fairfax" is (based on miles of cable), and is attributed to

.

³¹ For ease of presentation, the other 68 cable routes are not shown on the spreadsheet, although their route mileages and cable investments are included in the total amounts shown on row 105.

1 IO transport. The remaining **Constant** of investment is attributable to loops, 2 CATV, *etc.* The latter investment is not recoverable in transport and termination 3 rates.

4

5 Q. Which variables are important in determining the transport cable 6 investment?

A. <u>Cable route mileages are important.</u> FCC Rule 51.505(b)(1) requires that cable
routes reflect "the lowest cost network configuration." The Petitioners have used
existing cable route distances, which may be a practical measure; however, a
forward-looking design likely would result in more efficient cable routing, shorter
cable lengths and lower costs. Vivian has 548 miles of interoffice cable installed
over 78 cable routes.

13

14 <u>Cable cost per foot is another important variable.</u> In my experience, \$2.21 per 15 foot for installed fiber cable is not unreasonable for the cable sizes expected for 16 rural ILECs.

17

18 <u>The sharing of cables is important.</u> Overall, the Vivian cost study estimates that 19 64.48% of fiber-miles in service (cell N105) are used by interoffice transport and 20 the remainder by digital loop carriers, CATV and other uses. This is key variable 21 in the cost calculations. FCC Rule 51.511 deals with the sharing of network 22 elements. The rule states as follows:

23

The forward-looking economic cost per unit of an element equals the forward-looking economic cost of the element, as defined in §51.505, divided by a <u>reasonable projection</u> of the sum of the total number of units of the element that the incumbent LEC is likely to provide to requesting telecommunications carriers and the total number of units of the element that the incumbent LEC is likely to use in offering its own services, <u>during a reasonable measuring</u> <u>period</u>. (*emphasis added*)

The Petitioners based the 64.48% of total interoffice cable investment assigned to transport on today's uses of fibers in service, rather than a "reasonable projection" of total demand "during a reasonable measuring period." Thus, if the demand for fibers grows for digital loop carriers, CATV, *etc.*, as might be expected, in comparison with transport systems carrying voice traffic and special circuits, then the 64.46% would be reduced. The cable investment attributable to the transport system of \$4.1 million (cell M105) would be reduced as would the transport cost.

17

1 2

3 4

5

6

7 8

9

18 Q. Continue describing the calculation of Vivian's transport cable cost per
 19 minute,

A. Rows 108 through 116 show the annual capital costs and operating expenses associated with the portion of interoffice cable used for transport. Annual cost factors are computed in column N, rows 108-117. These are simple ratios of each annual cost to the total transport cable investment. The overall annual cost factor is 25.4 percent of investment, which includes corporate overheads or "common costs."

26

1	The next step also is important. As I described earlier, transport consists of two
2	elements - the transport cable and the transmission equipment. Transmission
3	equipment capacity and costs are driven by the quantity of circuits and bandwidth
4	of the circuits (DS1, DS3, OC3, etc.). ³² Forward-looking economic costs per unit
5	according to FCC Rule 51.511 are calculated by dividing the forward-looking
6	costs of transmission equipment by the total demand for bandwidth, consuming
7	the capacity of the equipment. Transport cable costs per unit also are based on
8	total demand for bandwidth. ³³
8 9	total demand for bandwidth."
	It is my understanding based on responses to Alltel information requests that cells
9	
9 10	It is my understanding based on responses to Alltel information requests that cells
9 10 11	It is my understanding based on responses to Alltel information requests that cells M120-M122 represent the total demand served by Vivian over its interoffice
9 10 11 12	It is my understanding based on responses to Alltel information requests that cells M120-M122 represent the total demand served by Vivian over its interoffice transport systems. ³⁴ This consists of 3,594 voice trunks and 298 special circuits. ³⁵

³² DS1, DS3, OC3, *etc.* refer to different levels of bandwidth. A DS1 circuit is for transmission of approximately 1.5 million bits per second. A DS3 is the equivalent of 28 DS1s, and an OC3 is the equivalent of three DS3s or 84 DS1s.

³³ Transport cable forward-looking economic costs per unit are computed in two stages. In the first stage, the total investment and costs of fiber cable is divided by total fibers in service to compute a *cost per fiber*, which is the driver of cable capacity. In the second stage, the total investment and costs of fiber cable attributable to the transport system is computed by multiplying the *cost per fiber* times four fibers typically required for a transport system. The transport system cable cost is divided by the total bandwidth in service on the transport system.

³⁴ The title on page GWD020206 of Vivian's response to Alltel's first data request states, " Interxchange Special Circuits Using Vivian Telephone Facilities."

³⁵ Special circuits are circuits providing a dedicated transport channel of a particular bandwidth. Special circuits are not equivalent to voice grade trunks in purpose or consumption of network resources. Subscribers use these circuits for private lines and special access.

special circuit each count as one path, even though the OC3 circuit has the capacity of 2,016 DS0s.

4 The Petitioners' cost model allocates the total transport annual costs (cell M117) 5 between switch trunks and special circuits based on their portions of "paths." To 6 better illustrate the underlying assumptions and input values, I have shown the 7 calculations differently, although the method is algebraically the same. The total 8 transport annual costs are divided by "total paths" (cell M122) to compute a 9 transport cable annual cost per path. This cost is next divided by Vivian's annual 10 minutes of use per switch trunk (cell M126) to arrive at the transport cable cost 11 per minute of \$0.0060.

12

1

2

3

13 Q. Do Petitioners' methods, assumptions and input data for computing 14 transport cable costs comply with the FCC rules?

15 A. No, they do not comply with the FCC rules in several important aspects.

- Petitioners have not demonstrated that current interoffice cable lengths reflect
 an efficient network configuration. To the extent existing cable lengths might
 be shortened by redesigning cable routes, this would result in lower transport
 cable investment and costs.
- Petitioners cost studies do not recognize the shorter transport distances to
 Qwest's tandem switches for mobile-to-land traffic versus transport distances
 to the SDN tandem switch. This causes transport cable costs to be
 overestimated.

Petitioners have not projected demand for fibers over a reasonable future
 period, likely overstating the proportion of transport cable costs attributable to
 the interoffice transport system versus other users. These other users include
 digital loop carriers, cable TV and special circuits (columns G-I). As total
 demand for fibers grows, the cable investment per fiber will decline, resulting
 in lower cable investment and costs attributable to the transport system
 carrying mobile-to-land traffic (column M).

- The utilization level for switch trunks is low in terms of the average annual
 minutes of use per switch trunk. This causes transport cable and transmission
 equipment costs per minute to be high. The utilization levels for the transport
 systems (OC12, OC48 and OC192 sized systems) and DS1 trunks also are
 likely to be low.
- The method used by Petitioners to measure total demand for transport is
 incorrect. Their method causes too much of transport cable and transmission
 equipment costs to be attributed to switch trunks and too little of these costs
 attributed to special circuits. The costs of special circuits are not recovered in
 transport and termination rates.
- <u>The transport of mobile-to-land traffic appears to often involve multiple</u> <u>Petitioner networks, such that the transport cable and transmission equipment</u> <u>costs computed for individual Petitioners are not valid</u>. To determine the cost of transporting a mobile-to-land call from the meet point with the transit carrier to the terminating end office requires computing costs for the transport cables and transmission equipment across these networks.

2 To varying degrees, the Petitioners have failed to meet their burden of proof by 3 substantiating the methods, assumptions and input values related to each of these 4 They have not shown that interoffice cable lengths reflect efficient issues. 5 network design. The studies do not reflect the fact that mobile-to-land traffic travels shorter transport distances than other traffic. The Petitioners have not 6 demonstrated that utilization levels - fibers in service to fiber capacity, DS1s in 7 8 service to transport system capacity, switch trunk DS0s in service to DS1 capacity and minutes per switch trunk DS0 - are forward-looking and reasonable. They 9 have not demonstrated that "paths" is an accurate measure of capacity 10 11 consumption and cost causation. And, the Petitioners have not explained why transport cable and transmission costs for each Petitioner apparently are limited to 12 13 its portion of the transport route that a mobile-to-land call travels.

