# **Geotechnical Reports**

- 1. West Rapid Substation GT Exploration and Review
- 2. West Rapid City Substation Investigative Borings
- 3. West Rapid Substation Transmission Line Poles GT Report



**CONSULTANTS** 

- **GEOTECHNICAL**
- **MATERIALS**
- **ENVIRONMENTAL**
- **FORENSICS**



# **REPORT OF GEOTECHNICAL EXPLORATION AND REVIEW**

WEST RAPID SUBSTATION RAPID CITY SERVICE CENTER 409 DEADWOOD AVENUE RAPID CITY, SOUTH DAKOTA

AET No. 17-03356

Date:

May 31, 2018

**Prepared for:** 

Black Hills Energy 7001 Mt. Rushmore Road Rapid City, South Dakota 57702



CONSULTANTS · GEOTECHNICAL · MATERIALS · ENVIRONMENTAL

May 31, 2018

Black Hills Energy 7001 Mt. Rushmore Road Rapid City, South Dakota 57702

Attn: Mr. Ron Williams, PE

RE: Geotechnical Exploration and Review West Rapid Substation Rapid City Service Center 409 Deadwood Avenue Rapid City, South Dakota Report No.17-03356

Dear Ron,

American Engineering Testing, Inc. (AET) is pleased to present the results of our subsurface exploration program and geotechnical engineering review for the proposed West Rapid Substation to be constructed at 409 Deadwood Avenue, in Rapid City, South Dakota. These services were performed in general accordance with our proposal dated April 10, 2018 and the signed Statement of Services No. 38863, dated April 25, 2018. We are submitting one (1) electronic copy of the report to you and one (1) additional copy to Ms. Maria Garduna (Black Hills Energy).

Within the limitations of scope, budget, and schedule, our services have been conducted according to generally accepted geotechnical engineering practices at this time and location. Other than this, no warranty, either expressed or implied, is intended. Important information regarding risk management and proper use of this report is given in the Appendix entitled "Geotechnical Report Limitations and Guidelines for Use".

Please contact our office if you have any questions about the report. We can also be contacted to arrange the observation and testing services during construction of the project.

Sincerely, American Engineering Testing, Inc.

Walt Feeger, P.É. Senior Geotechnical Engineer Phone: (605) 388-0029 wfeeger@amengtest.com

Page i

#### SIGNATURE PAGE

Prepared for:

Black Hills Energy 7001 Mt. Rushmore Road Rapid City, South Dakota 57701

Attn: Mr. Ron Williams, PE

Prepared by:

American Engineering Testing, Inc. 1745 Samco Road Rapid City, South Dakota 57702

Report Authored By:

Walt Feeger, P.E. Senior Geotechnical Engineer



Peer Review Conducted By:

Robert Temme, P.E. Vice President – Western Region

Page ii

Unauthorized use or copying of this document is strictly prohibited by anyone other than the client for the specific project.

Copyright 2018 American Engineering Testing, Inc. All Rights Reserved

# TABLE OF CONTENTS

| Transmittal Letteri                                  |   |
|------------------------------------------------------|---|
| Signature Pageii                                     |   |
| TABLE OF CONTENTSiii                                 |   |
| 1.0 INTRODUCTION                                     |   |
| 2.0 SCOPE OF SERVICES                                |   |
| 3.0 PROJECT INFORMATION                              |   |
| 4.0 SUBSURFACE EXPLORATION AND TESTING               |   |
| 4.1 Field Exploration Program                        |   |
| 4.2 Laboratory Testing                               |   |
| 5.0 SITE CONDITIONS                                  |   |
| 5.1 Surface Observations                             |   |
| 5.2 Subsurface Soils/Geology                         |   |
| 5.3 Groundwater                                      |   |
| 5.3 Hydrocarbon Impacted Soils and Groundwater       |   |
| 6.0 RECOMMENDATIONS                                  |   |
| 6.1 Discussion                                       |   |
| 6.2 General Site Preparation Recommendations 5       |   |
| 6.3 Drilled Pier Foundation Recommendations          | 1 |
| 6.4 Spread Footing or Mat Foundation Recommendations |   |
| 6.5 Backfill Considerations                          |   |
| 7.0 CONSTRUCTION CONSIDERATIONS 10                   |   |
| 7.1 Potential Difficulties                           |   |
| 7.2 Runoff Water in Excavation 10                    |   |
| 7.3 Disturbance of Soils10                           |   |
| 7.4 Excavation Backsloping11                         |   |
| 7.5 Observation and Testing11                        |   |
| 8.0 LIMITATIONS11                                    |   |
|                                                      |   |

APPENDIX A - Geotechnical Field Exploration and Testing Boring Log Notes Unified Soil Classification System Site Location Map Boring Location Map Subsurface Boring Logs Unconfined Compression Test Results

APPENDIX B - Geotechnical Report Limitations and Guidelines for Use

# **1.0 INTRODUCTION**

We understand the construction of a new substation has been proposed at Black Hills Energy's Rapid City Service Center facility at 409 Deadwood Avenue in Rapid City, South Dakota. Please refer to the Site Location Map included in Appendix A of this report. To assist with the planning and design, American Engineering Testing, Inc. (AET) has been authorized to conduct a subsurface exploration program at the site, conduct soil laboratory testing, and perform a geotechnical engineering review for the project. This report presents the results of the above services, and provides our engineering recommendations based on this data.

## 2.0 SCOPE OF SERVICES

AET's services were performed in general accordance with our proposal dated April 10, 2018. The authorized scope consists of the following:

- Ten (10) standard penetration test (SPT) borings within the proposed substation area to depths of about 30 feet below existing grade.
- Soil laboratory testing.
- Geotechnical engineering analysis based on the gained data and preparation of this report.

These services are intended for geotechnical purposes only. The scope is not intended to explore for the presence or extent of environmental contamination.

## **3.0 PROJECT INFORMATION**

Based on the information provided, we understand the proposed 230/69kV substation will be constructed at Black Hills Energy's Rapid City Service Center facility located at 409 Deadwood Avenue in Rapid City. The substation will consist of a control building as well as deadends, bus/switch supports, transformers, and take-off structures. Furthermore, we understand these types of structures are typically placed on pad/mat foundations or reinforced concrete drilled piers (caissons).

The previously stated information represents our understanding of the proposed construction. This information is an integral part of our engineering review. It is important that you contact us if there are changes from that described so that we can evaluate whether modifications to our recommendations are appropriate.

# 4.0 SUBSURFACE EXPLORATION AND TESTING

### 4.1 Field Exploration Program

The subsurface exploration program conducted for the project consisted of ten (10) SPT borings which were drilled on May 8 and 9, 2018. The borings were located in the field by AET personnel at the approximate locations shown on the Boring Location Map within Appendix A. Surface elevations at the boring locations were referenced to a Temporary Benchmark (TBM). The TBM selected for this project was the top of the well cover located northeast of Boring B-3. For purposes of our report, the TBM was given a reference elevation on 100.0 feet.

The logs of the borings and details of the methods used appear in Appendix A. The logs contain information concerning soil layering, soil classification, geologic description, and moisture condition. Relative density or consistency is also noted for the natural soils, which is based on the standard penetration resistance (N-value).

### 4.2 Laboratory Testing

The laboratory test program included water content, dry density, Atterberg Limits, percent passing the #200 sieve, and unconfined compression. The laboratory test results appear in Appendix A on the individual boring logs adjacent to the samples upon which they were performed with the exception of the unconfined compression tests, which can be found on separate sheets within Appendix A of this report.

#### **5.0 SITE CONDITIONS**

## **5.1 Surface Observations**

The project site is located within the area of the former Black Hills Power Plant at the Rapid City Service Center, on the west side of Deadwood Avenue in Rapid City. At the time of our field work, the project site consisted of an equipment and vehicle staging area, which was covered with about 9 to 10 inches of crushed limestone aggregate. In general, the site slopes slightly downward to the west, with an elevation difference of about  $2\frac{1}{2}$  feet noted between the borings.

### 5.2 Subsurface Soils/Geology

Underlying approximately 9 to 10 inches of aggregate surfacing, the subsurface soils encountered in the borings consisted of about 1 to 12 feet of fill overlying varying depths of alluvium and/or claystone bedrock and gypsum, associated with the Spearfish Formation. The fill is comprised of residual coal from the former power plant as well as silty/sandy lean clays. The alluvium consists of stiff to hard lean clays. The claystone/gypsum bedrock extended to the total depths explored in each of the borings, with the exception of Boring B-1. Within Boring B-1, the alluvial silty lean clays extended to the total depth explored.

Conditions encountered at each boring location are indicated on the individual boring logs in Appendix A of this report.

### 5.3 Groundwater

At the time of our field work, measurable groundwater was encountered within Borings B-1, B-2, B-4, B-7, and B-10 at depth varying from approximately 10½ to 15 feet below existing grades. The presence or lack of groundwater noted at the boring locations should not be taken as an accurate representation of the actual groundwater levels. Groundwater level fluctuations occur due to seasonal variations in the amount of precipitation, surface drainage, local irrigation practices, and other factors not evident at the time the borings were performed. Due to the relatively low permeability of the clay soils encountered in the borings, a relatively long period of time may be needed for a groundwater level to develop and/or stabilize in the borings. The possibility of encountering groundwater and associated fluctuations in groundwater levels should be considered when developing the design and construction plans for the project.

## 5.3 Hydrocarbon Impacted Soils and Groundwater

Potential hydrocarbon impacted soils and groundwater may be encountered during the project excavation activities based on field photoionization detector (PID) screening results of samples obtained from the borings (please refer to the results shown on the Boring Logs). Hydrocarbon impacted soils that are encountered during the excavation activities could be considered solid waste material by the South Dakota Department of Environment and Natural Resources (SD DENR), which would require proper removal and disposal in accordance with SD DENR guidelines.

Regarding hydrocarbon-impacted groundwater that may require dewatering during the project, concentrations of hydrocarbons in groundwater may exceed the surface water quality standards as established by the SD DENR, and therefore, cannot be discharged as surface water. If dewatering of hydrocarbon impacted groundwater is required for the project, the successful bidding contractor for the project would need to coordinate with the City of Rapid City to obtain permission to discharge to the sanitary sewer or discuss other potential disposal options acceptable to the City of Rapid City and/or DENR.

## 6.0 RECOMMENDATIONS

### 6.1 Discussion

Our recommendations in the following sections are based on our understanding of the project details at this time. The geotechnical engineer should be allowed to review the final project plans to verify the following recommendations remain applicable for construction.

Based on the field and laboratory data, it is our opinion drilled pier foundations can be used to support the proposed dead-end structures, transmission line poles, and other miscellaneous substation structures. Conventional spread footing or mat foundations can be used for support of the new control building, transformers, capacitor banks, or other miscellaneous support equipment provided the recommendations provided herein are followed.

As designed, spread footing/mat loadings should provide a theoretical safety factor of 3 or more with respect to a general shear or base failure of the footings/mats. For drilled piers, loadings should provide a theoretical safety factor of 2 or more. Total and differential movement should not exceed 1-inch and 1/2-inch, respectively.

Additionally, it should be noted that gypsum is a common geologic feature found in the Spearfish Formation derived soils at this site. Once exposed, gypsum material can degrade which could cause future movement related distress to the structures, especially if water is introduced to the gypsum matrix.

If gypsum is encountered at the base of the excavations for foundations, retaining walls, and concrete slabs-on-grade, the geotechnical engineer should be allowed to observe the excavations and provide additional recommendations. Such recommendations typically involve over-excavation of the gypsum material to a specified depth and replacement with approved engineered fill material or lean concrete flowable fill. Gypsum fragments greater than 2-inches in nominal size should be screened out of all fill material prior to placement. Drilled pier foundations <u>should</u> not terminate (end bear) on gypsum.

# **6.2 General Site Preparation Recommendations**

At this time, a grading plan or design finished structure elevations has not been provided. Based on the elevations obtained at the boring locations, fills on the order of about 3 feet (or less) will be required along the western portion of the proposed substation in order to provide a level building pad. All proposed imported fill material required to reach the design substation grade elevations should consist of lean clay or sand/gravel material. We do not recommend fat clay or shale material be used as fill within the proposed substation. All proposed imported material should be submitted to the geotechnical engineer for approval prior to being hauled and stockpiled on-site.

The existing aggregate surfacing, coal layers associated with the former power plant, and other unsuitable materials should be removed from within the construction limits of the proposed new substation. Any former infrastructure or structural elements associated with the former power plant should also be removed in their entirely if encountered during require site excavations. The existing lean clay material may be left in-place provided it is properly reconditioned as recommended herein prior to placement of structures and/or additional fill material required

Once the required stripping and foundation excavations are complete, we recommend the exposed subgrade soils be moisture conditioned to within  $\pm 3\%$  of the optimum moisture content and compacted to at least 92% of maximum modified Proctor dry density (ASTM D 1557). Once completed and approved, applicable engineered fill zones and/or structural elements may be placed.

### **6.3 Drilled Pier Foundation Recommendations**

Based on the results of the borings, laboratory testing, and our analysis, we have developed the following design parameters. We recommend all drilled piers bear at least 5 feet into the very stiff/hard lean clay alluvium or claystone bedrock and have a minimum length of 15 feet.

| Soil Type          | Allowable Skin Friction<br>(psf) | Allowable End Bearing Pressure<br>(psf) |
|--------------------|----------------------------------|-----------------------------------------|
| Frost Zone $0-5$ ' | Ignore                           | Ignore                                  |
| Lean Clay Fill     | 300                              | na                                      |
| Lean Clay Alluvium | 600                              | 6,000                                   |
| Gypsum             | na                               | na                                      |
| Claystone Bedrock  | 1,000                            | 10,000                                  |

In designing to resist uplift, <sup>2</sup>/<sub>3</sub> of the allowable side friction values provided for compressive loading could be used along with the effective weight of the drilled shafts. Straight shaft piers with a minimum diameter of 18-inches are recommended. Proper reinforcing steel should be included in the drilled shaft designs.

Lateral deflections of drilled shafts should be evaluated using an appropriate design procedure, and would be dependent on shaft diameter, length, configuration, stiffness and "fixed head" or "free head" conditions.

Single pier lateral load capacity can be estimated using the following design parameters for the soil profile in a p-y analysis such as conducted using the computer program LPILE:

| Design Parameter                          | Lean Clay Fill | Lean Clay Alluvium | Gypsum | Claystone |
|-------------------------------------------|----------------|--------------------|--------|-----------|
| Moist Unit Weight (pcf)                   | 115            | 120                | na     | 125       |
| Undrained Shear Strength (psf)            | 1,000          | 2,000              | na     | 4,000     |
| Friction Angle (degrees)                  | 18             | 18                 | na     | 15        |
| Static Soil Modulus Parameter,<br>k (pci) | 500            | 500                | na     | 2,000     |
| Strain, <b>ɛ</b> 50 (in/in)               | 0.005          | 0.005              | na     | 0.004     |

Drilling to design depths should be possible with conventional large drilled pier equipment. Difficult drilling should be anticipated where gypsum masses are encountered which may require rock cutting teeth and/or coring in order to advance the drilled pier hole. We highly recommend a separate bid item be provided in the bid documents that addresses drilling through the gypsum.

Care should be taken so that the sides and bottom of the shaft excavations are not disturbed during drilling. The bottom of the shaft excavations should be free of loose material and water when concrete is placed. Concrete should be placed as soon as possible after the foundation excavation is completed to reduce the potential for disturbance of the bearing surface.

Groundwater was encountered at the time of our field work; therefore, the use of temporary casing will likely be required. The need for casing will depend on the conditions encountered at the time the pier excavations are made. A sufficient head of plastic concrete having a minimum slump on the order of 6-8 inches should be maintained inside the casing as it is withdrawn to prevent concrete arching and the influx of soil and water (if encountered) and creation of voids in the pier shaft.

Drilled shaft construction should be constructed in accordance with applicable portions of ACI 336.3R-93 or other similar, approved specification. Concrete mix should be designed utilizing cement to have a minimum 28-day compressive strength of 4,000 psi and a maximum water cement ratio of 0.45. A super plasticizer may be necessary to increase concrete slump/flow temporarily for drilled shaft placement.

Concrete should be on-site and ready for placement as soon as practical after each pier excavation is completed. Concrete placement in pier excavations should occur on the same day as pier excavation is completed.

We do not recommend free-fall concrete placement in piers. The use of a bottom-dump hopper, tremie, or pump, discharging near the bottom of the hole where concrete segregation will be minimized, is recommended.

A representative from AET should observe all drilled shaft excavations to evaluate the suitability of the bearing materials and to verify that conditions in the drilled shaft excavations are consistent with those encountered in the test borings. If unsuitable materials are encountered at planned depths, it may be necessary to deepen the shaft.

### 6.4 Spread Footing or Mat Foundation Recommendations

As noted, clay soils are present at the site. In order to limit potentially damaging differential and total movements through moisture variations in the clay soils, we recommend the site clays be removed within the proposed structure footprints to allow for the placement of at least two (2) feet of imported granular low/non-frost susceptible engineered fill below the foundations and/or mats.

Where applicable, excavations should be laterally oversized at a 1H:1V ratio as necessary to accommodate the two (2) feet of granular engineered fill material. Once the over excavation is complete, we recommend the exposed subgrade be scarified to a depth of at least 8-inches, the moisture content of the scarified soils adjusted to  $\pm 3\%$  of the optimum moisture content and the scarified soils compacted to at least 92% of maximum modified Proctor dry density (ASTM D 1557). The excavated site clays may be stockpiled on-site and used as overlot fill outside of the building limits, where required.

<u>Conventional Spread Footing Foundations</u> – Imported granular engineered fill can then be placed within the over-excavations below the foundations. The granular engineered fill should be preapproved by the geotechnical engineer prior to use. The granular engineered fill should be a pit run or crushed/screened material with a maximum aggregate size of 3-inches, no more than 15% passing the #200 sieve with a Liquid Limit less than 25. Engineered fill should be placed in 8inch thick maximum loose lifts; the moisture content conditioned to within  $\pm$ 3% of optimum moisture content and compacted to at least 95% of maximum modified Proctor (ASTM D 1557) dry density.

We recommend exterior footings, interior footings in unheated portions of the building, or footings placed during freezing conditions be placed at least four (4) feet below final grades for frost protection. Interior footings in heated areas may be placed directly below the floor slab (where applicable).

The spread footing foundation system may be designed for an allowable bearing capacity of 2,500 pounds per square foot (psf) bearing on the properly placed imported granular engineered fill. As designed, loadings should provide a theoretical safety factor of three or more with respect to a general shear or base failure of the footings. Total and differential settlement should not exceed 1 inch and 1/2-inch, respectively.

<u>Mat Foundations</u> – In our opinion, the proposed substation structures can also be supported by a slab-on-grade (mat) foundation system bearing on a zone of compacted select (low frost susceptible) granular engineered fill extending to a depth of at least two (2) feet below the base of the mat. The mat foundation system may be designed for an allowable bearing capacity of 2,500 pounds per square foot (psf). As designed, loadings should provide a theoretical safety factor of three or more with respect to a general shear or base failure of the footings. Total and differential settlement should not exceed 1 inch and 1/2-inch, respectively.

Lateral loads transmitted to the mat foundation can be resisted by the soil-concrete friction on the base of the foundation. The friction on the base of the concrete and underlying granular engineered fill may be computed using a friction coefficient of 0.45.

# 6.5 Backfill Considerations

It is our opinion exterior backfill around the structures, utility trench backfill and overlot fill may consist of the site soils and should be placed as follows. All recommendations are based on the modified Proctor method (ASTM: D 1557).

- 1. All backfill should be free of deleterious/frozen material and have a maximum aggregate size of 3-inches. Gypsum material, if encountered, should be removed to the extent possible and in no case should fill material contain gypsum fragments greater than 2-inches in nominal size.
- 2. Fill should be moisture conditioned to within  $\pm 3\%$  of optimum moisture content prior to being placed.
- 3. All fill should be placed in loose lift thicknesses of 8-inches or less. If hand-operated compaction equipment is used, the loose lift thickness should be reduced to 4-inches or less.

- 4. Each lift of backfill should be compacted to at least 92% of maximum proctor density. Compaction should be increased to 95% for the final lift of utility trench backfill placed within areas to receive pavement.
- 5. Compaction density tests should be performed on alternating lifts to ensure the minimum density is maintained.

# 7.0 CONSTRUCTION CONSIDERATIONS

### 7.1 Potential Difficulties

Depending on the time of year in which construction takes place, unstable subgrade soils could be encountered during the site and building grading operations. If encountered, additional conditioning of the soils may be required to obtain moisture contents which allow for firm and unyielding subgrade and/or compaction.

Localized areas of soft wet subgrades can be remedied with additional excavation to expose firmer soils, placement of coarse rock to provide a solid base on which to place additional fill and/or the use of geotextiles between the soft soils and the overlying fill and/or pavement sections. The appropriate means of subgrade stabilization should be evaluated by the geotechnical engineer at the time of construction.