14

1

15 Adjustment 7 – Forward-looking interoffice cable lengths

16 Q. What do you recommend with respect to interoffice cable lengths?

17 The Petitioners have used their current interoffice cable lengths connecting Α. existing network nodes. The concern is that some of the cable routes used in the 18 study may not be used by mobile-to-land traffic, or perhaps may no longer be in 19 20 service, causing interoffice cable lengths to be longer than necessary. The Petitioners have provided network diagrams illustrating their network layouts and 21 However, I have not been able to use this 22 information on cable routes. 23 information to trace mobile-to-land call routes, to identify any cable routes not

used by mobile-to-land traffic, or cable routes, if any, not in service. The
Petitioners should augment their network diagrams showing their fiber rings, the
cable routes making up each ring and the routing of mobile-to-land calls. Also, if
any cable routes are no longer in service, these should be identified. Then,
interoffice cable lengths should be adjusted, as necessary. In the meantime, I
have adjusted interoffice cable lengths to reflect the shorter distance traveled by
mobile-to-land traffic (Adjustment 8).

8

9 Adjustment 8 – Reflecting the shorter interoffice transport distances for mobile-to10 land traffic

11 Q. Could you provide more background on this issue?

12 A. In reviewing Petitioners' calculation of transport cable costs, I showed that total 13 transport cable costs (cell M117, Exhibit WCC-4) are divided by total paths (cell 14 M122). In effect, the cost of a circuit of average length is being calculated. 15 However, the cable route mileage required for a mobile-to-land call from a Qwest 16 tandem is much shorter than a call to or from the SDN tandem. In response to 17 Alltel's second data request, the Petitioners provided information on these 18 distances for each end office. The distances are summarized in the following 19 table:

Transport Distances

		stance (miles) t	0:
End Office	Tandem	SDN Tandem	% Difference
Armour	· · · · · ·		
Armour	214.47	346.25	61%
Bridgewater			
Bridgewater	146.38	278.16	90%
Canistota	146.38	278.16	90%
Golden West			
Hot Springs	196.23	660.78	237%
Philip	196.23	660.78	237%
Pine Ridge	196.23	660.78	237%
Wall	196.23	660.78	237%
Kadoka			
Kadoka	-	1,135.17	NA
Union			
Hartford	7.30	278.16	3710%
Wall Lake	7.30	278.16	3710%
Sioux Valley			
Dell Rapids	6.00	139.08	2218%
Plankinton	5.40	139.08	2476%
Vivian			
Burke	114.21	717.07	528%
Custer	260.43	660.78	154%
Freeman	-	938.94	NA
Mission	184.25	787.11	327%
Rosebud	205.16	808.02	294%
Winner	57.92	660.78	1041%
	Armour Armour Bridgewater Bridgewater Canistota Golden West Hot Springs Philip Pine Ridge Wall Kadoka Kadoka Union Hartford Wall Lake Sioux Valley Dell Rapids Plankinton Vivian Burke Custer Freeman Mission Rosebud	QwestEnd OfficeTandemArmour214.47BridgewaterBridgewaterBridgewater146.38Canistota146.38Golden West196.23Hot Springs196.23Philip196.23Vall196.23Kadoka-Kadoka-Union7.30Wall Lake7.30Sioux ValleyDell RapidsDell Rapids6.00Plankinton5.40Vivian-Burke114.21Custer260.43Freeman-Mission184.25Rosebud205.16	End Office Tandem SDN Tandem Armour 214.47 346.25 Bridgewater 146.38 278.16 Bridgewater 146.38 278.16 Canistota 146.38 278.16 Golden West - - Hot Springs 196.23 660.78 Philip 196.23 660.78 Pine Ridge 196.23 660.78 Wall 196.23 660.78 Wall 196.23 660.78 Wall 196.23 660.78 Kadoka - 1,135.17 Union - 1,135.17 Hartford 7.30 278.16 Sioux Valley - 1,135.17 Dell Rapids 6.00 139.08 Plankinton 5.40 139.08 Plankinton 5.40 139.08 Vivian - 938.94 Burke 114.21 717.07 Custer 260.43 660.78 Freem

13

1

14 Note that in two offices, Kadoka and Freeman, the Qwest meet point actually is located in the central office. This means the mobile-to-land transport distance is 15 16 zero, or no more than the length of an intra-office cable. The distances to the SDN tandem for these same offices is over 900 miles (ring route miles). There 17 18 are four other Petitioner offices that are less than ten miles from the meet point 19 with Qwest, and their distances to the SDN tandem range from 139.08 to 278.16 20 miles. In every case, the distance to the SDN tandem is substantially greater than the transport distance for mobile-to-land traffic. Transport cable costs should be 21 22 computed specifically for the distances applicable to this traffic. Otherwise, the

1		transport rate charged to Alltel will be subsidizing other services, which is
2		specifically prohibited by FCC Rule 51.505(d)(4).
3		
4	Q.	How do you plan to address this issue?
5	A.	Later in my testimony, I will recommend an alternative method for computing
6		transport cable costs. The method specifically addresses this issue and others.
7		
8	Adju	stment 10 – Correct utilizations levels for transport
9	Q.	Are there several utilization levels involved in computing transport costs?
10	A.	Yes. There are four utilization levels that are important in the transport cable cost
11		studies. These include:
12		• Fiber utilization. This is the forward-looking average number of fibers in
13		service per cable. Fiber utilization affects transport cable costs per fiber and
14		subsequently transport cable costs per minute.
15		• Interoffice transport system utilization. The Petitioners have assumed
16		forward-looking transport system sizes of OC12, OC48 and OC192. These
17		are large systems capable of transporting significant volumes of switch trunks,
18		special circuits and others. The Petitioners cost studies do not explicitly
19		identify forward-looking utilization levels in terms of DS1 equivalents in
20		service.
21		• DS1 utilization. Switch trunks carrying mobile-to-land traffic are normally
22		transported on DS1 circuits. The cost studies do not indicate the utilization
23		level or average number of switch trunks per DS1.

Annual minutes of use per switch trunk.

2

3 Q. Do you question the utilization levels in the Petitioners cost studies?

4 Yes. In the case of Vivian, its average fiber utilization level is 47.9 percent. A. 5 Utilization levels for the other Petitioners range from 25 to 63 percent. This is 6 based on current fiber-miles in service. FCC Rule 51.511(a) requires in this case 7 that total demand for fibers be projected over a reasonable period, so that if 8 Vivian expects additional demand above current levels, the per-unit transport 9 cable costs reflect higher utilization. Also, if the growth is in usage by digital 10 loop carriers, cable TV, etc., this will result in a smaller portion of costs being 11 assigned to the interoffice transport systems carrying mobile-to-land traffic.

12

13 The Petitioner cost studies do not identify their transport system and DS1 14 utilization levels, though I suspect these utilization levels are low given the size of 15 the assumed transport systems (OC12, OC48 and OC192). The alternative 16 method that I am recommending for computing transport cable costs requires 17 specific estimates of these utilization levels, so that they can be verified as being 18 reasonably efficient. Finally, the annual minutes of use per trunk are low.

19

20 Q. How did you conclude that annual minutes of use per trunk are low?

A. For Vivian, I divided the EAS and toll annual minutes used to determine per minute transport costs by the number of switched trunks. Vivian indicated its
 EAS and toll minutes are approximately 58 and 103 million per year (Exhibit

- WCC-2, cells I48 and I49). The total annual minutes of approximately 161 million were divided by 3,594 switch trunks (Exhibit WCC-4, cell M120) to calculate an average of 44,705 annual minutes per switch trunk.³⁶
- 4

2

3

5

0.

Is this an efficient level of utilization?

A. Trunk utilization of 44.7 thousand minutes per year is low. Trunks are sized to
handle BH usage. To approximate the BH usage associated with 44,705 annual
minutes of use, I used several traffic parameters from the FCC's USF Inputs
Order (Appendix A). I divided the annual minutes of use by 270, which is the
annual to daily reduction factor. This yields 165.6 minutes per day. This figure
is multiplied times a 10 percent busy hour (BH) fraction of daily use, resulting in
16.56 minutes per trunk during the busy hour.

13

14Traffic is measured in units of 100 call seconds (centum call seconds or CCS), so15I next multiplied 16.56 minutes times 60 seconds per minute, and divided by 10016seconds per CCS. This indicated busy hour traffic of 9.93 BH CCS. Assuming1727.5 BH CCS as the maximum trunk occupancy, again from the FCC USF Inputs18Order (Appendix A), the average trunk utilization would be only 36 percent. This19means that spare capacity for Vivian's average switch trunk is 64 percent. While

³⁶ Vivian indicated that it also has 237,975,921 local minutes per year; however, no portion of these minutes were identified as minutes transported over trunks or used in the calculation of transport costs per minute. To the extent that a portion of these minutes may be host-to-remote traffic or interoffice local traffic, which would be over switch trunks, this would increase the annual minutes per switch trunk. However, it would correspondingly lower the transport cost per minute.

1		some switch trunks would have higher utilization, others would be lower than 36
2		percent. This is not efficient utilization.
3		
4	Q.	What are the transport minutes per switch trunk for the other Petitioners?
5	А.	These are shown in the table below. The range of annual minutes per trunk is
6		33,405 to 58,586, with an average of 47,766 or approximately the same level as
7		Vivian.
8		
9		
10		
11		
12		
13		
14		
15		
16	Q.	What is a reasonable benchmark for annual minutes per trunk?
17	А.	FCC Rule 51.513(c)(4) recommends a loading factor of 9,000 minutes per month
18		per voice-grade circuit for computing proxy-based rates for shared transmission
19		facilities between tandem switches and end offices. This equates to 108,000
20		annual minutes per trunk (= 12 X 9,000 minutes per month). Using the same
21		methodology as before, the average trunk utilization given 108,000 annual

1		minutes per trunk would be 87 percent. This would be a more efficient level of
2		utilization. ³⁷
3		
4	Q.	What is the effect on Vivian's transport cable cost per minute of using the
5		more efficient level of utilization recommended by the FCC?
6	A.	Annual minutes of use per switch trunk of 108,000 would be substituted for
7		44,705 in cell M126. The transport cable cost per minute would be reduced from
8		\$0.0060 to \$0.0025.
9		
10	Q.	What is your recommendation regarding transport utilization levels?
11	А.	I will provide a recommendation for each of the four utilization levels when I
12		describe the alternative method for computing transport cable costs.
13		
14	Adju	stment 10 – What is the correct utilization measure for transport?
15	Q.	Please describe the flaw you found in the studies with respect to how
16		transport utilization is measured.
17	A.	Petitioners measure demand for transport capacity or utilization in terms of
18		"paths," where a path is one circuit regardless of its bandwidth. A DS0 circuit
19		would be counted as one path, and an OC3 circuit with the bandwidth of 2,016
20		DS0 circuits would be counted as another path. This is an incorrect measure of
21		transport capacity consumption and cost causation. It understates the transport
22		system capacity consumed by special circuits, which include OC3 circuits and

³⁷ With respect to footnote 36, using 108,000 annual minutes of use per trunk would apply irrespective of whether a portion of Petitioners' local minutes are interoffice traffic.

other high-bandwidth circuits, and results in an overstatement of the transport cable and transmission equipment costs per minute underlying Petitioners' proposed reciprocal compensation rates.

4

3

1

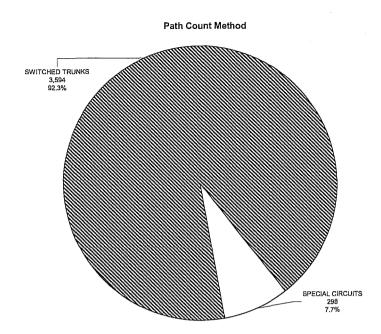
2

5

O.

Would you illustrate the problem?

A. Suppose a school bus, which is a form of transport, costs \$10,000 per year to
operate, and suppose there are 20 children who ride the bus.³⁸ The annual cost
per rider would be \$500 (\$10,000 divided by 20 *children*). If the school district
charged for bus transportation, each household would be expected to pay \$500 per
child.


11

Suppose instead that demand for seats on the bus was measured in terms of 12 13 households, and suppose there are 15 households with children riding the bus, ten 14 households with one child and five households with two children. The cost per household is \$666 (\$10,000 divided by 15 households). However, households do 15 16 not consume the capacity of the bus; capacity is consumed by children requiring 17 seats. But using households as the method of measurement, the cost per child in the ten single-children households is \$666, whereas the per-child cost in the five 18 19 dual-children households is \$333. Most families would regard this methodology 20 as unfair, not to mention inconsistent with the way capacity is consumed and costs 21 caused. This is the methodology used by the Petitioners.

³⁸ The bus has 40 seats, but total demand at the present time is 20 children occupying 20 seats of capacity.

1	Q.	How does the Petitioners' methodology do this?
2	А.	In computing total "paths" (cell M122), Vivian adds the quantity of switch trunks,
3		3,594, to the quantity of special circuits, 298. The switch trunks are voice
4		channels equivalent to a transmission speed of 64 kilobits per second or a DS0
5		circuit. The following table shows a breakdown of the 298 special circuits in
6		terms of their transmission speeds and the equivalent number of DS0 circuits.
7		
8		
9		
10		
11		· ·
12		
13		The 298 special circuits consume more of the transport system capacity than
14		indicated in the "path" measurement used by the Petitioners. Counting one
15		circuit, regardless of bandwidth, as one path is analogous to measuring
16		households rather than children requiring seats on the bus. Under the Petitioners
17		method, 92 percent of the total transport cable cost is attributed to switch trunks,
18		with only eight percent going to special circuits. ³⁹ This is illustrated in the graph
19		below.
20		
21		
22		

 $[\]frac{1}{39}$ 92% = 3,594 switch trunks / (3,594 switch trunks (DS0 equivalents) + 298 special circuits).

Q. What is the effect on Vivian's transport cable cost per minute, if a consistent measure of transport system capacity consumption is used?

A. Substituting 22,879 DS0 equivalents for the 298 special circuit quantity (cell
M121) results in total DS0 equivalents of 26,473. The transport cable cost per
DS0 becomes \$39.75, and the transport cable cost per minute becomes \$0.0009
rather than \$0.0060. As in the "children" versus "households" analogy, this gives
a more consistent measure of capacity consumption and a more fair measure of
unit costs. The Petitioners method is wrong and dramatically overstated transport
cable costs per minute.

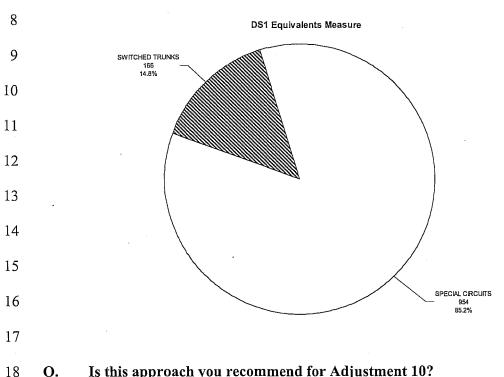
11

12 Q. Do you recommend using DS0 equivalents as the common measure of 13 transport system capacity consumption?

No. DS1 equivalents, rather than DS0 equivalents, is a better common measure of 1 Α. 2 transport system capacity consumption. I say this for two reasons. First, while a 3 switch trunk is the equivalent of a DS0 circuit, trunks are combined in DS1 circuits for transport to other switches. Referring to Exhibit WCC-3, note that 4 "trunking/toll" and "host-remote" equipment is purchased in units with DS1 5 capacity. Second, based on information provided by the Petitioners in response to 6 Alltel requests for information, the OC12 and OC48 SONET transmission 7 equipment used by the Petitioners receive interoffice transport circuits at DS1 8 9 level or higher, not at DS0 level. So, the measure of bandwidth consumption for 10 switch trunks should be DS1s.