## 7.2 Runoff Water in Excavation

Water can be expected to collect in the excavation bottom during times of inclement weather or snow melt. To allow observation of the excavation bottom, reduce the potential for soil disturbance, and facilitate filling operations, we recommend water be removed from within the excavation during construction. Based on the soils encountered, we anticipate the groundwater can be handled with conventional sump pumping.

## 7.3 Disturbance of Soils

The on-site soils can become disturbed under construction traffic, especially if the soils are wet. If soils become disturbed, they should be subcut to the underlying undisturbed soils. The subcut soils can then be dried and recompacted back into place, or they should be removed and replaced with drier imported fill.

# 7.4 Excavation Backsloping

If excavation faces are not retained, the excavations should maintain maximum allowable slopes in accordance with *OSHA Regulations (Standards 29 CFR), Part 1926, Subpart P, "Excavations"* (can be found on <u>www.osha.gov)</u>. Even with the required OSHA sloping, water seepage or surface runoff can potentially induce sideslope erosion or running which could require slope maintenance.

# 7.5 Observation and Testing

The recommendations in this report are based on the subsurface conditions found at our test boring locations. Since the soil conditions can be expected to vary away from the soil boring locations, we recommend on-site observation by a geotechnical engineer/technician during construction to evaluate these potential changes. Soil density testing should also be performed on new fill placed in order to document that project specifications for compaction have been satisfied.

# **8.0 LIMITATIONS**

Within the limitations of scope, budget, and schedule, our services have been conducted according to generally accepted geotechnical engineering practices at this time and location. Other than this, no warranty, either expressed or implied, is intended. Important information regarding risk management and proper use of this report is given in Appendix B entitled "Geotechnical Report Limitations and Guidelines for Use".



AET Project No. 17-03356

Boring Log Notes Unified Soil Classification System Site Location Map Boring Location Map Subsurface Boring Logs Unconfined Compression Test Results

#### A.1 FIELD EXPLORATION

The subsurface conditions at the site were explored by drilling and sampling standard penetration test borings. The locations of the borings appear on the Boring Location Map, preceding the Subsurface Boring Logs in this appendix.

#### A.2 SAMPLING METHODS

#### A.2.1 Ring-lined barrel Samples - Calibrated to N<sub>60</sub> Values

Standard penetration (ring-lined barrel) samples were collected in general accordance with ASTM: D3550. The ASTM test method consists of driving a 2.5-inch O.D. thick-walled, split-barrel sampler lined with brass rings into the in-situ soil with a 140-pound hammer dropped from a height of 30 inches. The sampler is driven a total of 18 inches into the soil. After an initial set of 6 inches, the number of hammer blows to drive the sampler the final 12 inches is known as the standard penetration resistance or N-value.

#### A.2.2 Disturbed Samples (DS)/Spin-up Samples (SU)

Sample types described as "DS" or "SU" on the boring logs are disturbed samples, which are taken from the flights of the auger. Because the auger disturbs the samples, possible soil layering and contact depths should be considered approximate.

#### A.2.3 Sampling Limitations

Unless actually observed in a sample, contacts between soil layers are estimated based on the spacing of samples and the action of drilling tools. Cobbles, boulders, and other large objects generally cannot be recovered from test borings, and they may be present in the ground even if they are not noted on the boring logs.

Determining the thickness of "topsoil" layers is usually limited, due to variations in topsoil definition, sample recovery, and other factors. Visual-manual description often relies on color for determination, and transitioning changes can account for significant variation in thickness judgment. Accordingly, the topsoil thickness presented on the logs should not be the sole basis for calculating topsoil stripping depths and volumes. If more accurate information is needed relating to thickness and topsoil quality definition, alternate methods of sample retrieval and testing should be employed.

#### A.3 CLASSIFICATION METHODS

Soil descriptions shown on the boring logs are based on the Unified Soil Classification (USC) system. The USC system is described in ASTM: D2487 and D2488. Where laboratory classification tests (sieve analysis or Atterberg Limits) have been performed, accurate classifications per ASTM: D2487 are possible. Otherwise, soil descriptions shown on the boring logs are visual-manual judgments. Charts are attached which provide information on the USC system, the descriptive terminology, and the symbols used on the boring logs.

Visual-manual judgment of the AASHTO Soil Group is also noted as a part of the soil description. A chart presenting details of the AASHTO Soil Classification System is also attached.

The boring logs include descriptions of apparent geology. The geologic depositional origin of each soil layer is interpreted primarily by observation of the soil samples, which can be limited. Observations of the surrounding topography, vegetation, and development can sometimes aid this judgment.

#### A.4 WATER LEVEL MEASUREMENTS

The ground water level measurements are shown at the bottom of the boring logs. The following information appears under "Water Level Measurements" on the logs:

- Date and Time of measurement
- Sampled Depth: lowest depth of soil sampling at the time of measurement
- Casing Depth: depth to bottom of casing or hollow-stem auger at time of measurement
- Cave-in Depth: depth at which measuring tape stops in the borehole
- Water Level: depth in the borehole where free water is encountered
- Drilling Fluid Level: same as Water Level, except that the liquid in the borehole is drilling fluid

The true location of the water table at the boring locations may be different than the water levels measured in the boreholes. This is possible because there are several factors that can affect the water level measurements in the borehole. Some of these factors include: permeability of each soil layer in profile, presence of perched water, amount of time between water level readings, presence of drilling fluid, weather conditions, and use of borehole casing.

#### A.5 LABORATORY TEST METHODS

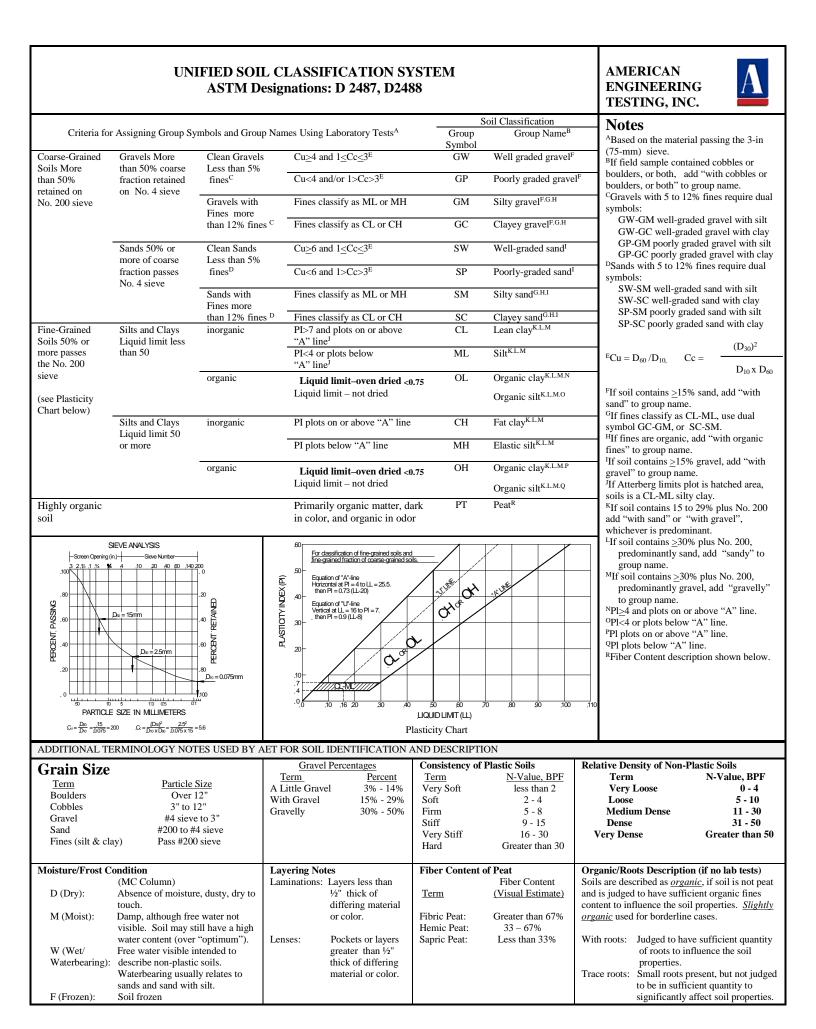
#### A.5.1 Water Content Tests

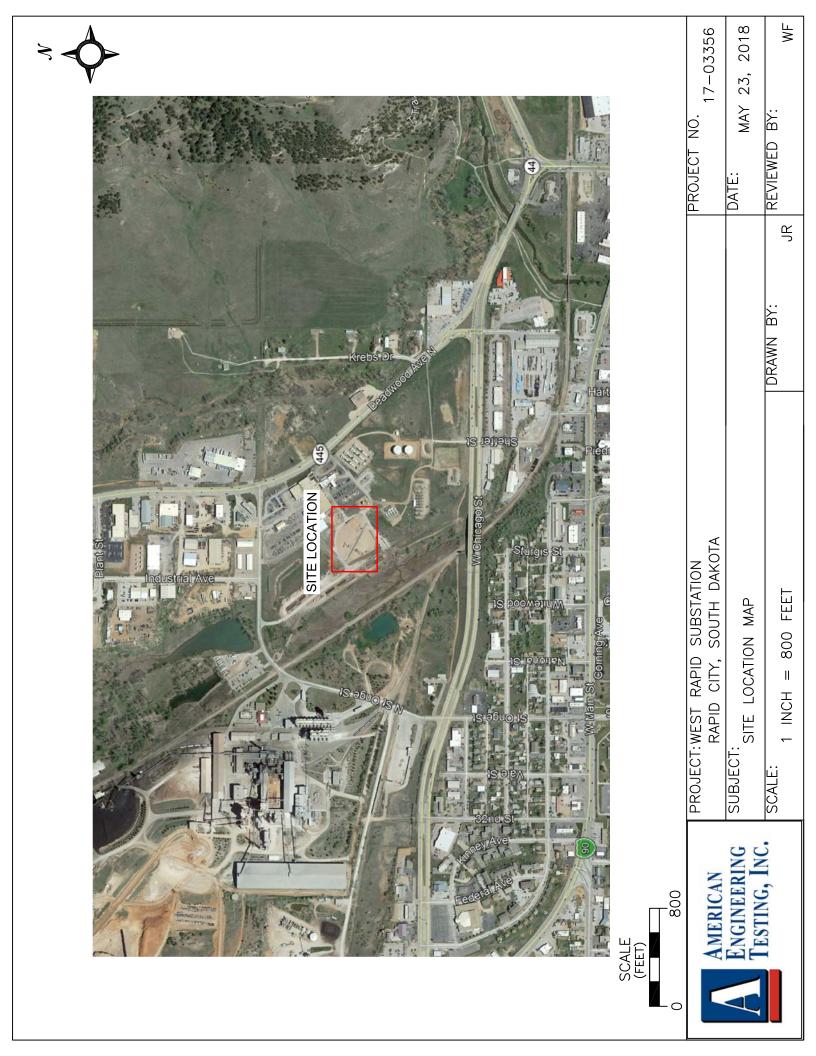
Conducted per AET Procedure 01-LAB-010, which is performed in general accordance with ASTM: D2216 and AASHTO: T265.

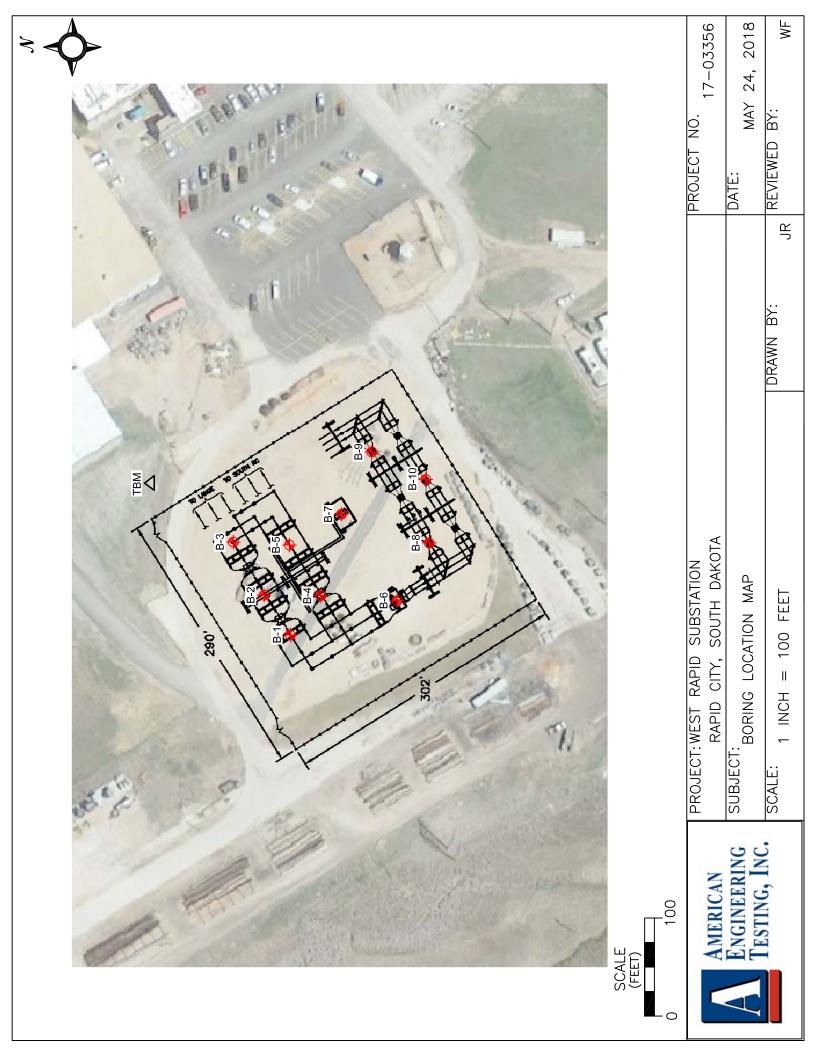
#### A.5.2 Atterberg Limits Tests

Conducted per AET Procedure 01-LAB-030, which is performed in general accordance with ASTM: D4318 and AASHTO: T89, T90.

#### A.5.3 Sieve Analysis of Soils (thru #200 Sieve)


Conducted per AET Procedure 01-LAB-040, which is performed in general conformance with ASTM: D6913, Method A.


#### A.6 TEST STANDARD LIMITATIONS


Field and laboratory testing is done in general conformance with the described procedures. Compliance with any other standards referenced within the specified standard is neither inferred nor implied.

#### A.7 SAMPLE STORAGE

Unless notified to do otherwise, we routinely retain representative samples of the soils recovered from the borings for a period of 30 days.









| PROJECT: West Rapid Substation; Rapid City, South Dakota         DEPTH<br>IN<br>FEET       SURFACE ELEVATION: 92.6<br>MATERIAL DESCRIPTION       GEOLOGY       N       MC       SAMPLE REC<br>TYPE       FIELD & LABORATOR         UMESTONE AGGREGATE SURFACING<br>9 inches       SURFACING<br>FILL, Silty Lean Clay with Sand, reddish<br>brown (CL)       SURFACING<br>FILL       A         4       4       20       M       MC       18       4       4       4         5       6       14       M       MC       18       19       10         8       18       M       MC       18       19       110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | PII<br>(ppi          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| INT       SURFACE ELEVATION:       JAD       GEOLOGY       N       MC       SAMPLE       REC         FEET       MATERIAL DESCRIPTION       ESURFACING       SURFACING       SURFACING       Image: Surface of the second secon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | PII<br>(pp)<br>NI    |
| 1       9 inches       SURFACING       SURFACING         2       FILL, Silty Lean Clay with Sand, reddish       FILL         3       SURFACING       M         4       20       M         5       M       MC         6       14       M         7       M       MC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | - (ppi<br>NI<br>) NI |
| 1       9 inches         2       FILL, Silty Lean Clay with Sand, reddish         3       -         4       -         5       -         6       -         7       -         14       M         M       MC         18       -         14       M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NI<br>P NI           |
| 2 -       FILL, Silty Lean Clay with Sand, reddish         3 -         4 -         5 -         6 -         7 -         14         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ) NI                 |
| $\begin{bmatrix} 3 - & brown (CL) \\ 4 - & & \\ 5 - & & \\ 6 - & & \\ 7 - & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & &$ | ) NI                 |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ) NI                 |
| $\begin{bmatrix} 5 \\ 6 \\ 7 \\ 7 \\ - \\ 0 \end{bmatrix}$ $\begin{bmatrix} 14 \\ M \\ MC \\ 18 \\ 26 \\ 96 \\ 43 \\ 1 \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NI                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NI                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      |
| 11 - 13 M MC 18 20 114                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NI                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      |
| 13     SILTY LEAN CLAY with SAND reddish     ALLUVIUM     18     W     MC     18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | NI                   |
| 14 – brown, very stiff to hard, sandstone fragments<br>present (CL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                      |
| $\begin{bmatrix} 15 - \\ 16 - \end{bmatrix}$ present (CL) $\begin{bmatrix} 25 \\ M \end{bmatrix}$ MC 18 $\begin{bmatrix} 18 \\ 18 \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | NI                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      |
| 21 – 31 M MC 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NI                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      |
| 26 – 45 M MC 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NI                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      |
| 30 - 25 M MC 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NS                   |
| 29 -       30 -         31 -       25 M MC 18         Bottom of Boring       25 M MC 18         DEPTH:       DRILLING METHOD         WATER LEVEL MEASUREMENTS       NOTE: RE         30.0       3.25" HSA         DATE       TIME         SAMPLED       CASING         CAVE-IN       DRILLING         WATER       LEVEL         BORING       5/8/18         COMPLETED:       5/8/18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      |
| DEPTH: DRILLING METHOD WATER LEVEL MEASUREMENTS NOTE: RE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | FER TC               |
| <b>30.0 3.25" HSA</b> DATE TIME SAMPLED CASING CAVE-IN DRILLING WATER LEVEL THE ATTA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CHED                 |
| 5/8/18 10:20 31.5 30.0 NA NA 12.5 SHEETS F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | OR AN                |
| EXPLANA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ION O                |
| BORING<br>COMPLETED: 5/8/18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | OGY O                |
| DR: ES LG: JH Rig: RC-1 THIS I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | OG                   |