11

In the Vivian example, the 3,594 switch trunks should be divided by the quantity of DS0s per DS1. Rather than use the full 24 DS0s per DS1, I have used the 90% *maximum trunk fill* from Appendix A of the FCC's *USF Inputs Order* multiplied times 24 DS0s per DS1. This results in approximately 166 DS1 circuits for switch trunks (= 3,594 switch trunks / (90% fill X 24 DS0 / DS1)).


17

Q. If DS1s are used as the "common denominator" for switch trunks and special
circuits, rather than paths, what would be Vivian's transport cable cost per
minute?

A. The switch trunk DS1s would be 166, and the special circuit equivalent DS1s
 would be 954.⁴⁰ This results in a total of 1,120 DS1 equivalents. The transport

 ⁴⁰ 954 = (55 DS0s / 21.6 DS0s per DS1) + 223 DS1s + 17 DS3s X 28 DS1s per DS3 + 3 OC3s X
 84 DS1s per OC3.

cable cost per DS1 would be \$940. This figure would be divided by 21.6 switch trunks per DS1 and 44,705 minutes per trunk, resulting in a corrected transport cost per minute of \$0.0010 or 1/6th the value in Vivian's cost study. Using DS1s as the common measure of transport system capacity consumption correctly results in a substantial portion of transport costs being assigned to special circuits as illustrated in the following graph.

Is this approach you recommend for Adjustment 10? **Q**.

Yes. Rather than use "paths" as the measure of capacity consumption, equivalent 19 A. 20 DS1s should be used. This is consistent with the purchase of switch trunk 21 equipment and the consumption of transport transmission equipment. It also is 22 consistent with FCC Rule 51.511(a).

23

1

2

3

4

5

6

Adjustment 11 – Recognizing that mobile-to-land traffic involves multiple Petitioner
 networks

3 **O.** Please

Q. Please describe this issue.

A. Earlier I gave the FCC definition of transport in §51.701(c) as "the transmission
and any necessary tandem switching of telecommunications traffic ... from the
interconnection point between the two carriers to the terminating carrier's end
office that directly serves the called party, or equivalent facility provided by a
carrier other than an incumbent LEC." Transport for the Petitioners includes the
interoffice cable and transmission equipment from the meet points with the transit
carrier to the end offices serving their customers.

11

12 In many cases, it appears that a single Golden West Company does not own all 13 transport cable and transmission equipment from the meet point with Qwest to the 14 terminating end office. For example, in the case of Vivian, Alltel traffic is 15 delivered by Qwest at three meet points – near Presho, SD, at Skyline Drive in Rapid City and in the Freeman central office building. Vivian's Custer switch 16 17 receives Alltel originated traffic beginning at the Qwest meet point at Skyline Drive in Rapid City. From there the traffic travels over a ring to Hot Springs, a 18 Golden West Telecom wirecenter, and then over another ring to Custer. Portions 19 20 of the ring plant appear to be owned by Vivian and Golden West Telecom. 21 Vivian also shares rings with Armour Telephone, Union Telephone, Sioux Valley Telephone and Bridgewater/Canistota Telephone. 22

When Vivian computes the transport cable cost per minute shown in Exhibit WCC-4, it appears the cable routes are only cables owned by Vivian, and the total paths are only switch trunks and special circuits using Vivian facilities. The transport cable cost per minute would not include costs of cables owned by other Petitioners. If my assessment is accurate, then the transport cable cost per minute computed by Vivian does not accurately measure the cost of transporting mobileto-land traffic from Qwest meet points to Vivian's end offices.

8

9 Q. How should transport cable costs be calculated in order to address this issue?

10 A. The following approach should be used:

For each Petitioner end office, the cable route mileage from the Qwest meet point to the end office should be determined. This should be the route traveled by mobile-to-land traffic following a least-cost route. The distance would be the length of the overall route. This may involve intermediate cable routes owned by one or more Petitioners. This step should incorporate Adjustments 7 and 8.

Forward-looking transport cable costs per minute of use should then be
 computed for each end office based on the route mileage, cable cost per foot
 and the various forward-looking utilization levels of the interoffice transport
 system, DS1 circuits carrying switch trunks and the trunks themselves. This
 step should address Adjustments 9 and 10.

1		• Finally, weighted transport cable costs per minute - for an individual
2		Petitioner or all Golden West Companies – should be computed using lines in
3		service at each end office as the weighting factor.
4		
5		This approach is consistent with the FCC's definition of transport and the
6		computation of forward-looking economic costs per FCC Rules 51.505 and
7		51.511.
8		
9	Q.	Do you have the data necessary to compute transport cable costs as you
10		described?
11	A.	Yes, sufficient information is available to make reasonable estimates of forward-
12		looking transport cable costs. As I go through the calculations for Vivian, I will
13		point-out instances in which the calculations might be refined, although I do not
14		believe the results would change materially.
15		
16	Q.	Should transport costs be computed for each company?
17	A.	Company-specific transport and termination costs and rates are required by the
18		FCC rules. ⁴¹ It is my understanding that the Golden West Companies effectively
19		are one company in terms of corporate ownership and the sharing of transport
20		facilities. My recommendation would be to compute transport cable and
21		transmission equipment costs for the companies combined. This yields a single
22		rate that recognizes that transport actually involves a mixture of Petitioners' plant

⁴¹ Incumbent LECs with different transport and termination costs may use the same rate as long as the rate does not exceed the costs of the individual companies. (FCC 51.505(e))

Nevertheless, individual company costs may be computed and 1 and costs. 2 different rates set for each Petitioner. I have computed corrected transport cable 3 costs for each company. 4 Adjustment 12 – Proper method for computing transport cable costs 5 6 **Q**. Please describe the method you recommend for computing transport cable 7 costs. 8 Exhibit WCC-5 shows the approach that I recommend and have used to correct A. 9 Petitioners' cost studies. The calculations begin with a fiber cable installed cost 10 per foot of \$2.18 (row 7). This is the average cable cost for all Petitioners, though 11 the range of cable costs is just \$2.15-\$2.25 per foot (with the exception of Kadoka 12 which has only 0.5 miles of cable). This cost is converted to an investment per 13 mile by simply multiplying by 5,280 feet. The investment is converted to a fiber 14 cable annual cost per mile by multiplying the investment times a 23.6 percent 15 annual cost factor. This factor reflects adjustments to cable capital costs for the 16 cost of capital and normalization of deferred income taxes. The result of 17 \$2,706.16 (row 12) is the annual capital costs and operating expenses (including 18 common costs) for one mile of cable.

19

I computed an average of 14.7 fibers per cable for Petitioners' existing cable routes and entered this on row 14. I also calculated the current, average utilization of cable fibers. The figure is 52.8 percent, indicating that on average a cable has 7.8 fibers in service.

2

Q. Is it appropriate to use the current fiber utilization level?

A. The fiber utilization level should be forward-looking. As I explained earlier, it
should reflect the total demand for fibers projected over a reasonable period of
time as the demand for fiber grows. I recommended that the Petitioners make
estimates of their anticipated demand for fibers. One way to do this would be for
the Petitioners to provide a forward-looking value for fiber utilization to substitute
for the existing utilization level on row 15.

9

10

Q. What is the next step in the calculations?

11 A. The fiber cable annual costs per mile are divided by 7.8 fibers in service per cable 12 to calculate \$348.22 per year as the cost per fiber-mile. This figure is multiplied 13 times four fibers per IO transport system – one to transmit, one to receive and two 14 for back-up. This value is typically used for SONET transport systems and is 15 contained in Appendix A of the FCC *USF Inputs Order*. This gives a figure of 16 \$1,392.90 per mile for the annual costs of fiber used by the transport system.

17

The next step is to compute per-unit costs for the fiber cable in a manner consistent with FCC Rule 51.511. This is done in three steps. <u>First</u>, the fiber cable cost per DS1 in service is calculated. This is the cost per unit of capacity in service for the transport system. <u>Second</u>, the cable cost per switch trunk (DS0) is computed based on forward-looking utilization of DS1 circuits carrying voice traffic. <u>Third</u>, the cost per minute of use is calculated based on 108,000 annual

1 minutes per switch trunk (DS0). The key variables in these calculations are the 2 forward-looking utilization levels for the transport system, the DS1 circuits 3 carrying switch trunks and the switch trunk.

ġ,

- 4
- 5

Q. What value did you use for transport system utilization?

6 A. The cost studies and information provided in response to Alltel's data requests did 7 not provide current utilization levels (DS1s in service per system) or forward-8 looking estimates of utilization. I made a very conservative estimate of 9 utilization. I assumed that forward-looking utilization would be at least the level 10 necessary to justify the use of a particular transport system. For example, to 11 justify an OC12 transport system demand equal to at least an OC3 is needed, 12 otherwise it would be more cost effective to place an OC3 system. For the OC12 13 transport system, I assumed forward-looking utilization of one OC3 of capacity -14 25% of OC12 system capacity. One OC3 is equivalent to 84 DS1 circuits shown in cell B26.⁴² The DS1s in service for OC48 and OC192 systems are computed in 15 a similar manner. 16

17

18 Q. Do you believe forward-looking utilization levels are higher than 25 percent?

A. Yes, assuming such large transport systems are justified in the first place. If the
Petitioners believe their forward-looking networks will have demand for switched
and non-switched circuits to justify such large systems, the utilization levels
should be greater than 25 percent. The problem comes when large transport

⁴² 84 DS1 = 3 DS3 / OC3 X 24 DS1 / DS3.

systems are placed and demand does not reach efficient utilization levels. The result is higher costs per minute for both transport cable and transmission equipment. For this reason, it would be inappropriate to use anything less than 25 percent; and, to meet their burden of proof and comply with the FCC rules, Petitioners should demonstrate that forward-looking demand justifies the sizes of transport systems used in the study and determine utilization levels to substitute for the 25 percent figure.

8

1

2

3

4

5

6

7

9 Q. Please explain the calculations leading up to the fiber cable costs per minute10 mile.

11 The \$1,392.90 fiber cable annual costs per transport system are divided by the Α. 12 forward-looking DS1s in service for each transport system size (row 26). This 13 gives annual costs per DS1-mile ranging from \$16.58 to \$1.04 (row 28). I then 14 made a second, conservative assumption; *i.e.*, that switch trunk utilization of 15 DS1s would be 60 percent or 14.4 switch trunks (DS0) per DS1. Using this value, 16 the fiber cable annual costs per switch trunk-mile are computed to be \$1.15 to 17 \$0.07 (row 34). Finally, the fiber cable costs per minute-mile are calculated using 18 the 108,000 annual minutes per switch trunk from FCC Rule 51.513(c)(4). The 19 resulting fiber cable costs per minute-mile can be used with distances from each 20 Qwest meet point to Vivian end offices to compute transport cable costs per 21 minute. The same method can be used for other Petitioners to compute transport 22 cable costs reflecting their particular transport distances for mobile-to-land traffic.

23

Q.

Where did you obtain the distances from meet points to end offices?

2 A. In response to Alltel's second data request (Interrogatory 32), the Petitioners 3 provided a schedule of "route miles to meet point" for each end office. The 4 mileages provided were indicated to be "ring route miles," which appear to be the distance around each ring between the meet point and end office.⁴³ This would be 5 6 a longer distance than the direct distance that traffic would travel, because traffic 7 would not go around the full length of each ring. However, since Exhibit WCC-5 8 is using total demand for a transport system operating on the ring, using the ring 9 route distance would be consistent.

10

11 Q. How was the ring route mileage used to compute transport cable costs per 12 minute?

A. I used ring route miles for Vivian's six standalone and host switches to compute
fiber cable costs per minute for each. For example, the Burke end office is
located 114.1 ring route miles from the Qwest meet point near Presho, SD. This
consists of 56.29 miles to Winner, SD, and 57.92 from Winner to the Qwest meet
point.

18

The Petitioners also provided information describing their fiber rings, the end offices located on the rings and the transport system size.⁴⁴ Burke and Winner are on an OC48 ring, so I assumed 56.29 miles of fiber cable to be carrying an OC48 transport system. In all cases, I made the assumption that the ring(s) closer to the

⁴³ The mileages for Sioux Valley and Union were expressed in "route miles."

1 meet point is an OC48 ring. Thus, row 41 shows 114.21 ring route miles for an 2 OC48 system. This distance is multiplied times the fiber cable costs per minute-3 mile for an OC48 system to determine the per-minute transport cable cost for 4 Burke of \$0.00036. The same procedure is used for the other five offices, 5 although Freeman has no transport cable cost. As I mentioned before, the Owest 6 meet point is in the Freeman central office. In the last step, I computed the 7 weighted average cost of \$0.0003 per minute. This is significantly lower than the 8 original cost estimate of \$0.0060 per minute.

9

10

Q. Are there any modifications you would make to these calculations?

11 A. There is one other potential modification, although Petitioners did not 12 provide the information needed to make the modification. Also, I do not believe 13 it will materially affect the results.

14

The ring route mileages provided by the Petitioners are from meet points to standalone and host switches. If the remote switches subtending host switches are located on one of the rings included in the mileages, no modification is needed. On the other hand, if another ring is required for transport to the remote, the additional ring route mileages should be added. The additional cost of the extra mileage would be weighted by the proportion of total lines represented by the remotes on the additional rings. These should be small weightings.

⁴⁴ Exhibit I-3, pp. GWR030001-GWR030003.

- Q. Is the method that you are recommending for computing transport cable
 costs a more straightforward approach for making Adjustments 7-11 than
 the method used in Petitioners' cost studies?
- 4 A. Yes. The recommended method makes explicit interoffice cable lengths 5 applicable to transport circuits carrying mobile-to-land traffic. It requires specific 6 forward-looking estimates of the four utilization levels. The method relies on a 7 proper measure of transport system utilization - DS1 equivalents rather than 8 "paths." And, it develops costs for transport from the Qwest meet point to serving 9 end offices consistent with the definition of transport. Modifying the Petitioners 10 cost studies to address these issues can be done, but it will be difficult.
- 11
- 12 Q. Is the method consistent with FCC rules?

13 A. Yes, it satisfies the requirements of §§51.505 and 51.511.

14

15 Q. Must Adjustments 7-11 still be made should the Hearing Examiner decide to 16 adopt the Petitioners' methodology for computing transport cable costs? 17 Α. Absolutely. It is clear than mobile-to-land traffic travels a shorter distance than 18 traffic to the SDN tandem, causing less transport cable cost. In some cases, such 19 as the Freeman and Kadoka central offices, there are no transport cable costs. The 20 Petitioners' cost study must recognize these lower costs for mobile-to-land traffic. 21 The "path" measurement scheme should not be used, because it inaccurately 22 measures transport system capacity consumption. DS1s, rather than DS0s, should 23 be used as the common measure of capacity consumption, and the quantity of

special circuits of various bandwidths should be expressed in terms of DS1 1 2 equivalents. The annual minutes per trunk are too low to represent efficient utilization. Even using the Petitioners' cost model, the annual minutes per trunk 3 should be increased to 108,000. Finally, the Petitioners cost model does not 4 5 measure the costs of transport as defined by FCC 51.701(c). If Petitioners' 6 methodology is to be used, then average transport cable and transmission costs for 7 all Petitioners should be computed, recognizing that transport involves multiple 8 Petitioners' networks.

9

Q. Let's shift to transport transmission equipment costs. Have you replicated
 the Petitioners' calculation of these costs?