| AET JC         | DB NO: <b>17-03356</b>                              |                           |               |                 |                      | LC        | G OF         | BO        | RING N            | NO        | B            | - 2               | ( <b>p.</b> 1 | <b>of 1</b> ) | )        |
|----------------|-----------------------------------------------------|---------------------------|---------------|-----------------|----------------------|-----------|--------------|-----------|-------------------|-----------|--------------|-------------------|---------------|---------------|----------|
| PROJE          | CT: West Rapid Sub                                  | ostation;                 | Rapid C       | City, So        | outh Dakot           | a         |              |           |                   |           |              |                   |               |               |          |
| DEPTH<br>IN    | SURFACE ELEVATION:                                  | 94.0                      |               |                 | GEOLOGY              |           |              | SA        | MPI F             | REC       | FIELI        | <b>) &amp;</b> LA | ABORA         | TORY          | TES      |
| IN<br>FEET     | MATERIAL                                            | DESCRIPTI                 | ON            |                 | GLOLOGI              | N         | MC           |           | MPLE<br>YPE       | IN.       | WC           | DEN               | LL            | PL            | P<br>(pp |
|                | LIMESTONE AGGREC                                    | GATE SUI                  | RFACING       | ;               | SURFACING            |           |              | Ł         |                   |           |              |                   |               |               |          |
|                | √10 inches<br>FILL, Silty Lean Clay Sa:             | nd raddish                | brown         | _/ 🞆            | FILL                 | 1         |              | ł         |                   |           |              |                   |               |               |          |
| 2 -            | (CL)                                                | ilu, reduisi              | l blown       |                 |                      |           |              | Ł         |                   |           |              |                   |               |               |          |
| 3 -            |                                                     |                           |               |                 |                      | 38        | М            |           | MC                | 18        |              |                   |               |               | N        |
| 4 -            |                                                     |                           |               |                 |                      |           |              | Ł         |                   |           |              |                   |               |               |          |
| 5 —            | GYPSUM, white, hard                                 |                           |               |                 | SPEARFISH            | 50/.3     | М            |           | MC                | 10        |              |                   |               |               | N        |
| 6 -            | GTT SOWI, white, hard                               |                           |               | $\rightarrow -$ | FORMATION            |           |              | И         | me                | 10        |              |                   |               |               | 11       |
| 7 -            |                                                     |                           |               |                 |                      |           |              | Ъ         |                   |           |              |                   |               |               |          |
| 8 -            |                                                     | <u></u>                   |               | <u>- 0 -</u>    |                      | 34        | М            |           | MC                | 18        | 8            |                   |               |               | N        |
| 9 —<br>10 —    | CLAYSTONE, Silty Lear<br>to hard, gypsum lenses pro | n Clay, red<br>esent (CL) | i, very stiff |                 |                      |           |              | 3         |                   |           |              |                   |               |               |          |
| 10             | , C) 1 - F-                                         | ( -)                      |               |                 |                      | 20        | М            |           | MC                | 18        |              |                   |               |               | N        |
| 11 - 12 -      |                                                     |                           |               |                 |                      |           |              | Я         |                   |           |              |                   |               |               |          |
| 12 - 13 -      |                                                     |                           |               |                 |                      |           | $\square$    | ¥         |                   |           |              |                   |               |               |          |
| 13 –<br>14 –   |                                                     |                           |               |                 |                      | 50/.4     | Ŵ            |           | MC                | 17        | 13           |                   |               |               | N        |
| 14 -           |                                                     |                           |               |                 |                      |           |              | $\{$      |                   |           |              |                   |               |               |          |
| 15<br>16 —     |                                                     |                           |               |                 |                      | NSR       | М            |           | MC                | 0         |              |                   |               |               | N        |
| 17 -           |                                                     |                           |               |                 |                      |           |              | R         |                   |           |              |                   |               |               |          |
| 17 - 18 -      |                                                     |                           |               |                 |                      |           |              | ł         |                   |           |              |                   |               |               |          |
| 10<br>19 —     |                                                     |                           |               |                 |                      |           |              | ł         |                   |           |              |                   |               |               |          |
| 20 -           |                                                     |                           |               |                 |                      |           |              | Į         |                   |           |              |                   |               |               |          |
| 20             |                                                     |                           |               |                 |                      | 50/.4     | М            |           | MC                | 11        |              |                   |               |               | N        |
| 21 22 -        |                                                     |                           |               |                 |                      |           |              | R         |                   |           |              |                   |               |               |          |
| 22 - 23 -      |                                                     |                           |               |                 |                      |           |              | ł         |                   |           |              |                   |               |               |          |
| 24 -           |                                                     |                           |               |                 |                      |           |              | ł         |                   |           |              |                   |               |               |          |
| 25 -           |                                                     |                           |               |                 |                      |           |              | Į         |                   |           |              |                   |               |               |          |
| 26 –           |                                                     |                           |               |                 |                      | 50/.4     | М            |           | MC                | 11        |              |                   |               |               | N        |
| 27 —           |                                                     |                           |               |                 |                      |           |              | Ł         |                   |           |              |                   |               |               |          |
| 28 -           |                                                     |                           |               |                 |                      |           |              | Į         |                   |           |              |                   |               |               |          |
| 29 -           |                                                     |                           |               |                 |                      |           |              | ł         |                   |           |              |                   |               |               |          |
| 30 -           |                                                     |                           |               |                 |                      |           |              | ł         |                   |           |              |                   |               |               |          |
| -              | Bottom of                                           | Boring                    |               |                 |                      | 50/.4     | M            |           | MC                | 11        |              |                   |               |               | NS       |
|                | Bottom of                                           | Doring                    |               |                 |                      |           |              |           |                   |           |              |                   |               |               |          |
|                |                                                     |                           |               |                 |                      |           |              |           |                   |           |              |                   |               |               |          |
| DEP            | TH: DRILLING METHOD                                 |                           |               |                 | ER LEVEL ME          |           |              |           |                   |           |              |                   | NOTE:         | REFE          | R T      |
| 3              | 0.0 3.25" HSA                                       | DATE                      | TIME          | SAMPI<br>DEPT   | ED CASING<br>H DEPTH | CAV<br>DE | 'E-IN<br>PTH | FL        | DRILLII<br>UID LE | NG<br>VEL | WATE<br>LEVE | ER<br>EL          | THE A         | TTAC          | HEL      |
|                |                                                     | 5/8/18                    | 17:00         | 30.9            | 30.0                 | N         | A            |           | NA                |           | 13.0         | )                 | SHEET         | FS FOI        | R AN     |
|                |                                                     |                           |               |                 |                      | 1         |              |           |                   |           |              | H                 | EXPLA         | NATIO         | ON C     |
| BORIN<br>COMPI | G<br>Leted: <b>5/8/18</b>                           |                           |               |                 |                      |           |              |           |                   |           |              | T                 | ERMIN         | IOLOG         | GY C     |
| DR: ES         |                                                     |                           |               |                 |                      |           |              | $\square$ |                   | +         |              |                   | TH            | IS LO         | 3        |
| 03/2011        |                                                     | 1                         | 1             | 1               | 1                    | 1         |              | 1         |                   |           |              |                   |               | 01-D          | JD       |



| AET JC              |                                |             |             |                |                      |           | OG OF        | F BO | RING N            | IO        | B            | -3 (   | ( <b>p.</b> 1 | <b>of 1</b> ) | )         |
|---------------------|--------------------------------|-------------|-------------|----------------|----------------------|-----------|--------------|------|-------------------|-----------|--------------|--------|---------------|---------------|-----------|
| PROJE               | CT: West Rapid Sul             | bstation;   | Rapid C     | 'ity, So       | uth Dakot            | a         |              |      |                   |           |              |        |               |               |           |
| DEPTH<br>IN<br>FEET | SURFACE ELEVATION:             | 95.2        |             |                | GEOLOGY              | N         | MC           | SA   | MPLE              | REC       | FIELI        | ) & LA | BORA          | TORY          |           |
| FEET                | MATERIAL                       | DESCRIPTI   | ON          |                |                      |           | wie          | ]    | TYPE              | IN.       | WC           | DEN    | LL            | PL            | PI<br>(pp |
| 1 -                 | LIMESTONE AGGRE                | GATE SUI    | RFACING     | ·              | SURFACING            | _         |              | ß    |                   |           |              |        |               |               |           |
| $\frac{1}{2}$       | √9 inches<br>FILL, Coal, black |             |             |                | FILL                 |           |              | ł    |                   |           |              |        |               |               |           |
| $\frac{2}{3}$ -     |                                |             |             | լերեր<br>1     |                      |           |              | 1    |                   |           |              |        |               |               |           |
| 4 -                 | GYPSUM, white, hard, si        | Itstone len | ses present | t - ♦ -        | SPEARFISH            | 50/.5     | Μ            |      | MC                | 12        |              |        |               |               | N         |
| 4 -<br>5 -          |                                |             | -           |                | FORMATION            | ſ         |              | ł    |                   |           |              |        |               |               |           |
| 6 -                 |                                |             |             |                |                      | 50/.5     | М            |      | MC                | 12        |              |        |               |               | N         |
| 7 -                 |                                |             |             |                |                      |           |              | R    |                   |           |              |        |               |               |           |
| 8 -                 |                                |             |             | -0-            |                      |           |              | ¥    |                   | -         |              |        |               |               |           |
| 9 -                 |                                |             |             |                |                      | 50/.5     | M            |      | MC                | 6         |              |        |               |               | N         |
| 10 -                |                                |             |             |                |                      |           |              | 1    |                   |           |              |        |               |               |           |
| 11 -                |                                |             |             |                |                      | 50/.5     | Μ            |      | MC                | 6         |              |        |               |               | N         |
| 12 -                |                                |             |             |                |                      |           |              | Ł    |                   |           |              |        |               |               |           |
| 13 -                |                                |             |             | - \            |                      | 50/.3     | м            | И    | MC                | 4         |              |        |               |               | N         |
| 14 —                |                                |             |             |                |                      | 50/.5     | IVI          |      | MC                | 4         |              |        |               |               |           |
| 15 —                |                                |             |             |                |                      |           |              | 5    |                   |           |              |        |               |               |           |
| 16 -                |                                |             |             |                |                      | NSR       | Μ            |      | MC                | 0         |              |        |               |               | N         |
| 17 —                |                                |             |             |                |                      |           |              | Ł    |                   |           |              |        |               |               |           |
| 18 -                |                                |             |             | - \            |                      |           |              | ł    |                   |           |              |        |               |               |           |
| 19 -                |                                |             |             | $-\diamond$    |                      |           |              | Į    |                   |           |              |        |               |               |           |
| 20 -                |                                |             |             |                |                      |           |              | R    |                   |           |              |        |               |               |           |
| 21 -                | CLAYSTONE, Silty Leas          | n Clay, red | l, hard,    |                |                      | 78/.8     | M            |      | MC                | 16        |              |        |               |               | N         |
| 22 —                | gypsum lenses present (C       | L)          |             |                |                      |           |              | ß    |                   |           |              |        |               |               |           |
| 23 —                |                                |             |             |                |                      |           |              | ł    |                   |           |              |        |               |               |           |
| 24 —                |                                |             |             |                |                      |           |              | ł    |                   |           |              |        |               |               |           |
| 25 -                |                                |             |             |                |                      | 50/2      | м            | Ł    | MC                | 0         |              |        |               |               |           |
| 26 -                |                                |             |             |                |                      | 50/.2     | М            |      | MC                | 9         |              |        |               |               | N         |
| 27 —                |                                |             |             |                |                      |           |              | ł    |                   |           |              |        |               |               |           |
| 28 -                |                                |             |             |                |                      |           |              | Į    |                   |           |              |        |               |               |           |
| 29 -                |                                |             |             |                |                      |           |              | ß    |                   |           |              |        |               |               |           |
| 30 -                |                                |             |             |                |                      | 50/.3     | Μ            |      | MC                | 10        |              |        |               |               | NS        |
|                     | Bottom of                      | Boring      |             |                |                      |           |              |      |                   |           |              |        |               |               |           |
| DEP                 | TH: DRILLING METHOD            |             |             | WATE           | R LEVEL ME           | <br>ASURI | EMEI         | NTS  |                   |           |              | 1      | NOTE:         | REFE          | ER T      |
| 2                   |                                | DATE        | TIME        | SAMPL<br>DEPTI | ED CASING<br>H DEPTH | CAV       | 'E-IN<br>PTH | FI   | ORILLII<br>UID LE | NG<br>VEI | WATI<br>LEVE | ER     | THE A         | TTAC          | HEI       |
| 3                   | 0.0 3.25" HSA                  | 5/9/18      | 8:30        | <b>30.8</b>    | 30.0                 |           | [A           |      | NA                | ·         | Non          |        | SHEET         |               |           |
|                     |                                | 5/7/10      | 0.00        | 50.0           | 50.0                 |           | 11           |      | 11/1              |           | 1101         | C      | XPLA          |               |           |
| BORIN               | G<br>LETED: <b>5/9/18</b>      |             |             |                |                      |           |              |      |                   |           |              |        | ERMIN         |               |           |
|                     |                                |             |             |                |                      |           |              |      |                   |           |              |        |               | IS LO         |           |
| DR: ES<br>3/2011    | S LG: JH Rig: RC-1             |             |             |                |                      |           |              |      |                   |           |              |        |               | 01-D          |           |



| AET JO                                  | DB NO: 17-03356                        |               |         |                 |                      | LC        | OG OF              | F BO | RING 1           | NO        | B           | - 4      | (p. 1 | <b>of 1</b> ) | )        |
|-----------------------------------------|----------------------------------------|---------------|---------|-----------------|----------------------|-----------|--------------------|------|------------------|-----------|-------------|----------|-------|---------------|----------|
| PROJE                                   | CT: West Rapid Sul                     | bstation;     | Rapid ( | City, So        | uth Dakot            | a         |                    |      |                  |           |             |          |       |               |          |
| DEPTH                                   | SURFACE ELEVATION:                     | 93.5          |         |                 | GEOLOGY              |           |                    | SA   | MPI F            | REC       | FIEL        | D & L.   | ABORA | TORY          | TES      |
| DEPTH<br>IN<br>FEET                     | MATERIAL                               | DESCRIPTI     | ON      |                 | GLOLOGI              | N         | MC                 |      | MPLE<br>FYPE     | IN.       | WC          | DEN      | LL    | PL            | P<br>(pp |
|                                         | LIMESTONE AGGREC                       | GATE SUI      | RFACINO | · _             | SURFACING            |           |                    | Ł    |                  |           |             |          |       |               |          |
| 1 -                                     | √10 inches<br>FILL, Silty Lean Clay wi | th Sand re    | ddish   | _/ 🞆 '          | FILL                 |           |                    | Ŧ    |                  |           |             |          |       |               |          |
| 2 -                                     | brown (CL)                             | tii Sand, ite | duisii  |                 |                      |           |                    | 1    |                  |           |             |          |       |               |          |
| 3 -                                     |                                        |               |         |                 |                      | 45        | М                  |      | MC               | 18        |             |          |       |               | N        |
| 4 -                                     | CLAYSTONE, Silty Lear                  | n Clay red    | hard    |                 | SPEARFISH            | -         |                    | Ł    |                  |           |             |          |       |               |          |
| 5 -                                     | (CL)                                   | li Clay, ieu  | , naru  |                 | FORMATION            | 55        | М                  |      | MC               | 18        | 8           |          |       |               | N        |
| 6 -                                     |                                        |               |         |                 |                      |           |                    | И    |                  | 10        |             |          |       |               |          |
| 7 -                                     |                                        |               |         |                 |                      |           |                    | Y    |                  |           |             |          |       |               |          |
| 8 -                                     |                                        |               |         |                 |                      | 50/.5     | Μ                  |      | MC               | 12        | 7           |          |       |               | N        |
| 9 -                                     |                                        |               |         |                 |                      |           |                    | Ł    |                  |           |             |          |       |               |          |
| 10 -                                    |                                        |               |         |                 |                      | 85/.8     | M                  |      | MC               | 16        |             |          |       |               | 1        |
| 11 -                                    |                                        |               |         |                 |                      |           | $\bigtriangledown$ | И    |                  |           |             |          |       |               |          |
| 12 -                                    |                                        |               |         |                 |                      |           |                    | ¥    |                  |           |             |          |       |               |          |
| 13 -                                    |                                        |               |         |                 |                      | 90        | W                  |      | MC               | 18        | 9           | 119      |       |               | 5        |
| 14 -                                    |                                        |               |         |                 |                      |           |                    | Ł    |                  |           |             |          |       |               |          |
| 15 -                                    |                                        |               |         |                 |                      | 75/.9     | М                  |      | MC               | 17        |             |          |       |               | <        |
| 16 -                                    |                                        |               |         |                 |                      |           |                    | И    |                  | - /       |             |          |       |               |          |
| 17 —<br>18 —                            |                                        |               |         |                 |                      |           |                    | ł    |                  |           |             |          |       |               |          |
| 18 -                                    |                                        |               |         |                 |                      |           |                    | ł    |                  |           |             |          |       |               |          |
| 20 -                                    |                                        |               |         |                 |                      |           |                    | Į    |                  |           |             |          |       |               |          |
| 20 - 21 -                               |                                        |               |         |                 |                      | 50        | М                  |      | MC               | 18        | 11          |          |       |               | N        |
| 21 - 22 - 22 - 22 - 22 - 22 - 22 - 22 - |                                        |               |         |                 |                      |           |                    | R    |                  |           |             |          |       |               |          |
| 22 - 23 -                               |                                        |               |         |                 |                      |           |                    | ł    |                  |           |             |          |       |               |          |
| 23                                      |                                        |               |         |                 |                      |           |                    | ł    |                  |           |             |          |       |               |          |
| 25 -                                    |                                        |               |         |                 |                      |           |                    | 1    |                  |           |             |          |       |               |          |
| 26 -                                    | with gypsum lenses                     |               |         |                 |                      | NSR       | Μ                  |      | MC               | 0         |             |          |       |               | <        |
| 27 -                                    |                                        |               |         |                 |                      |           |                    | R    |                  |           |             |          |       |               |          |
| 28 -                                    |                                        |               |         |                 |                      |           |                    | H    |                  |           |             |          |       |               |          |
| 29 -                                    |                                        |               |         |                 |                      |           |                    | ł    |                  |           |             |          |       |               |          |
| 30 -                                    |                                        |               |         |                 |                      | 50/.3     | м                  | ł    | MC               | 4         |             |          |       |               | NS       |
| Γ                                       | Sampler Refu                           | sal at 30.3'  |         |                 |                      |           | 1*1                |      |                  |           |             |          |       |               | 144      |
|                                         |                                        |               |         |                 |                      |           |                    |      |                  |           |             |          |       |               |          |
|                                         |                                        | 1             |         |                 |                      |           |                    |      |                  |           |             |          |       |               |          |
| DEP                                     | TH: DRILLING METHOD                    |               |         | 1               | R LEVEL MEA          | -         |                    | -    |                  |           |             |          | NOTE: | REFE          | RT       |
| 3                                       | 0.0 3.25" HSA                          | DATE          | TIME    | SAMPLI<br>DEPTH | ED CASING<br>H DEPTH | CAV<br>DE | /E-IN<br>PTH       | FL   | DRILLI<br>UID LE | NG<br>VEL | WAT<br>LEVE | ER<br>EL | THE A | TTAC          | HEI      |
|                                         |                                        | 5/9/18        | 9:50    | 30.3            | 30.0                 |           | A                  |      | NA               |           | 12.0        |          | SHEE  | FS FOI        | R AN     |
|                                         |                                        |               |         |                 |                      |           |                    |      |                  |           |             |          | EXPLA | NATIO         | ON C     |
| BORIN                                   | g<br>Leted: <b>5/9/18</b>              |               |         |                 |                      |           |                    |      |                  |           |             |          | ERMI  | IOLOG         | GY (     |
| DR: ES                                  |                                        |               |         |                 |                      |           |                    |      |                  |           |             |          | TH    | IS LO         | G        |
| )3/2011                                 | 5 10. <b>911</b> Mg. <b>NO-1</b>       | 1             | 1       | 1               |                      | 1         |                    | 1    |                  |           |             |          |       | 01-D          |          |



# SUBSURFACE BORING LOG

| AET JO                  | DB NO: 17-03356                        |              |           |               |             | LC    | OG OF        | BOI | RING 1          | NO  | B            | - 5    | (p. 1  | <b>of 1</b> ) | )         |
|-------------------------|----------------------------------------|--------------|-----------|---------------|-------------|-------|--------------|-----|-----------------|-----|--------------|--------|--------|---------------|-----------|
| PROJE                   | CT: West Rapid Sul                     | bstation;    | Rapid C   | City, So      | outh Dakot  | a     |              |     |                 |     |              |        |        |               |           |
| DEPTH<br>IN             | SURFACE ELEVATION:                     | 95.0         |           |               | GEOLOGY     |       |              | SA  | MPLE            | REC | FIEL         | D & L. | ABORA  | TORY          | TEST      |
| FEET                    | MATERIAL                               | DESCRIPTI    | ON        |               | GLOLOGI     | N     | MC           | Ť   | MPLE<br>YPE     | IN. | WC           | DEN    | LL     | PL            | PI<br>(pp |
| 1                       | LIMESTONE AGGREC                       | GATE SUI     | RFACINO   | ´ 💻           | SURFACIING  | ĩ     |              | Ł   |                 |     |              |        |        |               |           |
| 1 —<br>2 —              | <u>\10 inches</u><br>FILL, Coal, black |              |           | _/ _          | FILL        |       |              | ł   |                 |     |              |        |        |               |           |
| 2 —<br>3 —              | SILTY LEAN CLAY wi                     | ith SAND 1   | reddish   |               | ALLUVIUM    | -     |              | 1   |                 |     |              |        |        |               |           |
|                         | brown, very stiff to hard,             | claystone f  | fragments |               |             | 42    | Μ            |     | MC              | 18  | 26           | 99     |        |               | N         |
| 4 —<br>5 —              | present (CL)                           |              |           |               |             |       |              | Ł   |                 |     |              |        |        |               |           |
| 5 –<br>6 –              |                                        |              |           |               |             | 35    | M            |     | MC              | 18  | 19           |        |        |               | N         |
| 0 –<br>7 –              |                                        |              |           |               |             |       |              | Я   |                 |     |              |        |        |               |           |
| 8                       |                                        |              |           |               |             |       |              | Ŀ   |                 |     |              |        |        |               |           |
| 8<br>9 —                |                                        |              |           |               |             | 35    | M            |     | MC              | 18  |              |        |        |               | 17        |
| 9 –<br>10 –             |                                        |              |           |               |             |       |              | Ĭ   |                 |     |              |        |        |               |           |
| 10                      | with gypsum fragments                  |              |           |               |             | 46    | М            |     | MC              | 18  |              |        |        |               | 14        |
| 11                      |                                        |              |           |               |             |       |              | R   |                 |     |              |        |        |               |           |
| 12                      |                                        |              |           |               |             |       |              |     | 1.16            | 10  | 10           |        |        |               |           |
| 14 -                    |                                        |              |           |               |             | 17    | M            |     | MC              | 18  | 18           | 112    |        |               | 8         |
| 15 -                    |                                        |              |           |               |             |       |              | 1   |                 |     |              |        |        |               |           |
| 16 -                    |                                        |              |           |               |             | 78    | М            |     | MC              | 18  | 9            | 126    |        |               | N         |
| 17 -                    |                                        |              |           |               |             |       |              | R   |                 |     |              |        |        |               |           |
| 18 -                    |                                        |              |           |               |             |       |              | Ħ   |                 |     |              |        |        |               |           |
| 19 —                    |                                        |              |           |               |             |       |              | Ł   |                 |     |              |        |        |               |           |
| 20 -                    |                                        |              |           |               |             |       |              | ¥   |                 |     |              |        |        |               |           |
| 21 -                    | CLAYSTONE, Silty Lear                  | n Clay, red  | l, hard,  |               | SPEARFISH   | 50/.2 | M            |     | MC              | 9   |              |        |        |               | N         |
| 22 —                    | gypsum lenses present (C               | L)           |           |               | FORMATION   |       |              | Ł   |                 |     |              |        |        |               |           |
| 23 —                    |                                        |              |           |               |             |       |              | Ħ   |                 |     |              |        |        |               |           |
| 24 —                    |                                        |              |           |               |             |       |              | H   |                 |     |              |        |        |               |           |
| 25 —                    |                                        |              |           |               |             |       |              | ł   |                 |     |              |        |        |               |           |
| 26 —                    |                                        |              |           |               |             | NSR   | M            |     | MC              | 0   |              |        |        |               | N         |
| 27 —                    |                                        |              |           |               |             |       |              | Ł   |                 |     |              |        |        |               |           |
| 28 —                    |                                        |              |           |               |             |       |              | H   |                 |     |              |        |        |               |           |
| 29 —                    |                                        |              |           |               |             |       |              | Ħ   |                 |     |              |        |        |               |           |
| 30 -                    | Sampler Refu                           | sal at 30 0' |           |               |             | NSR   | M            | R   | MC              | 0   |              |        |        |               | NS        |
|                         | Sampin Itera                           |              |           |               |             |       |              |     |                 |     |              |        |        |               |           |
|                         |                                        |              |           |               |             |       |              |     |                 |     |              |        |        |               |           |
| 29                      | TH: DRILLING METHOD                    |              |           | WATE          | ER LEVEL ME | ASUR  | EMEN         |     |                 |     |              |        | Norr   |               |           |
|                         |                                        |              | TDAT      |               |             |       |              |     | RILLI           | NG  | WAT          |        | NOTE:  |               |           |
| 3                       | 30.0 3.25" HSA                         | DATE         | TIME      | SAMPL<br>DEPT |             |       | /E-IN<br>PTH | FĽ  | RILLI<br>JID LE | VEL | WAT]<br>LEVE |        | THE A  |               |           |
|                         |                                        | 5/9/18       | 12:00     | 30.0          | 30.0        | N     | A            |     | NA              |     | Non          |        | SHEE   |               |           |
|                         | IC                                     |              |           |               |             |       |              |     |                 |     |              |        | EXPLA  |               |           |
| COMP                    | IG<br>LETED: <b>5/9/18</b>             |              |           |               |             |       |              |     |                 |     |              | 1      | TERMIN |               |           |
| DR: <b>E</b><br>03/2011 | S LG: JH Rig: RC-1                     |              |           |               |             |       |              |     |                 |     |              |        | TH     | IS LO         |           |