A. Yes, Exhibit WCC-6 shows the calculation of transport transmission equipment
 costs per minute for Vivian. The Petitioners refer to this cost as transport IO electronics. I will refer to it as transport transmission equipment.

15

16 Q. What is transport transmission equipment in the Petitioners' cost studies?

A. This is electronic equipment located in central offices used to add and drop
interoffice circuits to and from the fiber cable rings connecting the central offices
or "nodes" in the Petitioners interoffice network. In response to information
requests by Alltel, the Petitioners provided details of the equipment components

1

2

and investment necessary to construct transmission equipment at each network node.⁴⁵

3

4

Q. Please explain the cost calculations in Exhibit WCC-6.

5 Α. As I described earlier, Petitioners share interoffice transport rings. To compute 6 transport transmission equipment costs, each Petitioner identifies the number of 7 nodes it owns on the rings it utilizes and the transport system size (OC12, OC48 8 or OC192) at each node. Rows 7-27 of Exhibit WCC-6 show the quantities of 9 transport transmission equipment at each Vivian central office. For example, the 10 Winner central office appears to have two OC48 rings passing through the central 11 office, so the quantity of OC48 nodes is two (cell C17). Generally, the quantity is 12 one.

13

14 The total number of switch nodes by transport system size is accumulated on row 15 30, and these quantities are multiplied times the Petitioners' estimate of the 16 current investment required to place transmission equipment (row 32). The total 17 transport transmission equipment investment is shown in row E33. Annual 18 capital costs and operating expenses for the transmission equipment are shown in 19 cells E36-E45. As with transport cable, I have computed the ratio of annual costs 20to total investment for each cost item, with a total annual cost factor shown in cell 21 F45. The remaining calculations are the same for transport transmission

⁴⁵ "Golden West Companies' Objections and Responses to First Set of Interrogatories and Requests for Production of Documents Propounded to Golden West Companies," pp. GWD020152-164.

equipment as transport cable. Total annual costs are divided by total "paths" and annual minutes of use per switch trunk to arrive at the cost shown in Table 1 of \$0.0022 per minute.

4

3

1

2

5 Q. Do the adjustments to the cost studies identified for transport cable apply to 6 transport transmission equipment?

7 Some of these apply to transport transmission equipment. Adjustment 9 as it A. 8 relates to low utilization of the interoffice transport system, DS1 utilization and 9 annual minutes of use per switch trunk affects transmission equipment costs. 10 Adjustment 10 (relating to the proper utilization measure for the interoffice 11 transport system) and Adjustment 11 (relating to Alltel traffic involving multiple 12 Petitioner networks) apply to transport transmission equipment costs. Adjustment 13 7 having to do with interoffice cable length does not directly affect these costs. 14 Adjustment 8 may affect transport transmission equipment costs, because mobile-15 to-land traffic to Qwest tandem switches may involve fewer transport 16 terminations than traffic to the SDN tandem switch. I am recommending an 17 alternative method for computing transport transmission equipment costs, as I did 18 for cable costs, so that these adjustments can be made explicitly.

19

20 Q. Do any of the adjustments identified for switching apply to transport 21 transmission equipment?

A. Yes, Adjustments 2 and 4 apply. These related to the cost of capital and whether
the accumulated deferred income tax reserve should be included in calculating

1		capital costs. As I describe the recommended method for computing transport									
2		transmission equipment costs, I will recommend an alternative capital cost factor									
3		that will make Adjustments 2 and 4 for transmission equipment.									
4											
5	Adjustment 13 – Proper method for computing transport transmission equipment										
6	costs										
7	Q.	Please describe the method you recommend?									
8	А.	Exhibit WCC-7 shows the method for computing transport transmission									
9	-	equipment costs. This spreadsheet is for OC48 transmission equipment, which is									
10		the predominant transport system size reflected in Petitioners' cost studies (62									
11		percent of ring nodes were at OC48 level).									
12											
13		The calculations use the same investment amounts reflected in the Petitioners'									
14		cost studies. On rows 7-13 are the investments required for basic system									
15		components - bay and shelf equipment, power equipment, the OC48 optical									
16		interface to the SONET ring, etc. These components are shared by the DS1 and									
17		OC3 circuits that are added or dropped from the SONET system at the central									
18		office or network node. The investment for these components totals \$26,608.70									
19		(cell D14).									
20											
21		Rows 17 and 18 contain the investments required for the tributary interfaces									
22		where DS1 or OC3 circuits are connected. The Petitioners have configured the									
23		system for three interfaces – one for 84 DS1 circuits and two OC3 circuits. The									

remaining rows contain investments in minor items, such as connector kits, cables
 and others. The total transmission equipment investment is \$40,099, the same
 amount in cell C32 of Exhibit WCC-6.

4

5 Q. Is this a good point to comment on the rationale for using DS1s as the 6 measure of transport system capacity utilization, rather than paths?

A. Yes, it is. Note that the OC48 system has three tributary interfaces – one slotted
with a DS1 DSM module (row 17) and two slotted with OC3s (row 18). Each
module is consuming 1/3rd the capacity of the shared components of the
transmission equipment. Note that the DS1 DSM module has the capacity for 84
DS1s. This is equal to the capacity on an OC3 (OC3 = 3 DS3 X 24 DS1 / DS3 =
84 DS1s).

13

So, a DS1 consumes 1/84th of an OC3's consumption of the shared components, and an OC3 consumes 84 times a DS1's consumption of shared components. Using "paths" does not accurately reflect this. If one attempted to apply Petitioners' rationale, the OC48 transmission equipment would be exhausted with three DS1s, each representing a path. Or, the equipment would be exhausted with two DS1s and an OC3, again each representing a path. This makes no sense whatsoever.

21

22 Q. What is the next step in the cost calculations?

A. The next step is to compute per-unit transmission equipment costs according to
FCC Rule 51.511(a). First, the total investment attributable to a DS1 DSM
module is calculated. This is the sum of 1/3rd the shared investments (cell D34),
plus the cost of the DS1 tributary interface and cabling (cells D36 and D37). The
result is \$15,848.57 per interface (84 DS1s).

Absent information from the Petitioners, I have assumed DS1 DSM interface utilization (row 41) and switch trunk utilization (row 47) of 60 percent. The Petitioners should provide projected utilization levels that reflect efficient utilization, or costs can be computed using the conservative levels assumed in Exhibit WCC-7. Based on these utilization levels, the investment per switch trunk-termination of \$21.84 is calculated.⁴⁶

13

6

In the Petitioners' cost study, they computed annual costs resulting in an average annual cost factor of 36.8 percent, including common costs. I adjusted this factor for the recommended cost of capital and to reflect the normalization of deferred income taxes. This resulted in a 32.0 percent annual cost factor that I used in cell D52. Annual costs per switch trunk-termination are \$6.98.

- 19
- 20

21

The next question is how many terminations are likely to be required for a mobile-to-land call. A call to a subscriber served by the Freeman and Kadoka

⁴⁶ Costs are expressed per-switch trunk-termination because transmission equipment resources are consumed each time a circuit is added or dropped from the SONET transport system. A mobile-to-land call is "dropped" at the end office interfacing the Qwest meet point. It then may be added to a ring for subsequent transport to other end offices, and so on.

offices should have just one OC48 termination, because the Qwest meet point is 1 located in their central offices. A call to a subscriber served by a remote switch 2 subtending Freeman is likely to have three terminations – one on the incoming 3 Freeman trunk interface from Owest, one on the Freeman host-to-remote interface 4 5 and one at the remote switch. Since mobile-to-land calls may traverse more than one ring to reach the serving end office. I have assumed there will be terminations 6 at the interfaces between rings as well. To simplify the method, I have assumed a 7 typical configuration as shown on row 56-60. The configuration assumes one 8 termination for the interface to Qwest, two interfaces allowing for transiting 9 10 between two rings, another termination for the host end office, and two additional 11 interfaces (one at the host and one at the remote) for 60 percent of lines served by remotes.⁴⁷ The result is 5.2 terminations, which is probably liberal given that 12 13 some calls terminate at the first end office after the Qwest meet point or only one 14 ring is required.