| AET JC              |                                            |             |           |               |            |       | OG OF        | BC       | ORING N          | NO  | B            | - 6   | (p. 1  | of 1       | )          |
|---------------------|--------------------------------------------|-------------|-----------|---------------|------------|-------|--------------|----------|------------------|-----|--------------|-------|--------|------------|------------|
| PROJE               | CT: West Rapid Sub                         | ostation;   | Rapid C   | City, So      | outh Dakot | a     |              |          |                  |     |              |       |        |            |            |
| DEPTH               | SURFACE ELEVATION:                         | 92.5        |           |               | GEOLOGY    |       |              | SA       | AMPI F           | REC | FIELI        | D & L | ABORA  | TORY       | TEST       |
| DEPTH<br>IN<br>FEET | MATERIAL                                   | DESCRIPTI   | ON        |               | GLOLOGI    | N     | MC           |          | AMPLE<br>TYPE    | IN. | WC           | DEN   | I LL   | PL         | PI<br>(ppi |
|                     | LIMESTONE AGGREC                           | GATE SUI    | RFACINO   | j <u> </u>    | SURFACING  |       |              | R        |                  |     |              |       |        |            | (ppi       |
|                     | <u>∖10 inches</u><br>FILL, Coal, black     |             |           |               | FILL       |       |              | Į        |                  |     |              |       |        |            |            |
| 2 -                 |                                            |             |           |               |            |       |              | Ł        |                  |     |              |       |        |            |            |
| 3 –                 | SILTY LEAN CLAY wi                         | th SAND, 1  | reddish   |               | ALLUVIUM   | 55    | Μ            |          | MC               | 18  |              |       |        |            | 103        |
| 4 -                 | brown, hard, claystone and<br>present (CL) | u gypsum    | fragments |               |            |       |              | Ł        |                  |     |              |       |        |            |            |
| 5 -                 |                                            |             |           |               |            | 50/.5 | M            |          | MC               | 12  | 12           |       |        |            | 17         |
| 6 -                 |                                            |             |           |               |            | 507.5 | 141          | Þ        | wie              | 12  | 12           |       |        |            | 17         |
| 7 -                 |                                            |             |           |               |            |       |              | ¥        |                  |     |              |       |        |            |            |
| 8 —<br>9 —          |                                            |             |           |               |            | 40    | Μ            |          | MC               | 18  | 12           | 119   |        |            | 16         |
| 9 –<br>10 –         |                                            |             |           |               |            |       |              | 3        |                  |     |              |       |        |            |            |
| 10                  |                                            |             |           |               |            | 66    | М            |          | MC               | 18  |              |       |        |            | 33         |
| 11 - 12 -           |                                            |             |           |               |            |       |              | R        |                  | -   |              |       |        |            |            |
| 12                  |                                            |             |           |               |            |       |              | Ľ        |                  |     |              |       |        |            |            |
| 14 -                |                                            |             |           |               |            | 50/.5 | M            |          | MC               | 6   | 11           |       |        |            | 13         |
| 15 -                |                                            |             |           |               |            |       |              | Ĭ        |                  |     |              |       |        |            |            |
| 16 -                | CLAYSTONE, Silty Lean                      | n Clav witl | h Sand.   |               | SPEARFISH  | 50/.4 | M            |          | MC               | 11  |              |       |        |            | <          |
| 17 -                | red, hard, gypsum lenses p                 | present (CI | L)        |               | FORMATION  | 1     |              | Ł        |                  |     |              |       |        |            |            |
| 18 -                |                                            |             |           |               |            |       |              | H        |                  |     |              |       |        |            |            |
| 19 -                |                                            |             |           |               |            |       |              | ł        |                  |     |              |       |        |            |            |
| 20 -                |                                            |             |           |               |            |       |              | ł        |                  |     |              |       |        |            |            |
| 21 -                |                                            |             |           |               |            | 50/.4 | Μ            |          | MC               | 11  |              |       |        |            | NI         |
| 22 -                |                                            |             |           |               |            |       |              | Ł        |                  |     |              |       |        |            |            |
| 23 —                |                                            |             |           |               |            |       |              | Į        |                  |     |              |       |        |            |            |
| 24 -                |                                            |             |           |               |            |       |              | H        |                  |     |              |       |        |            |            |
| 25 -                |                                            |             |           |               |            |       |              | Į        |                  |     |              |       |        |            |            |
| 26 -                |                                            |             |           |               |            | NSR   | Μ            |          | MC               | 0   | 9            | 115   |        |            | <          |
| 27 —                |                                            |             |           |               |            |       |              | ł        |                  |     |              |       |        |            |            |
| 28 —                |                                            |             |           |               |            |       |              | ł        |                  |     |              |       |        |            |            |
| 29 —                |                                            |             |           |               |            |       |              | ł        |                  |     |              |       |        |            |            |
| 30 -                |                                            |             |           |               |            | 50/.3 | M            | Н        | MC               | 10  |              |       |        |            | NS         |
| -                   | Bottom of                                  | Boring      |           |               |            |       |              |          |                  |     |              |       |        |            |            |
|                     |                                            |             |           |               |            |       |              |          |                  |     |              |       |        |            |            |
| DEP                 | TH: DRILLING METHOD                        |             |           | WATF          | R LEVEL ME | ASUR  | L<br>EME     | ۱<br>NTS |                  |     | 1            |       | NOTE:  | рггг       |            |
|                     |                                            | DATE        | TIME      |               |            |       |              | -        |                  | NG  | WATI         |       |        |            |            |
| 3                   | 0.0 3.25" HSA                              | DATE        |           | SAMPL<br>DEPT |            |       | /E-IN<br>PTH | FĹ       | DRILLI<br>UID LE | VEL | WATI<br>LEVE |       | THE A  |            |            |
|                     |                                            | 5/9/18      | 13:15     | 30.8          | 30.0       | N     | A            |          | NA               |     | Non          |       | SHEE   |            |            |
| BODIN               | G                                          |             |           |               |            | -     |              |          |                  |     |              |       | EXPLA  |            |            |
|                     | G<br>Leted: <b>5/9/18</b>                  |             |           |               |            | -     |              |          |                  |     |              | 1^1   | TERMIN |            |            |
| DR: ES              | S LG: JH Rig: RC-1                         |             |           |               |            |       |              |          |                  |     |              |       | TH     | 1IS LO $0$ | G          |

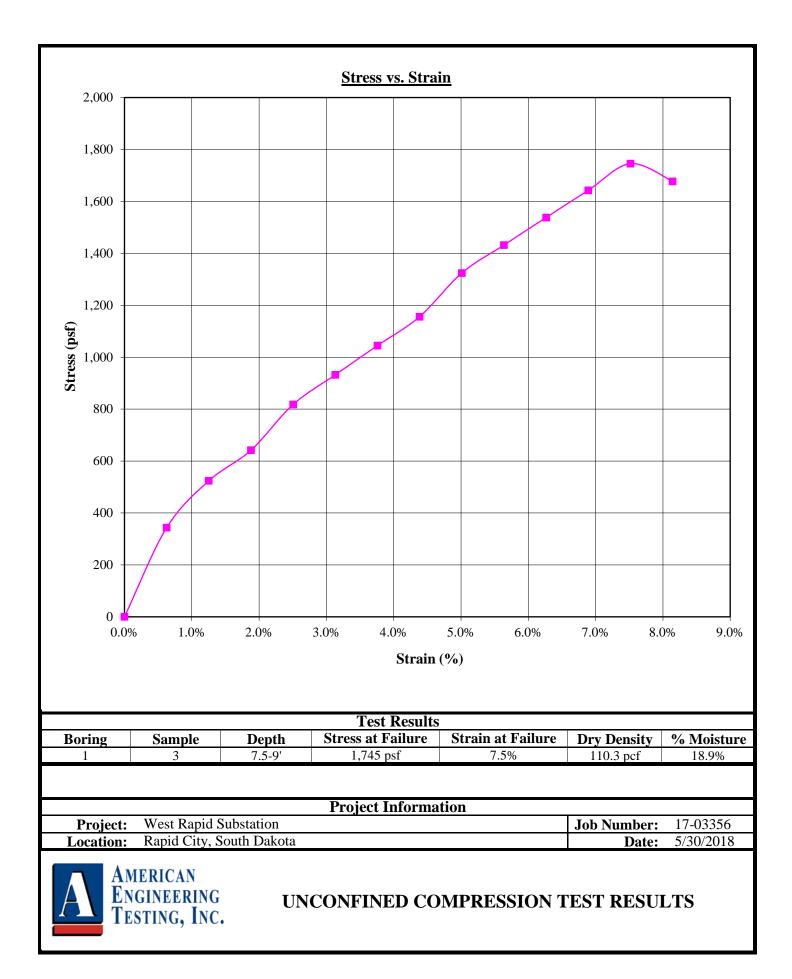


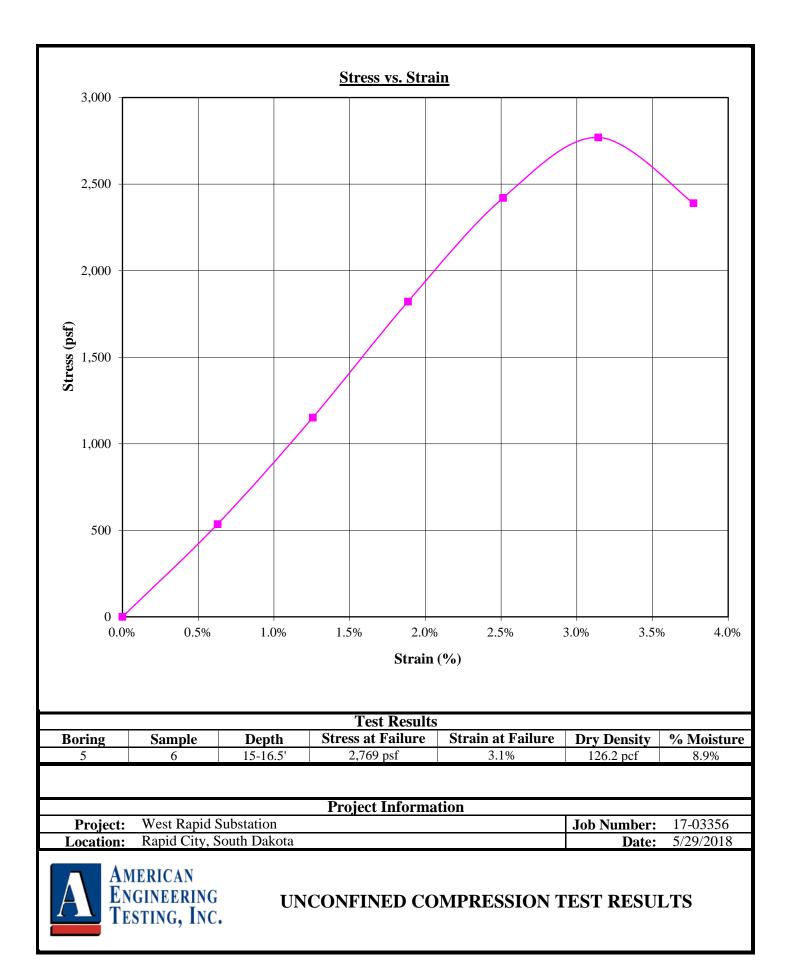
# SUBSURFACE BORING LOG

| AET JC                    | DB NO: <b>17-03356</b>                             |              |               |                          |                        | LC    | OG OF                    | F BC | RING N        | NO   | B     | - 7     | (p. 1          | of 1)  | )           |
|---------------------------|----------------------------------------------------|--------------|---------------|--------------------------|------------------------|-------|--------------------------|------|---------------|------|-------|---------|----------------|--------|-------------|
| PROJE                     | CT: West Rapid Sub                                 | ostation;    | Rapid C       | ity, So                  | outh Dakot             | a     |                          |      |               |      |       |         |                |        |             |
| DEPTH<br>IN<br>FEET       | SURFACE ELEVATION:                                 | 94.1         |               |                          | GEOLOGY                | N     | MC                       | SA   | AMPLE<br>FYPE | REC  | FIELI | D & LA  | ABORA          | TORY   |             |
| FEET                      |                                                    |              |               |                          |                        |       | MC                       |      | ГҮРЕ          | IN.  | WC    | DEN     | LL             | PL     | PII<br>(ppn |
| 1 -                       | LIMESTONE AGGREC                                   | GATE SUI     | RFACING       | _                        | SURFACING              | -     |                          | Į    |               |      |       |         |                |        |             |
| 2 -                       | FILL, Coal, black                                  |              |               |                          | FILL                   |       |                          | Ľ    |               |      |       |         |                |        |             |
| 3 -                       |                                                    |              |               | 11111                    |                        | 69    | М                        |      | MC            | 18   |       |         |                |        | NE          |
| 4 -                       | FILL, Silty Lean Clay with brown, gypsum fragments | th Sand, re  | ddish         |                          |                        | 09    | 101                      | R    | WIC           | 10   |       |         |                |        | INL         |
| 5 —                       | brown, gypsum nagments                             | s present (C | -L)           |                          |                        |       |                          | ŀ    |               |      |       |         |                |        |             |
| 6 -                       |                                                    | ~            |               |                          |                        | 17    | Μ                        |      | MC            | 18   |       |         |                |        | 74          |
| 7 —                       | GYPSUM, white, hard to                             | firm         |               |                          | SPEARFISH<br>FORMATION | J     |                          | ł    |               |      |       |         |                |        |             |
| 8 -                       |                                                    |              |               |                          |                        | 50/.3 | М                        |      | MC            | 10   |       |         |                |        | 115         |
| 9 —                       |                                                    |              |               | $\left[-\diamond\right]$ |                        |       |                          | ł    |               |      |       |         |                |        |             |
| 10 -                      |                                                    |              |               |                          |                        |       | $  \bigvee_{\mathbf{W}}$ |      | MG            | 10   |       |         |                |        | 100         |
| 11 -                      | CLAYSTONE, Silty Lean                              | n Clay, red  | l, very stiff |                          |                        | 6     | W                        |      | MC            | 18   |       |         |                |        | 120         |
| 12 -                      | to hard, gypsum lenses pro                         | esent (CL)   | , <b>,</b>    |                          |                        |       |                          | 1    |               |      |       |         |                |        |             |
| 13 -                      |                                                    |              |               |                          |                        | 22    | М                        |      | MC            | 18   |       |         |                |        | 195         |
| 14 -                      |                                                    |              |               |                          |                        |       |                          | Ł    |               |      |       |         |                |        |             |
| 15 —                      |                                                    |              |               |                          |                        | 48    | М                        | И    | MC            | 18   |       |         |                |        | 147         |
| 16 -                      |                                                    |              |               |                          |                        |       | 111                      | R    | WIC           | 10   |       |         |                |        | 17/         |
| 17 -                      |                                                    |              |               |                          |                        |       |                          | ł    |               |      |       |         |                |        |             |
| 18 -                      |                                                    |              |               |                          |                        |       |                          | Į    |               |      |       |         |                |        |             |
| 19 -                      |                                                    |              |               |                          |                        |       |                          | Į    |               |      |       |         |                |        |             |
| 20 -                      |                                                    |              |               |                          |                        | 50/.4 | M                        |      | MC            | 11   |       |         |                |        | 58          |
| 21 -                      |                                                    |              |               |                          |                        |       |                          | И    |               |      |       |         |                |        |             |
| 22 - 23 -                 |                                                    |              |               |                          |                        |       |                          | ł    |               |      |       |         |                |        |             |
| 23 - 24 -                 |                                                    |              |               |                          |                        |       |                          | ł    |               |      |       |         |                |        |             |
| 25 -                      |                                                    |              |               |                          |                        |       |                          | Į    |               |      |       |         |                |        |             |
| 26 -                      |                                                    |              |               |                          |                        | 50/.4 | M                        |      | MC            | 5    |       |         |                |        | NSI         |
| 20                        |                                                    |              |               |                          |                        |       |                          | ł    |               |      |       |         |                |        |             |
| 28 -                      |                                                    |              |               |                          |                        |       |                          | Į.   |               |      |       |         |                |        |             |
| 20                        |                                                    |              |               |                          |                        |       |                          | ł    |               |      |       |         |                |        |             |
| 30 -                      |                                                    |              |               |                          |                        | 50/3  | М                        | ł    | MC            | 4    |       |         |                |        | NSI         |
|                           | Sampler Refus                                      | sal at 30.3' |               |                          |                        |       |                          |      |               |      |       |         |                |        |             |
|                           |                                                    |              |               |                          |                        |       |                          |      |               |      |       |         |                |        |             |
| DEP                       | TH: DRILLING METHOD                                |              |               | WATE                     | R LEVEL ME             | ASUR  | L<br>EMEN                |      |               |      |       | <br>  . |                | DEFE   |             |
|                           |                                                    | DATE         | TIME          | SAMPL                    |                        | CAV   | Æ-IN                     | I    | ORILLI        | NG   | WATI  | ER      | NOTE:<br>THE A |        |             |
| 29 –<br>30 –<br>DEP<br>30 | 0.0 3.25" HSA                                      |              |               |                          |                        | DE    | РТН                      | FL   | UID LE        | EVEL | LEVE  | EL      | SHEE           |        |             |
|                           |                                                    | 5/9/18       | 14:25         | 30.3                     | 30.0                   |       | A                        | -    | NA            |      | 10.5  |         | EXPLA          |        |             |
| BORIN                     | G                                                  |              |               |                          |                        |       |                          |      |               |      |       |         | ERMI           |        |             |
|                           | LETED: <b>5/9/18</b>                               |              |               |                          |                        |       |                          |      |               |      |       | 1       |                | IS LOC |             |
| DR: E                     | S LG: JH Rig: RC-1                                 |              |               |                          |                        |       |                          |      |               |      |       |         |                |        |             |

01-DHR-060




| PROJE         |                                                              |              |            |                 |                   |            |             |     |                   | NO  |              |          | <b>U</b> <sup>2</sup> | <b>of 1</b> | /         |
|---------------|--------------------------------------------------------------|--------------|------------|-----------------|-------------------|------------|-------------|-----|-------------------|-----|--------------|----------|-----------------------|-------------|-----------|
|               | West Rapid Su                                                | bstation;    | Rapid C    | City, So        | uth Dakot         | a          |             |     |                   |     |              |          |                       |             |           |
| DEPTH<br>IN   | SURFACE ELEVATION:                                           | 92.5         |            |                 | GEOLOGY           |            |             | SA  | MDI E             | REC | FIELI        | D & LA   | ABORA                 | TORY        | TEST      |
| IN<br>FEET    | MATERIAL                                                     | DESCRIPTI    | ON         |                 | GEOLOGI           | N          | MC          | T   | MPLE<br>YPE       | IN. | WC           | DEN      | LL                    | PL          | PI<br>(pp |
|               | LIMESTONE AGGREO                                             | GATE SU      | RFACINO    | ·               | URFACING          |            |             | रि  |                   |     |              |          |                       |             |           |
|               | √9 inches<br>FILL, Coal, black                               |              |            | _/ 🛓 F          | TILL              | ]          |             | Ħ   |                   |     |              |          |                       |             |           |
| 2 -           |                                                              |              |            |                 |                   |            |             | Ł   |                   |     |              |          |                       |             |           |
| 3 -           | <b>FILL</b> , Silty Lean Clay wi<br>brown to dark brown, gyp |              |            |                 |                   | 50/.5      | М           |     | MC                | 6   |              |          |                       |             | NS        |
| 4 -           | coal fragmnets present (C                                    | L)           | sione, and |                 |                   |            |             | Ł   |                   |     |              |          |                       |             |           |
| 5 —           |                                                              |              |            |                 |                   | 10         | М           | И   | MC                | 18  | 16           | 100      |                       |             | N         |
| 6 -           |                                                              |              |            |                 |                   | 10         | IVI         |     | WIC               | 10  | 10           | 100      |                       |             | 111       |
| 7 -           | -                                                            |              |            |                 |                   |            |             | 1   |                   |     |              |          |                       |             |           |
| 8 -           | CLAYSTONE, Silty Lea                                         | n Clay wit   | h Sand,    |                 | PEARFISH          | 61         | М           |     | MC                | 18  | 8            | 131      |                       |             | N         |
| 9 -           | red, hard, gypsum lenses                                     | present (CI  | L)         |                 | ORMATION          | 1          |             | Ł   |                   |     |              |          |                       |             |           |
| 10 -          |                                                              |              |            |                 |                   | 50/.5      | М           |     | MC                | 12  |              |          |                       |             | 5         |
| 11 -          |                                                              |              |            |                 |                   |            |             | И   |                   |     |              |          |                       |             |           |
| 12 -          |                                                              |              |            |                 |                   |            |             | 1   |                   |     |              |          |                       |             |           |
| 13 -          |                                                              |              |            |                 |                   | 50/.4      | М           |     | MC                | 11  | 14           |          |                       |             | 1         |
| 14 -          |                                                              |              |            |                 |                   |            |             | Ł   |                   |     |              |          |                       |             |           |
| 15 —<br>16 —  |                                                              |              |            |                 |                   | 50/.3      | М           |     | MC                | 10  | 11           |          |                       |             | NS        |
| 10 -          |                                                              |              |            |                 |                   |            |             | R   |                   |     |              |          |                       |             |           |
| 17 - 18 -     |                                                              |              |            |                 |                   |            |             | ł   |                   |     |              |          |                       |             |           |
| 19 -          |                                                              |              |            |                 |                   |            |             | ł   |                   |     |              |          |                       |             |           |
| 20 -          |                                                              |              |            |                 |                   |            |             | Į   |                   |     |              |          |                       |             |           |
| 20            |                                                              |              |            |                 |                   | 50/.2      | М           |     | MC                | 3   |              |          |                       |             | NS        |
| 22 -          |                                                              |              |            |                 |                   |            |             | R   |                   |     |              |          |                       |             |           |
| 23 -          |                                                              |              |            |                 |                   |            |             | H   |                   |     |              |          |                       |             |           |
| 24 -          |                                                              |              |            |                 |                   |            |             | ł   |                   |     |              |          |                       |             |           |
| 25 -          |                                                              |              |            |                 |                   |            |             | Į   |                   |     |              |          |                       |             |           |
| 26 -          |                                                              |              |            |                 |                   | NSR        | М           |     | MC                | 0   |              |          |                       |             | N         |
| 27 —          | -                                                            |              |            |                 |                   |            |             | R   |                   |     |              |          |                       |             |           |
| 28 —          | -                                                            |              |            |                 |                   |            |             | Ħ   |                   |     |              |          |                       |             |           |
| 29 —          |                                                              |              |            |                 |                   |            |             | ¥.  |                   |     |              |          |                       |             |           |
| 30 -          |                                                              |              |            |                 |                   | 50/.2      | M           | ¥   | MC_               | _3_ |              |          |                       |             | NS        |
|               | Sampler Refu                                                 | sal at 30.2' |            |                 |                   |            |             |     |                   |     |              |          |                       |             |           |
|               |                                                              |              |            |                 |                   |            |             |     |                   |     |              |          |                       |             |           |
| DEI           |                                                              |              |            |                 |                   |            |             |     |                   |     |              |          |                       |             |           |
| 29            | PTH: DRILLING METHOD                                         |              |            |                 | R LEVEL ME        |            |             | -   |                   |     | WAT          |          | NOTE:                 |             |           |
| 3             | 30.0 3.25" HSA                                               | DATE         | TIME       | SAMPLE<br>DEPTH | D CASING<br>DEPTH | CAV<br>DEI | E-IN<br>PTH | FLU | ORILLII<br>UID LE | VEL | WATI<br>LEVE | ER<br>EL | THE A                 | TTAC        | HEL       |
|               |                                                              | 5/9/18       | 15:50      | 30.2            | 30.0              | N          | A           |     | NA                |     | Non          | e        | SHEE                  | FS FOI      | R AN      |
|               |                                                              |              |            |                 |                   |            |             |     |                   |     |              | I        | EXPLA                 | NATIO       | ON C      |
| BORIN<br>COMP | NG<br>LETED: <b>5/9/18</b>                                   |              |            |                 |                   |            |             |     |                   |     |              | T        | ERMI                  | NOLO        | GY C      |
|               | S LG: JH Rig: RC-1                                           |              |            |                 |                   |            |             |     |                   |     |              |          | TH                    | IS LO       | G         |




| AET JOB NO: <b>17-03356</b>                                                                         | _              |             |                  |                 | LC    | OG OF        | F BO | RING N            | 10            | B            | -9     | ( <b>p.</b> 1 | <b>of 1</b> ) | )           |
|-----------------------------------------------------------------------------------------------------|----------------|-------------|------------------|-----------------|-------|--------------|------|-------------------|---------------|--------------|--------|---------------|---------------|-------------|
| PROJECT: West Rapid                                                                                 | Substation;    | Rapid C     | City, Sou        | th Dakot        | a     |              |      |                   |               |              |        |               |               |             |
| DEPTH SURFACE ELEVATIO                                                                              | N: 95.1        |             |                  | GEOLOGY         |       |              | SA   | MPLE              | REC           | FIELI        | D & LA | BORA          | TORY          | TESTS       |
| FEET MATERI                                                                                         | AL DESCRIPTI   | ION         |                  |                 | N     | MC           |      | MPLE<br>TYPE      | IN.           | WC           | DEN    | LL            | PL            | PIE<br>(ppn |
| LIMESTONE AGGE                                                                                      | REGATE SU      | RFACING     | ´                | JRFACING        |       |              | ł    |                   |               |              |        |               |               |             |
| 1 - 10  inches $2 - FILL, Silty Lean Clay$                                                          | . reddish brov | wn to       | _/ 💥 FI          | LL              |       |              | ł    |                   |               |              |        |               |               |             |
| 3 -  brown, gypsum and co                                                                           | al fragments   | present (CI | L) 🎆 –           |                 |       |              | Γl   |                   | 10            |              |        |               |               |             |
| 4 -                                                                                                 |                |             |                  |                 | 53    | Μ            |      | MC                | 18            | 19           | 103    |               |               | 14          |
| 5 -                                                                                                 |                |             |                  |                 |       |              | 1    |                   |               |              |        |               |               |             |
| 6 -                                                                                                 |                |             |                  |                 | 28    | М            |      | MC                | 18            |              |        |               |               | 5           |
| 7 —                                                                                                 |                |             |                  |                 |       |              | Ł    |                   |               |              |        |               |               |             |
| 8 -                                                                                                 |                |             |                  |                 | 16    | М            |      | MC                | 18            | 26           | 99     | 46            | 25            | 76          |
| 9 —                                                                                                 |                |             |                  |                 |       |              | И    |                   |               |              |        |               |               |             |
| 10 -                                                                                                |                |             |                  |                 |       |              | ¥    |                   |               |              |        |               |               |             |
| 11 -                                                                                                |                |             |                  |                 | 10    | М            |      | MC                | 18            |              |        |               |               | <1          |
| 12 -                                                                                                |                |             |                  |                 |       |              | 1    |                   |               |              |        |               |               |             |
| 13 SILTY LEAN CLAY                                                                                  |                |             | Al               | LLUVIUM         | 20    | М            |      | MC                | 18            | 23           | 99     |               |               | 37          |
| 14 - very stiff, gypsum and<br>present (CL)                                                         | claystone fra  | gments      |                  |                 |       |              | Ł    |                   |               |              |        |               |               |             |
| 15                                                                                                  |                |             |                  |                 | 10    | М            | И    | MC                | 18            |              |        |               |               | NSF         |
| 16 -                                                                                                |                |             |                  |                 | 10    | 111          | И    | wie               | 10            |              |        |               |               | 1151        |
| 17 -                                                                                                |                |             |                  |                 |       |              | ł    |                   |               |              |        |               |               |             |
| 18 - 19 -                                                                                           |                |             |                  |                 |       |              | Ł    |                   |               |              |        |               |               |             |
| 20 -                                                                                                |                |             |                  |                 |       |              | Į    |                   |               |              |        |               |               |             |
|                                                                                                     |                |             |                  |                 | 14    | М            |      | MC                | 18            |              |        |               |               | <1          |
| 22 -                                                                                                |                |             |                  |                 |       |              | Ł    |                   |               |              |        |               |               |             |
| 23 -                                                                                                |                |             |                  |                 |       |              | Ħ    |                   |               |              |        |               |               |             |
| 24 -                                                                                                |                |             |                  |                 |       |              | H    |                   |               |              |        |               |               |             |
| 25 -                                                                                                |                |             |                  |                 |       |              | ł    |                   |               |              |        |               |               |             |
| 26 – CLAYSTONE, Silty I                                                                             | ean Clay, rec  | d, hard,    |                  |                 | 50/.4 | М            |      | MC                | 11            |              |        |               |               | <1          |
| 27 – gypsum lenses present                                                                          | (CL)           |             | <b>F</b>         | ORMATION        |       |              | 3    |                   |               |              |        |               |               |             |
| 28 -                                                                                                |                |             |                  |                 |       |              | ł    |                   |               |              |        |               |               |             |
| 29 -                                                                                                |                |             |                  |                 |       |              | ł    |                   |               |              |        |               |               |             |
| $\frac{2}{5}$ 30 – Sampler R                                                                        | efusal at 30.3 | 1           |                  |                 | 50/.3 | M            | R    | MC_               | 4             |              |        |               |               | NSI         |
|                                                                                                     | -10301 at 50.5 |             |                  |                 |       |              |      |                   |               |              |        |               |               |             |
|                                                                                                     |                |             |                  |                 |       |              |      |                   |               |              |        |               |               |             |
| DEPTH: DRILLING METHO                                                                               | D              |             | WATER            | LEVEL MEA       | ASUR  | EMEN         | VTS  |                   |               | ·            |        | NOTE:         | REFE          | R TO        |
|                                                                                                     | DATE           | TIME        | SAMPLED<br>DEPTH | CASING<br>DEPTH | CAV   | 'E-IN<br>PTH | FL.  | DRILLII<br>UID LE | NG<br>VEL     | WATI<br>LEVE | ER     | THE A         | TTAC          | HED         |
| 30.0 3.25" HSA                                                                                      | 5/9/18         | 6:45        | 30.3             | <b>30.0</b>     |       | A            |      | NA                | ,             | Non          |        | SHEE          | ГS FOI        | R AN        |
|                                                                                                     |                | 5.10        |                  |                 |       |              |      | 1 1/ 1            | $\rightarrow$ | 1,01         |        | EXPLA         | NATIO         | ON OF       |
| 29 –<br>30 –<br>Sampler R<br>DEPTH: DRILLING METHO<br>30.0 3.25" HSA<br>BORING<br>COMPLETED: 5/9/18 |                |             |                  |                 |       |              |      |                   |               |              | T      | ERMIN         | IOLOG         | GY ON       |
| $\frac{1}{4}  \text{DR: } \mathbf{ES}  \text{LG: } \mathbf{JH}  \text{Rig: } \mathbf{RC-1}$         |                |             |                  |                 |       |              |      |                   | $\square$     |              |        | TH            | IS LO         | G           |
|                                                                                                     |                | 1           |                  | 1               | 1     |              |      |                   |               |              |        |               | 01 DI         |             |



| AET JC              | DB NO: <b>17-03356</b>                              |                                                                                                                |             |               |                       | LC               | OG OF    | F BO                        | RING    | NO          | B              | -10        | (p. 1         | of 1   | )        |
|---------------------|-----------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-------------|---------------|-----------------------|------------------|----------|-----------------------------|---------|-------------|----------------|------------|---------------|--------|----------|
| PROJE               | CT: West Rapid Sul                                  | bstation;                                                                                                      | Rapid C     | City, S       | outh Dakot            | a                |          |                             |         |             |                |            |               |        |          |
| DEPTH               | SURFACE ELEVATION:                                  | GEOLOGY                                                                                                        | N           |               | SA                    | MPLE             | REC      | FIEL                        | D & L.  | ABORATORY 1 |                | TEST       |               |        |          |
| DEPTH<br>IN<br>FEET | MATERIAL                                            |                                                                                                                |             | MC            |                       | MPLE<br>TYPE     | IN.      | WC                          | DEN     | LL          | PL             | PI<br>(ppi |               |        |          |
| 1                   | LIMESTONE AGGRE                                     | GATE SU                                                                                                        | RFACINO     | j             | SURFACING             |                  |          | Ł                           |         |             |                |            |               |        |          |
| 1                   | <u> 10 inches</u><br>FILL, Silty Lean Clay, re      | ddish brov                                                                                                     | vn          | _/ 🗱          | FILL                  |                  |          | ł                           |         |             |                |            |               |        |          |
| 3 - 3               | claystone, gypsum and co                            | al fragmen                                                                                                     | its present |               |                       |                  |          | 1                           |         |             |                |            |               |        |          |
| 3 –<br>4 –          | (CL)                                                |                                                                                                                |             |               |                       | NSR              | . M      |                             | MC      | 0           | 21             |            |               |        | NI       |
| 4<br>5 —            |                                                     |                                                                                                                |             |               |                       |                  |          | 3                           |         |             |                |            |               |        |          |
| 6 -                 |                                                     |                                                                                                                |             |               |                       | 42               | М        |                             | MC      | 18          | 13             |            |               |        | NS       |
| 7 -                 |                                                     |                                                                                                                |             |               |                       |                  |          | Ł                           |         |             |                |            |               |        |          |
| 8 —                 |                                                     |                                                                                                                |             |               |                       | 10               | M        | И                           | MC      | 10          | 15             |            |               |        | NG       |
| 9 —                 |                                                     |                                                                                                                |             |               |                       | 18               | M        |                             | MC      | 18          | 15             |            |               |        | NS       |
| 10 —                |                                                     |                                                                                                                |             |               |                       | 4                |          | 5                           |         |             |                |            |               |        |          |
| 11 -                | SILTY LEAN CLAY, re-<br>very stiff, claystone and g | ddish brow                                                                                                     | n, stiff to |               | ALLUVIUM              | 12               | Μ        |                             | MC      | 18          | 21             | 112        |               |        | <1       |
| 12 —                | present (CL)                                        | , r                                                                                                            |             |               |                       |                  |          | Ł                           |         |             |                |            |               |        |          |
| 13 —                |                                                     |                                                                                                                |             |               |                       | 16               | M        |                             | MC      | 18          |                |            |               |        | 11       |
| 14 —                |                                                     |                                                                                                                |             |               |                       |                  |          | Р                           |         |             |                |            |               |        |          |
| 15 —                | CLAYSTONE, Silty Lea                                | n Clav red                                                                                                     | l hard      |               | SPEARFISH             | -                | <u> </u> | ¥                           |         |             |                |            |               |        |          |
| 16 —                | gypsum lenses present (C                            | L)                                                                                                             | , nuru,     |               | FORMATION             | 61               | W        |                             | MC      | 18          |                |            |               |        | NI       |
| 17 —                |                                                     |                                                                                                                |             |               |                       |                  |          | ß                           |         |             |                |            |               |        |          |
| 18 —                |                                                     |                                                                                                                |             |               |                       |                  |          | ł                           |         |             |                |            |               |        |          |
| 19 —                |                                                     |                                                                                                                |             |               |                       |                  |          | ł                           |         |             |                |            |               |        |          |
| 20 -                |                                                     |                                                                                                                |             |               |                       | 53               | M        | E                           | MC      | 18          | 12             | 125        |               |        | NI       |
| 21 -                |                                                     |                                                                                                                |             |               |                       | 33               | IVI      |                             | MC      | 10          | 12             | 123        |               |        | INI      |
| 22 —                |                                                     |                                                                                                                |             |               |                       |                  |          | ł                           |         |             |                |            |               |        |          |
| 23 -                |                                                     |                                                                                                                |             |               |                       |                  |          | Į                           |         |             |                |            |               |        |          |
| 24 -                |                                                     |                                                                                                                |             |               |                       |                  |          | ß                           |         |             |                |            |               |        |          |
| 25<br>26            |                                                     |                                                                                                                |             |               |                       | 57               | M        |                             | MC      | 18          |                |            |               |        | NI       |
| 20 - 27 -           |                                                     |                                                                                                                |             |               |                       |                  |          | R                           |         |             |                |            |               |        |          |
| $\frac{27}{28}$ -   |                                                     |                                                                                                                |             |               |                       |                  |          | H                           |         |             |                |            |               |        |          |
| 20                  |                                                     |                                                                                                                |             |               |                       |                  |          | ł                           |         |             |                |            |               |        |          |
| 30 -                |                                                     | 1 4 20 0                                                                                                       |             |               |                       |                  |          | ł                           |         |             |                |            |               |        | <u> </u> |
|                     | Sampler Refu                                        | sal at 30.0                                                                                                    |             |               |                       | NSR              | M        |                             | MC      | 0           |                |            |               |        | NS       |
|                     |                                                     |                                                                                                                |             |               |                       |                  |          |                             |         |             |                |            |               |        |          |
|                     |                                                     |                                                                                                                |             |               |                       |                  |          |                             |         |             |                |            |               |        |          |
| 29 –<br>30 –<br>DEP | TH: DRILLING METHOD                                 |                                                                                                                |             |               | ER LEVEL ME.          |                  |          |                             | יי דוסר | NG          | <b>W</b> 7 A T |            | NOTE:         |        |          |
| 3                   | 0.0 3.25" HSA                                       | 3.25" HSA         DATE         TIME         S           5/9/18         17:30         5         17:30         5 |             | SAMPI<br>DEPT | LED CASING<br>H DEPTH | CAVE-IN<br>DEPTH |          | N DRILLING<br>H FLUID LEVEL |         |             | WATER<br>LEVEL |            | THE ATTACHED  |        |          |
|                     |                                                     |                                                                                                                |             | 30.0          | ) 30.0                | N                | NA       |                             | NA      |             | 15.0           |            | SHEETS FOR AN |        |          |
|                     | 2                                                   |                                                                                                                |             |               |                       |                  |          |                             |         |             |                |            | EXPLA         |        |          |
| BORIN<br>COMPI      | G<br>LETED: <b>5/9/18</b>                           |                                                                                                                |             |               |                       |                  |          |                             |         |             |                | ]          | ERMIN         |        |          |
| DR: E               | S LG: JH Rig: RC-1                                  |                                                                                                                |             |               |                       |                  |          |                             |         |             |                |            | TH            | (IS LO |          |





# **Appendix B**

Geotechnical Report Limitations and Guidelines for Use

#### REFERENCE

This appendix provides information to help you manage your risks relating to subsurface problems which are caused by construction delays, cost overruns, claims, and disputes. This information was developed and provided by ASFE<sup>1</sup>, of which, we are a member firm.

#### **RISK MANAGEMENT INFORMATION**

#### Geotechnical Services are Performed for Specific Purposes, Persons, and Projects

Geotechnical engineers structure their services to meet the specific needs of their clients. A geotechnical engineering study conducted for a civil engineer may not fulfill the needs of a construction contractor or even another civil engineer. Because each geotechnical engineering study is unique, each geotechnical engineering report is unique, prepared solely for the client. No one except you should rely on your geotechnical engineering report without first conferring with the geotechnical engineer who prepared it. No one, not even you, should apply the report for any purpose or project except the one originally contemplated.

#### **Read the Full Report**

Serious problems have occurred because those relying on a geotechnical engineering report did not read it all. Do not rely on an executive summary. Do not read selected elements only.