15

Q. Can each Petitioner determine the average quantity of terminations per mobile-to-land call as a substitute for the 5.2 figure?

- A. Yes, based on their knowledge of the rings involved in transport and the
 percentages of lines in service at each end office, it would be straightforward to
 calculate average terminations for each company.
- 21

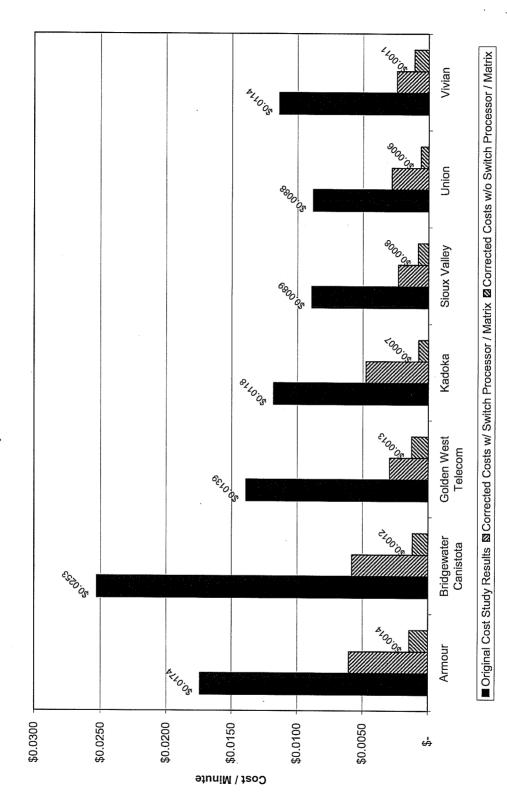
22 Q. Please complete your description of the cost calculations.

⁴⁷ Vivian's mix of 40 percent lines served by standalone/host switches and 60 percent served by remote switches was used as a "typical configuration."

1 A. The quantity of terminations is multiplied times the annual costs per switch trunk-2 termination to determine the transport transmission equipment cost per switch 3 trunk. This figure is divided by 108,000 annual minutes per trunk. The result is 4 \$0.0003 per minute. This compares with the original transport transmission 5 equipment cost of \$0.0022 per minute. Unless the Petitioners provide revised 6 forward-looking utilization levels and termination quantities specific to their 7 companies, I recommend using \$0.0003 per minute as the transport transmission 8 equipment cost. 9 Adjustment 14 - Corrected forward-looking economic costs for transport and 10 11 termination 12 **Q**. Have you prepared corrected transport and termination costs for the 13 Petitioners reflecting the recommendations you have made? 14 The table below contains forward-looking economic costs for transport and A. 15 termination after Adjustments 1-13 are made. Per FCC Rule 51.505(e) the

reciprocal compensation rate charged to Alltel by the Petitioners cannot exceed
the total costs shown.

- 18
- 19


Table 3 - Corrected Petitioner Transport and Termination Costs

		Costs After Corrections for Issues											
20										(Corrected		
										C	Costs w/o		
0.1					Switch						Switch		
21				Ρ	rocessor /	Trai	nsport - IO	Tra	insport - IO	P	rocessor /		
	Petitioners	Swi	tch Trunk	k Matrix		Ele	ectronics	Plant*			Matrix		
22	Armour	\$	0.0005	\$	-	\$	0.0003	\$	0.0006	\$	0.0014		
22	Bridgewater Canistota	\$	0.0005	\$	-	\$	0.0003	\$	0.0004	\$	0.0012		
	Golden West Telecom	\$	0.0004	\$	-	\$	0.0003	\$	0.0005	\$	0.0013		
22	Kadoka	\$	0.0004	\$	-	\$	0.0003	\$	-	\$	0.0007		
23	Sioux Valley	\$	0.0004	\$	-	\$	0.0003	\$	0.00002	\$	0.0008		
	Union	\$	0.0002	\$	-	\$	0.0003	\$	0.00002	\$	0.0006		
	Vivian	\$	0.0004	\$	-	\$	0.0003	\$	0.0003	\$	0.0011		
	Minimum	\$	0.0002	\$	-	\$	0.0003	\$	-	\$	0.0006		
	Maximum	\$	0.0005	\$	79 ⁻	\$	0.0003	\$	0.0006	\$	0.0014		

2 These cost study results recognize that only the interoffice trunk portion of end 3 office switching is usage-sensitive and recoverable in termination rates. The 4 transport IO plant and transport IO electronics costs are based on the methods that 5 I have recommended. The graph on the following page shows the original cost 6 study results produced by the Petitioners and corrected costs. Corrected costs are 7 provided with switch processor/matrix costs included and without. Since switch 8 processor/matrix costs in modern digital electronic switches are not usage-9 sensitive, the "Corrected Costs w/o Switch Processor / Matrix" are the appropriate 10 costs for establishing the reciprocal compensation rate.

11

Petitioners' Transport and Termination Costs

1		CONCLUSION								
2	Q.	Please summarize the main points you believe the Hearing Examiner and								
3		Commission should take from your testimony?								
4	A.	The Petitioners have failed to meet their burden of proof per FCC Rule 51.505(e).								
5		They have not shown that their proposed rates do not exceed forward-looking								
6		economic costs. Furthermore, there are fundamental errors in the studies. When								
7		corrected, the studies indicate costs well below those claimed.								
8										
9		Petitioners have overstated switching costs by assuming too many switching costs								
10		are usage-sensitive. The FCC, several State commissions and a federal court have								
11		all come to the conclusion that little, if any, switch costs are usage-sensitive. The								
12		Petitioners have computed transport costs that overestimate the transport distances								
13		of mobile-to-land traffic, skewed transport costs toward switched trunks rather								
14		than special circuits by using the incorrect "path" measurement, and inflated costs								
15		by reflecting low levels of utilizations.								
16										
17		I encourage the Hearing Examiner and Commission to adopt the								
18		recommendations given in my testimony and to establish transport and								
19		termination rates based on the corrected cost studies and results shown in Table 3								
20		above.								
21										
22	Q.	Does this conclude your direct testimony?								

- A. Yes, although I would like the opportunity to supplement in my rebuttal testimony
 for any additional findings with respect to Petitioners' cost studies and their
 results, if additional information becomes available prior to the hearing.

W. Craig Conwell 405 Hammett Road Greer, SC 29650

(864) 268-5306 conwells@bellsouth.net

Independent Consultant

1996 - 2006

Mr. Conwell provides professional services related to telecommunications cost analysis. These services include the following:

- Supporting wireless carriers in negotiations and arbitrations of reciprocal compensation rates
 with incumbent local exchange carriers (ILEC). This involves reviewing ILEC cost studies
 for compliance with FCC rules for reciprocal compensation and giving expert testimony
 before state regulatory commissions.
- Performing cost studies and financial analyses used by ILECs in the valuation of their telephone plant for tax purposes.
- Performing cost studies for telecommunications services, such as Digital Subscriber Line (DSL), hosted Voice over Internet Protocol (VoIP), Frame and Asynchronous Transfer Mode (ATM) services and others. The studies are used in product planning, pricing and cost management.
- Providing analytical support and advice to wireless carriers on the establishment of state Universal Service Funding mechanisms.
- Providing advice and assistance to telephone companies on the development of cost models for estimating plant investments, capital costs and operating expenses.

In addition, Mr. Conwell has taught courses in telecommunications cost analysis.

Arthur Andersen & Co.

1989 - 1996

Mr. Conwell served as a firm-wide expert on telecommunications cost accounting and provided advice to consulting teams working for telephone companies in the US and overseas on cost-related projects. These projects included the following:

• Reviewing Bellcore's Switching Cost Information System (SCIS) for the FCC in its Open Network Architecture proceeding. SCIS was used by the regional Bell Operating Companies (RBOCs) to develop switching element costs.