#### A Geotechnical Engineering Report is Based on A Unique Set of Project-Specific Factors

Geotechnical engineers consider a number of unique, project-specific factors when establishing the scope of a study. Typically factors include: the client's goals, objectives, and risk management preferences; the general nature of the structure involved, its size, and configuration; the location of the structure on the site; and other planned or existing site improvements, such as access roads, parking lots, and underground utilities. Unless the geotechnical engineer who conducted the study specifically indicates otherwise, do not rely on a geotechnical engineering report that was:

- not prepared for you,
- not prepared for your project,
- not prepared for the specific site explored, or
- completed before important project changes were made.

Typical changes that can erode the reliability of an existing geotechnical engineering report include those that affect:

- the function of the proposed structure, as when it's changed from a parking garage to an office building, or from a light industrial plant to a refrigerated warehouse,
- elevation, configuration, location, orientation, or weight of the proposed structure,
- composition of the design team, or
- project ownership.

As a general rule, always inform your geotechnical engineer of project changes, even minor ones, and request an assessment of their impact. Geotechnical engineers cannot accept responsibility or liability for problems that occur because their reports do not consider developments of which they were not informed.

#### Subsurface Conditions Can Change

A geotechnical engineering report is based on conditions that existed at the time the study was performed. Do not rely on a geotechnical engineering report whose adequacy may have been affected by: the passage of time; by man-made events, such as construction on or adjacent to the site; or by natural events, such as floods, earthquakes, or groundwater fluctuations. Always contact the geotechnical engineer before applying the report to determine if it is still reliable. A minor amount of additional testing or analysis could prevent major problems.

1 ASFE, 8811 Colesville Road/Suite G106, Silver Spring, MD 20910 Telephone: 301/565-2733 : <u>www.asfe.org</u>

#### Most Geotechnical Findings Are Professional Opinions

Site exploration identified subsurface conditions only at those points where subsurface tests are conducted or samples are taken. Geotechnical engineers review field and laboratory data and then apply their professional judgment to render an opinion about subsurface conditions throughout the site. Actual subsurface conditions may differ, sometimes significantly, from those indicated in your report. Retaining the geotechnical engineer who developed your report to provide construction observation is the most effective method of managing the risks associated with unanticipated conditions.

#### A Report's Recommendations Are Not Final

Do not over rely on the construction recommendations included in your report. Those recommendations are not final, because geotechnical engineers develop them principally from judgment and opinion. Geotechnical engineers can finalize their recommendations only by observing actual subsurface conditions revealed during construction. The geotechnical engineer who developed your report cannot assume responsibility or liability for the report's recommendations if that engineer does not perform construction observation.

#### A Geotechnical Engineering Report Is Subject to Misinterpretation

Other design team members' misinterpretation of geotechnical engineering reports has resulted in costly problems. Lower that risk by having your geotechnical engineer confer with appropriate members of the design team after submitting the report. Also retain your geotechnical engineer to review pertinent elements of the design team's plans and specifications. Contractors can also misinterpret a geotechnical engineering report. Reduce that risk by having your geotechnical engineer participate in prebid and preconstruction conferences, and by providing construction observation.

#### Do Not Redraw the Engineer's Logs

Geotechnical engineers prepare final boring and testing logs based upon their interpretation of field logs and laboratory data. To prevent errors or omissions, the logs included in a geotechnical engineering report should never be redrawn for inclusion in architectural or other design drawings. Only photographic or electronic reproduction is acceptable, but recognize that separating logs from the report can elevate risk.

#### **Give Contractors a Complete Report and Guidance**

Some owners and design professionals mistakenly believe they can make contractors liable for unanticipated subsurface conditions by limiting what they provide for bid preparation. To help prevent costly problems, give contractors the complete geotechnical engineering report, but preface it with a clearly written letter of transmittal. In the letter, advise contractors that the report was not prepared for purposes of bid development and that the report's accuracy is limited; encourage them to confer with the geotechnical engineer who prepared the report (a modest fee may be required) and/or to conduct additional study to obtain the specific types of information they need to prefer. A prebid conference can also be valuable. Be sure contractors have sufficient time to perform additional study. Only then might you be in a position to give contractors the best information available to you, while requiring them to at least share some of the financial responsibilities stemming from unanticipated conditions.

#### **Read Responsibility Provisions Closely**

Some clients, design professionals, and contractors do not recognize that geotechnical engineering is far less exact than other engineering disciplines. This lack of understanding has created unrealistic expectations that have led to disappointments, claims, and disputes. To help reduce the risk of such outcomes, geotechnical engineers commonly include a variety of explanatory provisions in their report. Sometimes labeled "limitations" many of these provisions indicate where geotechnical engineers' responsibilities begin and end, to help others recognize their own responsibilities and risks. Read these provisions closely. Ask questions. Your geotechnical engineer should respond fully and frankly.

#### **Geoenvironmental Concerns Are Not Covered**

The equipment, techniques, and personnel used to perform a geoenvironmental study differ significantly from those used to perform a geotechnical study. For that reason, a geotechnical engineering report does not usually relate any geoenvironmental findings, conclusions, or recommendations; e.g., about the likelihood of encountering underground storage tanks or regulated contaminants. Unanticipated environmental problems have led to numerous project failures. If you have not yet obtained your own geoenvironmental information, ask your geotechnical consultant for risk management guidance. Do not rely on an environmental report prepared for someone else.



December 5, 2018

Black Hills Energy 7001 Mt. Rushmore Road Rapid City South Dakota 57702

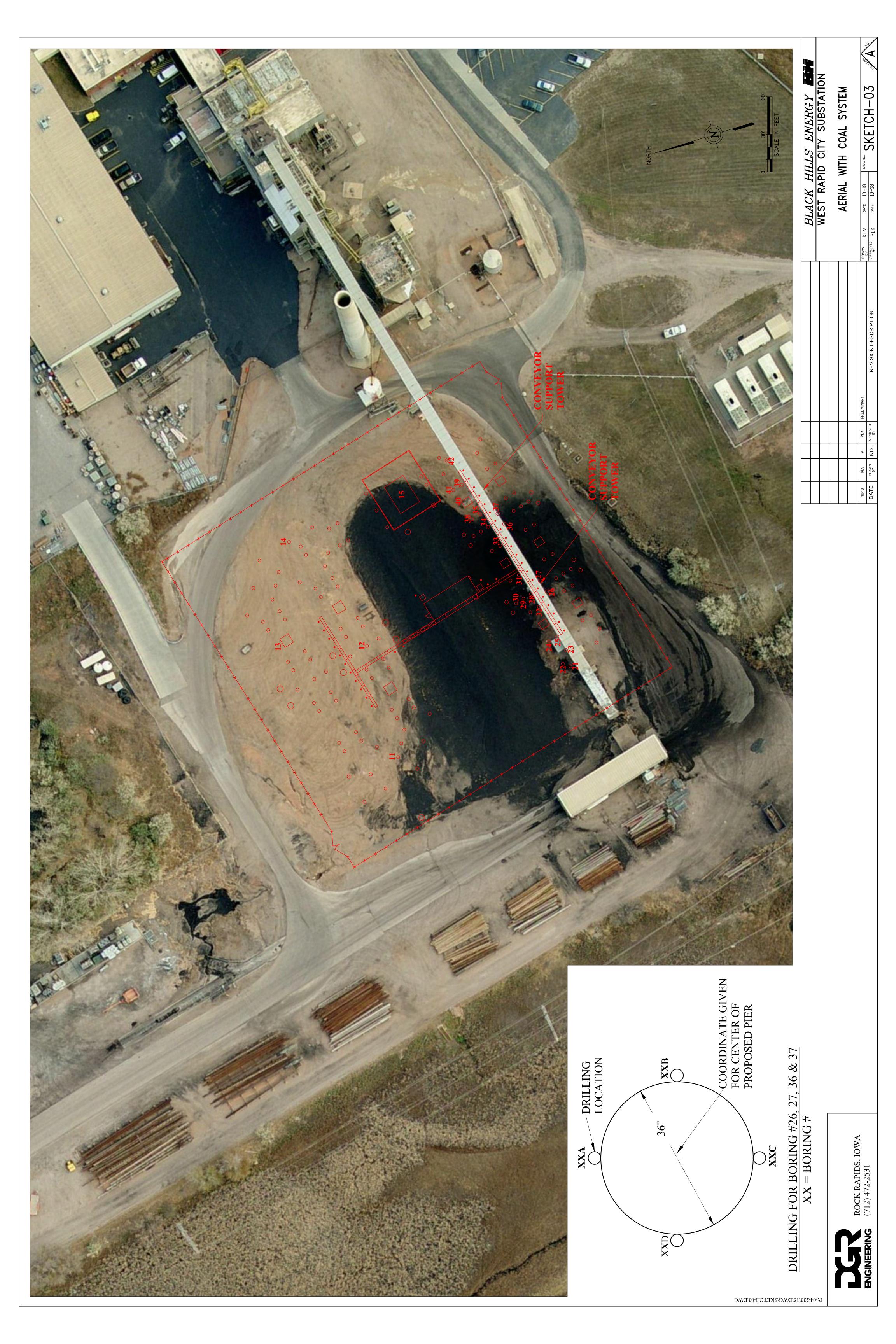
Attn: Ron Williams, PE

Subject: Investigative Borings – Proposed West Rapid Substation Rapid City Service Center Deadwood Avenue Rapid City, South Dakota AET Project No. 17-03356

Dear Ron,

As you are aware, AET recently completed the geotechnical services for the proposed West Rapid Substation project, and submitted our findings and recommendations in our Report No. 17-03356, dated May 31, 2018.

As requested, a total of forty-three (43) investigative auger borings were drilled at locations selected by DGR Engineering; thirty-eight (38) borings were drilled to depths of about 18 feet below grade and five (5) borings were drilled to depths of about 30 feet below grade. The boring location map, borings logs, and boring coordinate sheet are included at the end of this transmittal letter.


If you have any questions or we can be of further service, please contact our office at (605) 388-0029.

Sincerely, American Engineering Testing, Inc.

Walt Feeger, P.E. Senior Geotechnical Engineer

Robert Temme, P.E. Vice President Western Region

Attachments: Boring Location Map Coordinates Sheet Boring Logs



West Rapid City Substation Boring Location Coordinates Rev. 11-02-18

| Boring # | Boring Location(s)                     | Depth | Northing    | East | ting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Notes:                     |
|----------|----------------------------------------|-------|-------------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| 1        | Geotech Report Boring B-1              |       |             |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            |
| 2        | Geotech Report Boring B-2              |       |             |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            |
| 3        | Geotech Report Boring B-3              |       |             |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            |
| 4        | Geotech Report Boring B-4              |       |             |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            |
| 5        | Geotech Report Boring B-5              |       |             |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            |
| 6        | Geotech Report Boring B-6              |       |             |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            |
| 7        | Geotech Report Boring B-7              |       |             |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            |
| 8        | Geotech Report Boring B-8              |       |             |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            |
| 9        | Geotech Report Boring B-9              |       |             |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            |
| 10       | Geotech Report Boring B-10             |       |             |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            |
| 11       | Additional for Geotech Report          | 30'   | 652883.8174 | 4    | 1198680.209                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 44.0873440°, -103.2638968° |
| 12       | Additional for Geotech Report          | 30'   | 652908.838  | 1    | 1198769.636                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 44.0874213°, -103.2635600° |
| 13       | Additional for Geotech Report          | 30'   | 652973.308  | 7    | 1198773.754                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 44.0875984°, -103.2635530° |
| 14       | Additional for Geotech Report          | 30'   | 652971.471  | 5    | 1198853.095                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 44.0876011°, -103.2632509° |
| 15       | Additional for Geotech Report          | 30'   | 652881.204  | 1    | 1198892.338                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 44.0873574°, -103.2630896° |
| 21       | Center of proposed pier                | 18'   | 652745.424  | 4    | 1198753.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 44.0869717°, -103.2636006° |
| 22       | Center of proposed pier                | 18'   | 652751.47   |      | 1198755.298                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 44.0869885°, -103.2635934° |
| 23       | Center of proposed pier                | 18'   | 652748.970  |      | 1198766.331                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 44.0869827°, -103.2635511° |
| 24       | Center of proposed pier                | 18'   | 652757.797  |      | 1198771.625                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 44.0870074°, -103.2635321° |
| 25       | Center of proposed pier                | 18'   | 652755.894  |      | 1198777.317                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 44.0870027°, -103.2635102° |
| 26       | Center of proposed pier                | N/A   | 652764.396  |      | 1198813.327                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 44.0870295°, -103.2633744° |
| 26A      | N Quadrant of proposed 36" φ pier      | 18'   | N/A         | N/A  | L .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |
| 26B      | S Quadrant of proposed 36" $\phi$ pier | 18'   | N/A         | N/A  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            |
| 26C      | E Quadrant of proposed 36" φ pier      | 18'   | N/A         | N/A  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            |
| 26D      | W Quadrant of proposed 36" φ pier      | 18'   | N/A         | N/A  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            |
| 27       | Center of proposed pier                | N/A   | 652769.727  | 5    | 1198821.788                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 44.0870450°, -103.2633429° |
| 27A      | N Quadrant of proposed 36" φ pier      | 18'   | N/A         | N/A  | L Contraction of the second seco |                            |
| 27B      | S Quadrant of proposed 36" φ pier      | 18'   | N/A         | N/A  | L.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                            |
| 27C      | E Quadrant of proposed 36" φ pier      | 18'   | N/A         | N/A  | L.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                            |
| 27D      | W Quadrant of proposed 36" φ pier      | 18'   | N/A         | N/A  | L .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |
| 28       | Center of proposed pier                | 18'   | 652777.217  | 3    | 1198811.159                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 44.0870645°, -103.2633844° |
| 29       | Center of proposed pier                | 18'   | 652783.139  | 8    | 1198807.428                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 44.0870803°, -103.2633994° |
| 30       | Center of proposed pier                | 18'   | 652789.062  | 2    | 1198803.696                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 44.0870962°, -103.2634144° |
| 31       | Center of proposed pier                | 18'   | 652786.812  | 7    | 1198826.389                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 44.0870922°, -103.2633277° |
| 32       | Center of proposed pier                | 18'   | 652770.820  | 4    | 1198801.006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 44.0870459°, -103.2634221° |
| 33       | Center of proposed pier                | 18'   | 652801.738  | 7    | 1198850.078                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 44.0871355°, -103.2632396° |
| 34       | Center of proposed pier                | 18'   | 652811.334  | 1    | 1198865.308                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 44.0871633°, -103.2631830° |
| 35       | Center of proposed pier                | 18'   | 652817.73   | 1    | 1198875.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 44.0871818°, -103.2631452° |
| 36       | Quadrants of proposed 36" φ pier       |       | 652798.513  | 5    | 1198867.476                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 44.0871283°, -103.2631730° |
| 36A      | N Quadrant of proposed 36" φ pier      | 18'   | N/A         | N/A  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            |
| 36B      | S Quadrant of proposed 36" φ pier      | 18'   | N/A         | N/A  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            |
| 36C      | E Quadrant of proposed 36" φ pier      | 18'   | N/A         | N/A  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            |
| 36D      | W Quadrant of proposed 36" φ pier      | 18'   | N/A         | N/A  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            |
| 37       | Quadrants of proposed 36" $\phi$ pier  |       | 652803.844  |      | 1198875.936                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 44.0871437°, -103.2631416° |
| 37A      | N Quadrant of proposed 36" φ pier      | 18'   | N/A         | N/A  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            |
| 37B      | S Quadrant of proposed 36" φ pier      | 18'   | N/A         | N/A  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            |
| 37C      | E Quadrant of proposed 36" φ pier      | 18'   | N/A         | N/A  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            |
| 37D      | W Quadrant of proposed 36" φ pier      | 18'   | N/A         | N/A  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            |
| 38       | Center of proposed pier                | 18'   | 652824.499  |      | 1198871.196                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 44.0871999°, -103.2631624° |
| 39       | Center of proposed pier                | 18'   | 652832.657  |      | 1198899.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 44.0872026°, -103.2630560° |
| 40       | Center of proposed pad                 | 18'   | 652828.561  |      | 1198885.151                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 44.0872124°, -103.2631098° |
| 41       | Center of proposed pier                | 18'   | 652839.425  |      | 1198894.886                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 44.0872431°, -103.2630743° |
| 42       | Center of proposed pier                | 18'   | 652844.923  | 5    | 1198918.624                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 44.0872605°, -103.2629847° |



| AET JO                               | OB NO: <b>17-03356</b>    |             |         |               |                        | LC        | OG OF        | BORING N           | NO        | B           | -11 (    | ( <b>p.</b> 1 | of 1   | )     |
|--------------------------------------|---------------------------|-------------|---------|---------------|------------------------|-----------|--------------|--------------------|-----------|-------------|----------|---------------|--------|-------|
| PROJE                                | ECT: West Rapid Sul       | bstation;   | Rapid ( | City, S       | outh Dakot             | a         |              |                    |           |             |          |               |        |       |
| DEPTH                                | SURFACE ELEVATION:        |             |         |               | GEOLOGY                | N         | MC           | SAMPLE             | REC       | FIEL        | D & LA   | BORA          | TORY   | TESTS |
| DEPTH<br>IN<br>FEET                  | MATERIAL                  | DESCRIPTI   | ON      |               |                        | N         | MC           | SAMPLE<br>TYPE     | ĪN.       | WC          | DEN      | LL            | PL     | %-#20 |
| 1 -                                  | LIMESTONE AGGRE(          | GATE SUI    | RFACIN  | ;             | SURFACIING             |           |              |                    |           |             |          |               |        |       |
| 2 -                                  | FILL, Silty Lean Clay wi  | th Sand, re | ddish   | _/ 🞆          | FILL                   |           |              |                    |           |             |          |               |        |       |
| 3 -                                  | brown (CL)                | ,           |         |               |                        |           |              |                    |           |             |          |               |        |       |
| 4 -                                  | FILL, Gypsum boulder      |             |         |               |                        |           |              |                    |           |             |          |               |        |       |
| 5 -                                  | FILL, Silty Lean Clay, re | ddish brow  | /n (CL) |               |                        |           |              |                    |           |             |          |               |        |       |
| 6 -                                  | -                         |             |         |               |                        |           |              |                    |           |             |          |               |        |       |
| 7 -                                  | -                         |             |         |               |                        |           |              |                    |           |             |          |               |        |       |
| 8 -                                  | -                         |             |         |               |                        |           | М            |                    |           |             |          |               |        |       |
| 9 -                                  | -                         |             |         |               |                        |           | IVI          |                    |           |             |          |               |        |       |
| 10 -                                 | -                         |             |         |               |                        |           |              |                    |           |             |          |               |        |       |
| 11 -                                 | -                         |             |         |               |                        |           |              |                    |           |             |          |               |        |       |
| 12 -                                 | -                         |             |         |               |                        |           |              |                    |           |             |          |               |        |       |
| 13 -                                 | _                         |             |         |               |                        |           |              |                    |           |             |          |               |        |       |
| 14 -                                 |                           |             |         |               |                        |           |              |                    |           |             |          |               |        |       |
| 15 -                                 | SILTY LEAN CLAY, re       | d-brown (C  | CL)     |               | ALLUVIUM               |           |              |                    |           |             |          |               |        |       |
| 16 -<br>17 -                         |                           |             |         |               |                        |           | $\square$    |                    |           |             |          |               |        |       |
| 17 - 18 -                            |                           |             |         |               |                        |           |              |                    |           |             |          |               |        |       |
| 19 -                                 |                           |             |         |               |                        |           |              |                    |           |             |          |               |        |       |
| 20 -                                 |                           |             |         |               |                        |           |              |                    |           |             |          |               |        |       |
| 21 -                                 | -                         |             |         |               |                        |           |              |                    |           |             |          |               |        |       |
| 22 -                                 |                           |             |         |               |                        |           |              |                    |           |             |          |               |        |       |
| 23 -                                 | -                         |             |         |               |                        |           |              |                    |           |             |          |               |        |       |
| 24 -                                 | -                         |             |         |               |                        |           | W            |                    |           |             |          |               |        |       |
| 25 -                                 | -                         |             |         |               |                        |           |              |                    |           |             |          |               |        |       |
| 26 -                                 | -                         |             |         |               |                        |           |              |                    |           |             |          |               |        |       |
| 27 -                                 |                           |             |         |               |                        |           |              |                    |           |             |          |               |        |       |
| 28 -                                 | -                         |             |         |               |                        |           |              |                    |           |             |          |               |        |       |
| 29 -                                 | -                         |             |         |               |                        |           |              |                    |           |             |          |               |        |       |
| 29 –<br>30 –<br>DEF<br>BORIN<br>COMP | Bottom of                 | Boring      |         | ////          | 1                      |           |              |                    |           |             |          |               |        |       |
|                                      |                           |             |         |               |                        |           |              |                    |           |             |          |               |        |       |
|                                      |                           | 1           |         |               |                        |           |              |                    |           |             |          |               |        |       |
| DEF                                  | PTH: DRILLING METHOD      |             |         | WAT           | ER LEVEL MEA           |           |              | TS                 |           |             | 1        | NOTE:         | REFE   | R TO  |
|                                      | 30.0 4" FA                | DATE        | TIME    | SAMPI<br>DEPT | LED CASING<br>TH DEPTH | CAV<br>DE | /E-IN<br>PTH | DRILLI<br>FLUID LE | NG<br>VEL | WAT<br>LEVI | ER<br>EL | THE A         | TTAC   | HED   |
|                                      |                           | 11/27/18    | 13:50   | 30.0          |                        |           | A            | NA                 |           | 17.0        |          | SHEET         | S FOF  | R AN  |
| 3                                    |                           |             |         |               |                        |           |              |                    |           |             |          | XPLA          | NATIO  | ON OF |
| BORIN                                | NG<br>PLETED: 11/27/18    |             |         |               |                        |           |              |                    |           |             |          | ERMIN         | IOLOG  | GY ON |
| $DR: \mathbf{B}$                     |                           |             |         |               |                        |           |              |                    |           |             |          | TH            | IS LOO | 3     |
|                                      | - 20.000 100.0001         | 1           | 1       | 1             |                        | I         |              | 1                  |           |             |          |               |        |       |



| PROJECT: West Rapid Substation; Rapid City, South Dakota  POINT SURFACE ELEVATION: MATERIAL DESCRIPTION GEOLOGY N MC SMPLE REF INTERNATION FEE GYPSUM, white GYPSUM, white CLAYSTONE, Silty Lean Clay, red, gypsum lenses and laminations present (CL)  GYPSUM, white GYPSUM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | f 1)    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| N     SCRACE LEVATION       MATERIAL DESCRIPTION     MATERIAL DESCRIPTION       LIMESTONE AGGREGATE SURFACING<br>GYPSUM, white     SURFACING<br>SURFACING<br>GYPSUM, white       -     -       -     -       -     -       -     -       -     -       -     -       -     -       -     -       -     -       -     -       -     -       -     -       -     -       -     -       -     -       -     -       -     -       -     -       -     -       -     -       -     -       -     -       -     -       -     -       -     -       -     -       -     -       -     -       -     -       -     -       -     -       -     -       -     -       -     -       -     -       -     -       -     -       -     -       -     -       - <t< th=""><th></th></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |         |
| LIMESTONE AGGREGATE SURFACING<br>10 inches<br>3 -<br>4 -<br>5 -<br>6 -<br>7 -<br>8 -<br>CLAYSTONE, Silty Lean Clay, red, gypsum<br>9 - lenses and laminations present (CL)<br>11 -<br>12 -<br>13 -<br>14 -<br>15 -<br>16 -<br>17 -<br>CLAYSTONE, Silty Lean Clay, red, gypsum<br>19 -<br>10 -<br>11 -<br>12 -<br>13 -<br>14 -<br>15 -<br>16 -<br>17 -<br>CLAYSTONE, Silty Lean Clay, red, gypsum<br>19 -<br>10 -<br>11 -<br>12 -<br>13 -<br>14 -<br>15 -<br>16 -<br>17 -<br>CLAYSTONE, Silty Lean Clay, red, gypsum<br>10 -<br>10 -<br>11 -<br>12 -<br>13 -<br>14 -<br>15 -<br>16 -<br>17 -<br>CLAYSTONE, Silty Lean Clay, red, gypsum<br>10 -<br>10 -<br>11 -<br>12 -<br>13 -<br>14 -<br>15 -<br>16 -<br>17 -<br>CLAYSTONE, Silty Lean Clay, red, gypsum<br>10 -<br>10 -<br>1 | RY TES  |
| 10 inches     SPEARPISH       2     GYPSUM, white       3     Q       4     Q       5     Q       6     Q       7     Q       8     CLAYSTONE, Silty Lean Clay, red, gypsum       10     M       11     Q       12     Q       13     Q       14     Q       15     Q       16     Q       17     GYPSUM, white       18     Q       19     CLAYSTONE, Silty Lean Clay, red, gypsum       10     Q       12     Q       13     Q       14     Q       15     Q       16     Q       17     GYPSUM, white       18     Q       19     CLAVSTONE, Silty Lean Clay, red, gypsum       10     Q       12     Q       23     Q       24     Q       25     Q       26     Q       27     Q       28     Q       29     Q       30     Bottom of Boring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | PL %-#2 |
| 2 - GYPSUM, white     →     →     →       3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |
| CLAYSTONE, Silty Lean Clay, red, gypsum<br>enses and laminations present (CL)  CLAYSTONE, Silty Lean Clay, red, gypsum<br>enses and laminations present (CL)  CLAYSTONE, Silty Lean Clay, red, gypsum<br>lenses and laminations present (CL)  CLAYSTONE, Silty Lean Clay, red, gypsum<br>lenses and laminations present (CL)  CLAYSTONE, Silty Lean Clay, red, gypsum<br>lenses and laminations present (CL)  CLAYSTONE, Silty Lean Clay, red, gypsum<br>lenses and laminations present (CL)  CLAYSTONE, Silty Lean Clay, red, gypsum<br>lenses and laminations present (CL)  CLAYSTONE, Silty Lean Clay, red, gypsum<br>lenses and laminations present (CL)  CLAYSTONE, Silty Lean Clay, red, gypsum<br>lenses and laminations present (CL)  CLAYSTONE, Silty Lean Clay, red, gypsum<br>lenses and laminations present (CL)  CLAYSTONE, Silty Lean Clay, red, gypsum<br>lenses and laminations present (CL)  CLAYSTONE, Silty Lean Clay, red, gypsum<br>lenses and laminations present (CL)  CLAYSTONE, Silty Lean Clay, red, gypsum<br>lenses and laminations present (CL)  CLAYSTONE, Silty Lean Clay, red, gypsum<br>lenses and laminations present (CL)  CLAYSTONE, Silty Lean Clay, red, gypsum<br>lenses and laminations present (CL)  CLAYSTONE, Silty Lean Clay, red, gypsum<br>lenses and laminations present (CL)  CLAYSTONE, Silty Lean Clay, red, gypsum<br>lenses and laminations present (CL)  CLAYSTONE, Silty Lean Clay, red, gypsum<br>lenses and laminations present (CL)  CLAYSTONE, Silty Lean Clay, red, gypsum<br>lenses and laminations present (CL)  CLAYSTONE, Silty Lean Clay, red, gypsum<br>lenses and laminations present (CL)  CLAYSTONE, Silty Lean Clay, red, gypsum<br>lenses and laminations present (CL)  CLAYSTONE, Silty Lean Clay, red, gypsum<br>lenses and laminations present (CL)  CLAYSTONE, Silty Lean Clay, red, gypsum<br>Lenses and laminations present (CL)  CLAYSTONE, Silty Lean Clay, red, gypsum<br>Lenses and laminations present (CL)  CLAYSTONE, Silty Lean Clay, red, gypsum<br>Lenses and laminations present (CL)  CLAYSTONE, Silty Lean Clay, red, gypsum<br>Lenses and laminations present (CL)  CLAYSTONE, Silty Lea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |
| 5     -       6     -       7     -       8     CLAYSTONE, Silty Lean Clay, red, gypsum       10     -       11     -       12     -       13     -       14     -       15     -       16     -       17     GYPSUM, white       18     -       19     CLAYSTONE, Silty Lean Clay, red, gypsum       19     CLAYSTONE, Silty Lean Clay, red, gypsum       19     -       20     -       21     -       22     -       23     -       24     -       25     -       26     -       27     -       28     -       29     -       30     Bottom of Boring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |
| 6     7       8     CLAYSTONE, Silty Lean Clay, red, gypsum       9     lenses and laminations present (CL)       10     M       11     M       12     M       13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         |
| 7   8   CLAYSTONE, Silty Lean Clay, red, gypsum   10   11   12   13   14   15   16   17   GYPSUM, white   19   CLAYSTONE, Silty Lean Clay, red, gypsum   19   CLAYSTONE, Silty Lean Clay, red, gypsum   10   12   13   14   15   16   17   GYPSUM, white   18   19   CLAYSTONE, Silty Lean Clay, red, gypsum   10   10   11   20   11   21   22   23   24   25   26   27   28   29   30   Bottom of Boring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         |
| 7   8   CLAYSTONE, Silty Lean Clay, red, gypsum   10   11   12   13   14   15   16   17   GYPSUM, white   18   19   CLAYSTONE, Silty Lean Clay, red, gypsum   10   11   12   13   14   15   16   17   GYPSUM, white   10   12   13   14   15   16   17   GYPSUM, white   18   19   CLAYSTONE, Silty Lean Clay, red, gypsum   10   10   11   12   13   14   15   16   17   GYPSUM, white   10   10   11   12   13   14   15   15   16   16   17   18   19   10   10   10   11   12   12   13   14   15   16   17   18   19   10   10   10   11   12   12   14   15   16   17   18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |
| 8       CLAVSTONE, Silty Lean Clay, red, gypsum         10       Insest and laminations present (CL)         11       Insest and laminations present (CL)         12       Insest and laminations present (CL)         13       Insest and laminations present (CL)         14       Insest and laminations present (CL)         15       Insest and laminations present (CL)         16       Insest and laminations present (CL)         17       CLAVSTONE, Silty Lean Clay, red, gypsum         18       Insest and laminations present (CL)         19       CLAVSTONE, Silty Lean Clay, red, gypsum         20       Insest and laminations present (CL)         21       Insest and laminations present (CL)         22       Insest and laminations present (CL)         23       Insest and laminations present (CL)         24       Insest and laminations present (CL)         30       Bottom of Boring         30       Bottom of Boring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |
| 10       Image: Second s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |
| M<br>M<br>M<br>M<br>M<br>M<br>M<br>M<br>M<br>M<br>M<br>M<br>M<br>M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |
| 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |
| 13     -       14     -       15     -       16     -       17     GYPSUM, white       18     -       19     CLAYSTONE, Silty Lean Clay, red, gypsum       20     -       21     -       22     -       23     -       24     -       25     -       26     -       27     -       28     -       29     -       30     Bottom of Boring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         |
| 14       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |
| 15       -         16       -         17       GYPSUM, white         18       -         19       CLAYSTONE, Silty Lean Clay, red, gypsum         20       -         21       -         22       -         23       -         24       -         25       -         26       -         27       -         28       -         29       -         30       Bottom of Boring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         |
| 16     GYPSUM, white       19     CLAYSTONE, Silty Lean Clay, red, gypsum       19     CLAYSTONE, Silty Lean Clay, red, gypsum       20     lenses and laminations present (CL)       21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         |
| 17     GYPSUM, white       18     Image: CLAYSTONE, Silty Lean Clay, red, gypsum       19     CLAYSTONE, Silty Lean Clay, red, gypsum       20     Image: CLAYSTONE, Silty Lean Clay, red, gypsum       21     Image: CLAYSTONE, Silty Lean Clay, red, gypsum       22     Image: CLAYSTONE, Silty Lean Clay, red, gypsum       23     Image: CLAYSTONE, Silty Lean Clay, red, gypsum       24     Image: CLAYSTONE, Silty Lean Clay, red, gypsum       25     Image: CLAYSTONE, Silty Lean Clay, red, gypsum       26     Image: CLAYSTONE, Silty Lean Clay, red, gypsum       27     Image: CLAYSTONE, Silty Lean Clay, red, gypsum       28     Image: CLAYSTONE, Silty Lean Clay, red, gypsum       30     Image: CLAYSTONE, Silty Lean Clay, red, gypsum       31     Image: CLAYSTONE, Silty Lean Clay, red, gypsum       32     Image: CLAYSTONE, Silty Lean Clay, red, gypsum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |
| 18       Image: CLAYSTONE, Silty Lean Clay, red, gypsum         20       lenses and laminations present (CL)         21       Image: CLAYSTONE, Silty Lean Clay, red, gypsum         21       Image: CLAYSTONE, Silty Lean Clay, red, gypsum         22       Image: CLAYSTONE, Silty Lean Clay, red, gypsum         23       Image: CLAYSTONE, Silty Lean Clay, red, gypsum         24       Image: CLAYSTONE, Silty Lean Clay, red, gypsum         25       Image: CLAYSTONE, Silty Lean Clay, red, gypsum         26       Image: CLAYSTONE, Silty Lean Clay, red, gypsum         26       Image: CLAYSTONE, Silty Lean Clay, red, gypsum         27       Image: CLAYSTONE, Silty Lean Clay, red, gypsum         28       Image: CLAYSTONE, Silty Lean Clay, red, gypsum         30       Image: CLAYSTONE, Gypsum         31       Image: CLAYSTONE, Silty Lean Clay, red, gypsum         32       Image: CLAYSTONE, Gypsum         33       Image: CLAYSTONE, Silty Lean Clay, red, gypsum         34       Image: CLAYSTONE, Gypsum         35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |
| 19       CLAYSTONE, Silty Lean Clay, red, gypsum         20       lenses and laminations present (CL)         21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |
| 20 -  lenses and laminations present (CL) $21 - 22 - 23 - 24 - 25 - 26 - 27 - 28 - 29 - 30 - Bottom of Boring$ $W W W W W W W W W W W W W W W W W W W$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |
| 22 -<br>23 -<br>24 -<br>25 -<br>26 -<br>27 -<br>28 -<br>29 -<br>30 Bottom of Boring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |
| 23 -<br>24 -<br>25 -<br>26 -<br>27 -<br>28 -<br>29 -<br>30 Bottom of Boring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |
| 24 -       25 -         26 -       27 -         28 -       29 -         30       Bottom of Boring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         |
| 25 -     26 -       27 -     28 -       29 -     30       Bottom of Boring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         |
| 26     27     W     W       28     29     W     W       30     Bottom of Boring     W     W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |
| 27 - 28 - 29 - 30 Bottom of Boring Bottom of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |         |
| 28 -     29 -       30     Bottom of Boring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |
| 29 -     30     Bottom of Boring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |
| 30 Bottom of Boring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |
| Bottom of Boring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |
| DEPTH: DRILLING METHOD WATER LEVEL MEASUREMENTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |
| DEPTH: DRILLING METHOD WATER LEVEL MEASUREMENTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |
| DATE TIME SAMPLED CASING CAVE-IN DRILLING WATER THE AT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | FOR AN  |
| EXPLAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TION C  |
| BORING<br>COMPLETED: 11/27/18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | LOGY C  |
| DR: BT LG: JR Rig: RC-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | LOG     |



| AET JO                                  | DB NO: <b>17-03356</b>     |             |                     |               |              | LC  | OG OF             | BORING 1       | NO  | B           | -13    | (p. 1 | of 1  | )     |
|-----------------------------------------|----------------------------|-------------|---------------------|---------------|--------------|-----|-------------------|----------------|-----|-------------|--------|-------|-------|-------|
| PROJE                                   | CT: West Rapid Sul         | bstation;   | Rapid C             | City, S       | outh Dakot   | a   |                   |                |     |             |        |       |       |       |
| DEPTH<br>IN<br>FEET                     | SURFACE ELEVATION:         |             |                     |               | GEOLOGY      | N   | MC                | SAMPLE<br>TYPE | REC | FIEL        | D & LA | ABORA | TORY  | TESTS |
| FËET                                    |                            |             |                     |               |              |     |                   | ТҮРЕ           | IN. | WC          | DEN    | LL    | PL    | %-#20 |
| 1 -                                     | LIMESTONE AGGREC           | GATE SUI    | RFACING             | ;<br>/ 🔜      | SURFACIING   |     |                   |                |     |             |        |       |       |       |
| 2 -                                     | FILL, Silty Lean Clay wi   | th Sand, re | ddish               | -/ 🞆          | FILL         |     |                   |                |     |             |        |       |       |       |
| 3 -                                     | brown (CL)                 |             |                     |               |              |     |                   |                |     |             |        |       |       |       |
| 4                                       |                            |             |                     |               |              |     |                   |                |     |             |        |       |       |       |
| 5 —                                     | GYPSUM, white              |             |                     |               | SPEARFISH    |     |                   |                |     |             |        |       |       |       |
| 6 -                                     | GIISUNI, WINC              |             |                     |               | FORMATION    |     |                   |                |     |             |        |       |       |       |
| 7 —                                     | _                          |             |                     |               |              |     |                   |                |     |             |        |       |       |       |
| 8 -                                     | CLAYSTONE, Silty Lea       | n Clav. red | . gypsum            | <u> </u>      |              |     |                   |                |     |             |        |       |       |       |
| 9                                       | lenses and laminations pro | esent (CL)  | , 87 P <sup>3</sup> |               |              |     |                   |                |     |             |        |       |       |       |
| 10 -                                    |                            |             |                     |               |              |     |                   |                |     |             |        |       |       |       |
| 11 -                                    |                            |             |                     |               |              |     |                   |                |     |             |        |       |       |       |
| 12 -                                    |                            |             |                     |               |              |     |                   |                |     |             |        |       |       |       |
| 13 -                                    |                            |             |                     |               |              |     |                   |                |     |             |        |       |       |       |
| 14 -                                    |                            |             |                     |               |              |     |                   |                |     |             |        |       |       |       |
| 15 -                                    |                            |             |                     |               |              |     | M                 |                |     |             |        |       |       |       |
| 16 -                                    | _                          |             |                     |               |              |     |                   |                |     |             |        |       |       |       |
| 17 -                                    |                            |             |                     |               |              |     |                   |                |     |             |        |       |       |       |
| 18 -                                    |                            |             |                     |               |              |     |                   |                |     |             |        |       |       |       |
| 19 -                                    |                            |             |                     |               |              |     |                   |                |     |             |        |       |       |       |
| 20 - 21 - 21 - 21 - 21 - 21 - 21 - 21 - |                            |             |                     |               |              |     |                   |                |     |             |        |       |       |       |
| 21 - 22 -                               | color grading to reddish b | rown        |                     |               |              |     |                   |                |     |             |        |       |       |       |
| 22 23 -                                 |                            |             |                     |               |              |     |                   |                |     |             |        |       |       |       |
| 24 -                                    |                            |             |                     |               |              |     |                   |                |     |             |        |       |       |       |
| 25 -                                    |                            |             |                     |               |              |     |                   |                |     |             |        |       |       |       |
| 26 -                                    |                            |             |                     |               |              |     |                   |                |     |             |        |       |       |       |
| 27 -                                    | -                          |             |                     |               |              |     |                   |                |     |             |        |       |       |       |
| 28 -                                    | -                          |             |                     |               |              |     |                   |                |     |             |        |       |       |       |
| 29 -                                    |                            |             |                     |               |              |     |                   |                |     |             |        |       |       |       |
| 30 -                                    | Bottom of                  | Boring      |                     |               |              |     |                   |                |     |             |        |       |       |       |
|                                         | Dottoin of                 | Doring      |                     |               |              |     |                   |                |     |             |        |       |       |       |
|                                         |                            |             |                     |               |              |     |                   |                |     |             |        |       |       |       |
| DEP                                     | PTH: DRILLING METHOD       |             |                     | WAT           | ER LEVEL MEA | SUR | L<br>EMEN         | ITS            |     |             |        | NOTE: | DEEE  |       |
|                                         |                            | DATE        | TIME                | SAMPI<br>DEPT |              | CAV | /E-IN             | DRILLI         | NG  | WAT         | ER     | THE A |       |       |
| 3                                       | 30.0 4" FA                 | 11/27/18    | 15:25               | DEPT<br>30.0  |              |     | PTH<br>I <b>A</b> | FLUID LE<br>NA | VEL | LEVE<br>Non |        | SHEET |       |       |
|                                         |                            | 11/2//10    | 13:23               | 50.0          |              |     |                   |                |     | 1101        |        | EXPLA |       |       |
| 29 –<br>30 –<br>DEP<br>3                | IG 11/07/10                |             |                     |               |              |     |                   |                |     |             |        | ERMIN |       |       |
|                                         | <u>LETED: 11/27/18</u>     |             |                     |               |              |     |                   |                |     |             |        |       | IS LO |       |
| DR: <b>B</b>                            | T LG: JR Rig: RC-1         |             |                     |               |              |     |                   |                |     |             |        |       |       |       |