- Performing a benchmark comparison of US Canadian toll costs and testifying before the Canadian Radio and Telecommunications Commission (CRTC) on differences between US and Canadian toll costs.
- Developing a "value driver" approach for identifying key performance measures using activity-based costing. The approach was used in consulting projects with telephone companies to improve performance measurement.
- Advising on the design of telephone company cost accounting systems used to measure service costs.
- Developing and teaching for six years a service cost course sponsored by the United States Telephone Association. The course was attended by students from telephone companies, regulatory bodies and other companies in the telephone industry.

Volt Delta Resources

Mr. Conwell worked for the President of Volt Delta Resources and assisted in planning and business development for database services offered to telephone companies. He also participated in the development of a new cost accounting system for a Bell Operating Company.

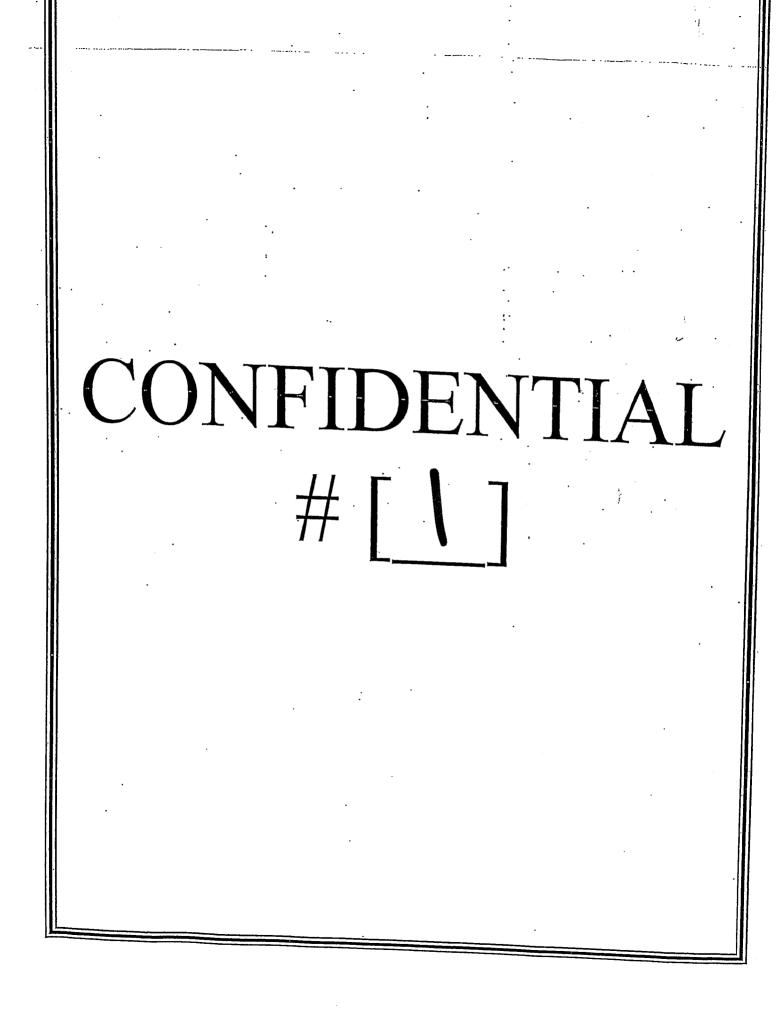
South Central Bell / AT&T

Mr. Conwell began work with South Central Bell in 1974 in Engineering where he produced cost studies for pricing telephone services. In 1979, he was promoted to district manager and transferred to AT&T where he participated in operations reviews of service costing and ratemaking procedures across the Bell Operating Companies.

In 1981, Mr. Conwell was promoted to division manager as member of the AT&T planning and financial management staff that analyzed business plans for AT&T's Office of the Chairman. Subsequently, he served as a division controller in AT&T Information Systems and division manager in AT&T General Business Systems responsible for marketing and sales channel support.

Education

Bachelor of Industrial Engineering from Auburn University (1972). Masters of Science in Industrial Engineering (Operations Research) from Auburn University (1974).


1988 - 1989

1974 - 1987

	Α	<u> </u>	B		С		D	E
1	Corrected Transport Cable Costs Per Minute	I			· · · · · · · · · · · · · · · · · · ·			<u> </u>
2								
3 4	Vivian Telephone Interoffice Transport System Size							
5			OC12		OC48	non	OC192	Total
6 7	IO transport system fiber cable investment and annual costs / mile Fiber cable installed cost / foot	\$	2.18	s	2.18	\$	2.18	
8	Feet / mile	Ŧ	5,280	Ť	5,280	Ψ	5,280	
9	Fiber cable investment / mile	\$	11,489.38	\$	11,489.38	\$	11,489.38	
10 11	Fiber cable annual cost factor (including common costs)		23.6%		23.6%		23.6%	
12	Fiber cable annual costs / mile	\$	2,706.16	\$	2,706.16	\$	2,706.16	0.00
13								
14 15	Average fibers / cable Average % utilization		14.7 52.8%		14.7 52.8%		14.7 52.8%	
16	Average total demand for fibers / cable		7.8		7.8		7.8	
17							0 10 00	
18 19	Fiber cable annual costs / fiber-mile	\$	348.22	\$	348.22	\$	348.22	
20	Fibers / interoffice transport system		4		4		4	
21	Fiber cable annual costs / mile for interoffice transport system	\$	1,392.90	\$	1,392.90	\$	1,392.90	
22 23	Per-unit fiber cable annual costs							
23	DS1 capacity / IO transport system		336		1,344		5,376	
05	Demonst utilization - forward looking DD4s is service / DD4				05 024		05 004	
25 26	Percent utilization - forward-looking DS1s in service / DS1 capacity DS1s in service / IO transport system		<u>25.0%</u> 84		25.0%		25.0% 1,344	
27		,					.,	
28	Fiber cable annual costs / DS1-mile	\$	16.58	\$	4.15	\$	1.04	
29 30	DS0s / DS1		24		24		24	
	Percent utilization - forward-looking switch trunk DS0s in service /				- ·		21	
31	DS1		60%		60%		60%	
32 33	Switch trunk DS0s in service / DS1		14.4		14.4		14.4	2010 Constant Constant Constant
34	Fiber cable annual costs / switch trunk DS0-mile	\$	1.15	\$	0.29	\$	0.07	
35			400.000		100 000		400.000	
36 37	Annual minutes / switch trunk DS0 Fiber cable costs / minute-mile	\$	108,000	\$	108,000	\$	108,000	
38						,		In the second design of the second
	Standalone / host switches							
40 41	Burke Ring route miles to meet point		_		114.21		_	
42	Fiber cable costs / minute	\$	-	\$	0.00030	\$	-	\$ 0.00030
43	Custer	¢			260 42			
44 45	Ring route miles to meet point Fiber cable costs / minute	\$ \$	-	\$	260.43 0.00069		-	\$ 0.00069
46	Freeman			ŕ				
47 48	Ring route miles to meet point Fiber cable costs / minute	\$	-	\$	-	\$	-	s -
40 49	Alber cable costs / minute Mission	φ	-	φ	-	φ	-	φ -
50	Ring route miles to meet point	\$	-	_	184.25		-	
51 52	Fiber cable costs / minute Rosebud	\$	-	\$	0.00049	\$	-	\$ 0.00049
53	Ring route miles to meet point		20.91		184.25		-	
54	Fiber cable costs / minute	\$	0.00022	\$	0.00049	\$	-	\$ 0.00071
55 56	Winner Bing route miles to meet point	\$	_		57.92		_	
57	Ring route miles to meet point Fiber cable costs / minute	ъ \$	-	\$	0.00015		-	\$ 0.00015
58		•				•		
	Percent of lines in service							400/
60 61	Burke Custer							18% 18%
62	Freeman							26%
63	Mission							6%
64 65	Rosebud Winner							8% 24%
66	Total							100%
67								
nX	Average transport fiber cable cost / minute							\$ 0.0003

· ·

•