| AET JO                                           | OB NO: <b>17-03356</b>                                     |                           |          |               |                        | LC       | OG OF     | BORING 1            | NO  | B           | -14    | (p. 1          | of 1  | )             |
|--------------------------------------------------|------------------------------------------------------------|---------------------------|----------|---------------|------------------------|----------|-----------|---------------------|-----|-------------|--------|----------------|-------|---------------|
| PROJE                                            | ECT: West Rapid Sub                                        | ostation;                 | Rapid C  | City, S       | outh Dakot             | a        |           |                     |     |             |        |                |       |               |
| DEPTH                                            | SURFACE ELEVATION:                                         |                           |          |               | GEOLOGY                |          | MC        | SAMPLE              | REC | FIEL        | D & LA | BORA           | TORY  | TESTS         |
| IN<br>FEET                                       | MATERIAL                                                   | DESCRIPTI                 | ON       |               |                        | N        | MC        | SAMPLE<br>TYPE      | ĪN. | WC          | DEN    | LL             | PL    | <b>%-</b> #20 |
| 1 -                                              | LIMESTONE AGGREC                                           | GATE SUI                  | RFACINO  |               | SURFACIING             | ľ        |           |                     |     |             |        |                |       |               |
| 2 -                                              | FILL, Coal, black                                          |                           |          | -/ 🗱          | FILL                   |          |           |                     |     |             |        |                |       |               |
| 3 -                                              | FILL, Silty Lean Clay, re                                  | ddish brow                | m (CL)   |               |                        |          |           |                     |     |             |        |                |       |               |
| 4 -                                              | FILL, Sinty Lean Ciay, ie                                  | ddisii biow               |          |               |                        |          |           |                     |     |             |        |                |       |               |
| 5 -                                              |                                                            |                           |          |               |                        |          |           |                     |     |             |        |                |       |               |
| 6 -                                              | -                                                          |                           |          |               |                        |          |           |                     |     |             |        |                |       |               |
| 7 -                                              |                                                            |                           |          |               |                        |          |           |                     |     |             |        |                |       |               |
| 8 - 9 -                                          |                                                            |                           |          |               |                        |          |           |                     |     |             |        |                |       |               |
| 10 -                                             | -                                                          |                           |          |               |                        |          |           |                     |     |             |        |                |       |               |
| 11 -                                             |                                                            | n Class 1                 |          |               | CDE A DEIGU            | -        |           |                     |     |             |        |                |       |               |
| 12 -                                             | <b>CLAYSTONE</b> , Silty Lean lenses and laminations pre-  | n Clay, red<br>esent (CL) | , gypsum |               | SPEARFISH<br>FORMATION | r        |           |                     |     |             |        |                |       |               |
| 13 -                                             | -                                                          |                           |          |               |                        |          |           |                     |     |             |        |                |       |               |
| 14 -                                             | -                                                          |                           |          |               |                        |          |           |                     |     |             |        |                |       |               |
| 15 -                                             |                                                            |                           |          |               |                        |          | М         |                     |     |             |        |                |       |               |
| 16 -                                             |                                                            |                           |          |               |                        |          |           |                     |     |             |        |                |       |               |
| 17 -                                             | -                                                          |                           |          |               |                        |          |           |                     |     |             |        |                |       |               |
| 18 -                                             | increasing gypsum lenses                                   | with depth                | l        |               |                        |          |           |                     |     |             |        |                |       |               |
| 20 -                                             |                                                            |                           |          |               |                        |          |           |                     |     |             |        |                |       |               |
| 21 -                                             | -                                                          |                           |          |               |                        |          |           |                     |     |             |        |                |       |               |
| 22 -                                             |                                                            |                           |          |               |                        |          |           |                     |     |             |        |                |       |               |
| 23 -                                             |                                                            |                           |          |               |                        |          |           |                     |     |             |        |                |       |               |
| 24 -                                             | -                                                          |                           |          |               |                        |          |           |                     |     |             |        |                |       |               |
| 25 -                                             |                                                            |                           |          |               |                        |          |           |                     |     |             |        |                |       |               |
| 26 -                                             | GYPSUM, white                                              |                           |          | - 0           |                        |          |           |                     |     |             |        |                |       |               |
| 27 -                                             |                                                            |                           |          |               | 4                      |          |           |                     |     |             |        |                |       |               |
| 28 - 29 - 29 - 29 - 29 - 29 - 29 - 29 -          |                                                            |                           |          |               | -                      |          |           |                     |     |             |        |                |       |               |
| 30 -                                             |                                                            | <u> </u>                  |          | $\rightarrow$ | •                      |          |           |                     |     |             |        |                |       |               |
|                                                  | Bottom of                                                  | Boring                    |          |               |                        |          |           |                     |     |             |        |                |       |               |
|                                                  |                                                            |                           |          |               |                        |          |           |                     |     |             |        |                |       |               |
|                                                  | PTH: DRILLING METHOD                                       |                           |          | WAT           | ER LEVEL MEA           | <br>ASUR | EMEN      |                     |     |             |        |                |       |               |
| 29 – 29 – 30 – 30 –<br>DEI – DEI –<br>BORIN COMP |                                                            | DATE                      | TIME     | SAMP          |                        |          |           | DRILLII<br>FLUID LE | NG  | WAT<br>LEVI |        | NOTE:<br>THE A |       |               |
|                                                  | 30.0 4" FA                                                 |                           |          |               |                        |          |           |                     | VEL |             |        | SHEET          |       |               |
|                                                  |                                                            | 11/27/18                  | 8:40     | 30.           | ) NA                   |          | <b>IA</b> | NA                  |     | Non         | C      | EXPLA          |       |               |
| BORIN                                            | NG 11/27/19                                                |                           |          |               |                        |          |           |                     |     |             |        | ERMIN          |       |               |
| $\frac{COMP}{1}$                                 | <u>LETED: 11/27/18</u><br>T LG: <b>JR</b> Rig: <b>RC-1</b> |                           |          |               |                        |          |           |                     | -+  |             | -      |                | IS LO |               |
| <u>{ рк: в</u>                                   | I LU: JK KIG: KU-I                                         |                           |          |               |                        |          |           |                     |     |             |        |                |       |               |



| AET JOB NO: <b>17-03356</b>                  |             |               |               |              | LC | OG OF                | BORING 1           | NO  | B            | -15    | ( <b>p.</b> 1 | of 1   | )             |
|----------------------------------------------|-------------|---------------|---------------|--------------|----|----------------------|--------------------|-----|--------------|--------|---------------|--------|---------------|
| PROJECT: West Rapid Su                       | bstation;   | Rapid (       | City, S       | outh Dakot   | a  |                      |                    |     |              |        |               |        |               |
| DEPTH SURFACE ELEVATION:                     |             |               |               | GEOLOGY      |    |                      | SAMPLE             | REC | FIEL         | D & LA | BORA          | TORY   | TESTS         |
| FEET MATERIAL                                |             |               |               |              | N  | MC                   | SAMPLE<br>TYPE     | ĪN. | WC           | DEN    | LL            | PL     | <b>%-</b> #20 |
| LIMESTONE AGGREO<br>1 - 10 inches            | GATE SUI    | RFACIN        | G             | SURFACIING   |    |                      |                    |     |              |        |               |        |               |
| 2 – <b>FILL</b> , Silty Lean Clay, da        | ark reddish | brown to      | -/ 🗱          | FILL         |    |                      |                    |     |              |        |               |        |               |
| 3 - black (CL)                               |             |               |               |              |    |                      |                    |     |              |        |               |        |               |
| 4                                            |             |               |               |              |    |                      |                    |     |              |        |               |        |               |
| 5 —                                          |             |               |               |              |    |                      |                    |     |              |        |               |        |               |
| 6 LEAN CLAY, brown (Cl                       | [.)         |               |               | ALLUVIUM     | -  |                      |                    |     |              |        |               |        |               |
| 7 -                                          | _)          |               |               |              |    |                      |                    |     |              |        |               |        |               |
| 8 -                                          |             |               |               |              |    |                      |                    |     |              |        |               |        |               |
| 9 -                                          |             |               |               |              |    | M                    |                    |     |              |        |               |        |               |
|                                              |             |               |               |              |    |                      |                    |     |              |        |               |        |               |
| 11 - 12 -                                    |             |               |               |              |    |                      |                    |     |              |        |               |        |               |
|                                              |             |               |               |              |    |                      |                    |     |              |        |               |        |               |
|                                              |             |               |               |              |    |                      |                    |     |              |        |               |        |               |
| 15                                           |             |               |               |              |    |                      |                    |     |              |        |               |        |               |
| 15 - SILTY LEAN CLAY, re                     | ddish brow  | m (CL)        |               |              |    |                      |                    |     |              |        |               |        |               |
| 17 —                                         |             |               |               |              |    |                      |                    |     |              |        |               |        |               |
| 18 -                                         |             |               |               |              |    | $ \underline{\vee} $ | ┝┫┥                |     |              |        |               |        |               |
| 19 —                                         |             |               |               |              |    |                      |                    |     |              |        |               |        |               |
| 20 -                                         |             |               |               |              |    |                      |                    |     |              |        |               |        |               |
| 21 -                                         |             |               |               |              |    |                      |                    |     |              |        |               |        |               |
| 22 -                                         |             |               |               |              |    |                      |                    |     |              |        |               |        |               |
| 23 -                                         |             |               |               |              |    |                      |                    |     |              |        |               |        |               |
| 24 -                                         |             |               |               |              |    | W                    |                    |     |              |        |               |        |               |
| 25 -                                         |             |               |               |              |    |                      |                    |     |              |        |               |        |               |
| 26 -<br>27 -                                 |             |               |               |              |    |                      |                    |     |              |        |               |        |               |
|                                              |             |               |               |              |    |                      |                    |     |              |        |               |        |               |
| 20                                           |             |               |               |              |    |                      |                    |     |              |        |               |        |               |
|                                              | <b>D</b> :  |               |               |              |    |                      |                    |     |              |        |               |        |               |
| BORING<br>COMPLETED: 11/27/18                | Boring      |               |               |              |    |                      |                    |     |              |        |               |        |               |
|                                              |             |               |               |              |    |                      |                    |     |              |        |               |        |               |
| DEPTH: DRILLING METHOD                       |             |               | WAT           | ER LEVEL MEA |    | EMEN                 |                    |     |              |        |               |        |               |
| DEFIN. DKILLING METHOD                       |             | <b>TD</b> (7) | 1             |              |    |                      |                    | NG  | WAT          |        | NOTE:         |        |               |
| 30.0 4" FA                                   | DATE        | TIME          | SAMPI<br>DEPT |              |    | /E-IN<br>PTH         | DRILLI<br>FLUID LE | VEL | WAT]<br>LEVE |        | THE A         |        |               |
|                                              | 11/27/18    | 16:10         | 30.0          | ) NA         | N  | A                    | NA                 |     | 18.0         | ,      | SHEET         |        |               |
| BORING                                       |             |               |               |              |    |                      |                    |     |              |        | XPLA          |        |               |
|                                              |             |               |               |              |    |                      |                    |     |              |        | ERMIN<br>TH   |        |               |
| DR: <b>BT</b> LG: <b>JR</b> Rig: <b>RC-1</b> |             |               |               |              |    |                      |                    |     |              |        | IH            | IS LOO |               |



#### SUBSURFACE BORING LOG

| AET JO                                      | DB NO | 17-03356                          |             |           |               |                       | LC   | OG OF        | BOR | ING N           | IO  | B            | -21    | (p. 1 | of 1   | )     |
|---------------------------------------------|-------|-----------------------------------|-------------|-----------|---------------|-----------------------|------|--------------|-----|-----------------|-----|--------------|--------|-------|--------|-------|
| PROJE                                       | CT:   | West Rapid Sul                    | ostation;   | Rapid C   | City, S       | outh Dakot            | a    |              |     |                 |     |              |        |       |        |       |
| DEPTH<br>IN<br>FEET                         | S     | URFACE ELEVATION:                 |             |           |               | GEOLOGY               | N    | MC           | SAN | IPLE<br>PE      | REC | FIELI        | D & LA | BORA  | TORY   | TEST  |
| FEET                                        |       | MATERIAL                          | DESCRIPTI   | ON        |               |                       |      | MC           | TY  | 'PE             | IN. | WC           | DEN    | LL    | PL     | %-#20 |
| 1                                           |       | <b>IESTONE AGGREO</b>             | GATE SUI    | RFACINO   |               | SURFACIING            | ſ    |              |     |                 |     |              |        |       |        |       |
|                                             |       | nches<br>IL, Silty Lean Clay wi   | th Sand re  | ddish     | -/ 🗱          | FILL                  |      |              |     |                 |     |              |        |       |        |       |
| $\begin{vmatrix} 2 \\ 3 \\ - \end{vmatrix}$ | brov  | vn, gypsum, claystone             | and coal f  | fragments |               |                       |      |              |     |                 |     |              |        |       |        |       |
| 4 -                                         |       | sent (CL)<br>NCRETE, 6 inches     |             |           |               |                       |      |              |     |                 |     |              |        |       |        |       |
| 5 -                                         | FIL   | L, Silty Lean Clay wi             | th Sand, re | ddish     | -/ 💥          |                       |      |              |     |                 |     |              |        |       |        |       |
| 6 -                                         | brov  | wn, gypsum, claystone<br>ent (CL) | and coal f  | fragments |               |                       |      | М            |     |                 |     |              |        |       |        |       |
| 7 –                                         |       | NCRETE, 6 inches                  |             |           |               |                       |      |              |     |                 |     |              |        |       |        |       |
| 8                                           | FIL   | L, Silty Lean Clay wi             | th sand, re | ddish     |               |                       | -    |              |     |                 |     |              |        |       |        |       |
| 9 –                                         |       | wn, gypsum, claystone<br>ent (CL) | and coal f  | ragments  |               | ALLUVIUM              |      |              |     |                 |     |              |        |       |        |       |
| 10 -                                        |       | TY LEAN CLAY, red                 | d (CL)      |           |               |                       |      |              |     |                 |     |              |        |       |        |       |
| 11 -                                        |       |                                   |             |           |               |                       |      |              |     |                 |     |              |        |       |        |       |
| 12 -                                        |       |                                   |             |           |               |                       |      |              |     |                 |     |              |        |       |        |       |
| 13 —                                        |       |                                   |             |           |               |                       |      |              |     |                 |     |              |        |       |        |       |
| 14 —                                        |       |                                   |             |           |               |                       |      |              |     |                 |     |              |        |       |        |       |
| 15 —                                        |       |                                   |             |           |               |                       |      | W            |     |                 |     |              |        |       |        |       |
| 16 -                                        |       |                                   |             |           |               |                       |      |              |     |                 |     |              |        |       |        |       |
| 17 —                                        |       |                                   |             |           |               |                       |      |              |     |                 |     |              |        |       |        |       |
| 18 -                                        |       | Bottom of                         | Boring      |           |               |                       |      |              |     |                 |     |              |        |       |        |       |
|                                             |       | Doutoin of                        | Doring      |           |               |                       |      |              |     |                 |     |              |        |       |        |       |
|                                             |       |                                   |             |           |               |                       |      |              |     |                 |     |              |        |       |        |       |
|                                             |       |                                   |             |           |               |                       |      |              |     |                 |     |              |        |       |        |       |
|                                             |       |                                   |             |           |               |                       |      |              |     |                 |     |              |        |       |        |       |
|                                             |       |                                   |             |           |               |                       |      |              |     |                 |     |              |        |       |        |       |
|                                             |       |                                   |             |           |               |                       |      |              |     |                 |     |              |        |       |        |       |
|                                             |       |                                   |             |           |               |                       |      |              |     |                 |     |              |        |       |        |       |
|                                             |       |                                   |             |           |               |                       |      |              |     |                 |     |              |        |       |        |       |
|                                             |       |                                   |             |           |               |                       |      |              |     |                 |     |              |        |       |        |       |
|                                             |       |                                   |             |           |               |                       |      |              |     |                 |     |              |        |       |        |       |
|                                             |       |                                   |             |           |               |                       |      |              |     |                 |     |              |        |       |        |       |
|                                             |       |                                   |             |           |               |                       |      |              |     |                 |     |              |        |       |        |       |
|                                             |       |                                   |             |           |               |                       |      |              |     |                 |     |              |        |       |        |       |
|                                             |       |                                   |             |           |               |                       |      |              |     |                 |     |              |        |       |        |       |
| DEP                                         | TH:   | DRILLING METHOD                   |             |           | WAT           | ER LEVEL MEA          | ASUR | EMEN         | TS  |                 |     |              | 1      | NOTE: | REFE   | ER TO |
| 1                                           | 80    | /" FA                             | DATE        | TIME      | SAMPI<br>DEPT | LED CASING<br>H DEPTH | CAV  | /E-IN<br>PTH |     | RILLIN<br>ID LE |     | WATI<br>LEVE |        | THE A | TTAC   | HED   |
|                                             | 8.0   | 4" FA                             | 11/28/18    | 15:35     | 18.0          |                       |      | A            |     | NA              | ,   | 12.0         |        | SHEET | TS FOI | R AN  |
|                                             |       |                                   | 11/20/10    | 15.55     | 10.0          |                       |      | 11           |     | 1171            |     | 14.(         |        | XPLA  | NATIO  | ON OF |
| DEP<br>1<br>BORIN<br>COMP                   | IG    | . 11/ <b>7</b> 0/10               |             |           |               |                       |      |              |     |                 | -+  |              | T      | ERMIN | IOLO   | GY OI |
|                                             |       | D: 11/28/18                       |             |           |               |                       |      |              |     |                 |     |              |        |       | IS LO  |       |
| DR: <b>B</b>                                | 1 L   | G: JR Rig: RC-1                   |             |           |               |                       |      |              |     |                 |     |              |        |       |        |       |



| AET JO                    | DB NO: <b>17-03356</b>                             |              |          |               |                        | LC  | OG OF                 | BORING 1           | NO  | B            | -22    | (p. 1 | of 1   | )             |
|---------------------------|----------------------------------------------------|--------------|----------|---------------|------------------------|-----|-----------------------|--------------------|-----|--------------|--------|-------|--------|---------------|
| PROJE                     | CT: West Rapid Sul                                 | ostation;    | Rapid C  | City, S       | outh Dakot             | a   |                       |                    |     |              |        |       |        |               |
| DEPTH<br>IN<br>FEET       | SURFACE ELEVATION:                                 |              |          |               | GEOLOGY                | N   | MC                    | SAMPLE<br>TYPE     | REC | FIEL         | D & LA | BORA  | TORY   | TESTS         |
| FEET                      |                                                    |              |          |               |                        |     | wie                   | TYPE               | IN. | WC           | DEN    | LL    | PL     | <b>%-</b> #20 |
| 1                         | LIMESTONE AGGREC                                   | GATE SUI     | RFACINO  |               | SURFACIING             | -   |                       |                    |     |              |        |       |        |               |
| 2 -                       | FILL, Silty Lean Clay wi                           | th Sand, re  | ddish    | -/ 🗱          | FILL                   |     |                       |                    |     |              |        |       |        |               |
| 3 -                       | brown, gypsum, claystone<br>(CL)                   | e and coal f | ragments |               |                        |     |                       |                    |     |              |        |       |        |               |
| 4                         |                                                    |              |          |               |                        |     |                       |                    |     |              |        |       |        |               |
| 5 —                       | SILTY LEAN CLAY, red                               | A (CL)       |          |               | ALLUVIUM               |     |                       |                    |     |              |        |       |        |               |
| 6 -                       |                                                    | u (CL)       |          |               |                        |     |                       |                    |     |              |        |       |        |               |
| 7 —                       |                                                    |              |          |               |                        |     | Μ                     |                    |     |              |        |       |        |               |
| 8 -                       |                                                    |              |          |               |                        |     |                       |                    |     |              |        |       |        |               |
| 9 —                       |                                                    |              |          |               |                        |     |                       |                    |     |              |        |       |        |               |
| 10 -                      |                                                    |              |          |               |                        |     |                       |                    |     |              |        |       |        |               |
| 11 -                      |                                                    |              |          |               |                        |     |                       |                    |     |              |        |       |        |               |
| 12 -                      |                                                    |              |          |               |                        |     |                       |                    |     |              |        |       |        |               |
| 13 -                      |                                                    |              |          |               |                        |     | $\left  \sum \right $ |                    |     |              |        |       |        |               |
| 14 -                      |                                                    |              |          |               |                        |     | <u> </u>              |                    |     |              |        |       |        |               |
| 15 -                      |                                                    |              |          |               |                        |     | W                     |                    |     |              |        |       |        |               |
| 16 —<br>17 —              | <b>CLAYSTONE</b> , Silty Least lenses present (CL) | n Clay, red  | , gypsum |               | SPEARFISH<br>FORMATION |     | vv                    |                    |     |              |        |       |        |               |
| 17 - 18 -                 |                                                    |              |          |               | TORMATION              |     |                       |                    |     |              |        |       |        |               |
| 10                        | Bottom of                                          | Boring       |          |               |                        |     |                       |                    |     |              |        |       |        |               |
|                           |                                                    |              |          |               |                        |     |                       |                    |     |              |        |       |        |               |
|                           |                                                    |              |          |               |                        |     |                       |                    |     |              |        |       |        |               |
|                           |                                                    |              |          |               |                        |     |                       |                    |     |              |        |       |        |               |
|                           |                                                    |              |          |               |                        |     |                       |                    |     |              |        |       |        |               |
|                           |                                                    |              |          |               |                        |     |                       |                    |     |              |        |       |        |               |
|                           |                                                    |              |          |               |                        |     |                       |                    |     |              |        |       |        |               |
|                           |                                                    |              |          |               |                        |     |                       |                    |     |              |        |       |        |               |
|                           |                                                    |              |          |               |                        |     |                       |                    |     |              |        |       |        |               |
|                           |                                                    |              |          |               |                        |     |                       |                    |     |              |        |       |        |               |
|                           |                                                    |              |          |               |                        |     |                       |                    |     |              |        |       |        |               |
| 1                         |                                                    |              |          |               |                        |     |                       |                    |     |              |        |       |        |               |
|                           |                                                    |              |          |               |                        |     |                       |                    |     |              |        |       |        |               |
|                           |                                                    |              |          |               |                        |     |                       |                    |     |              |        |       |        |               |
| DEP                       | TH: DRILLING METHOD                                |              |          | WAT           | ER LEVEL MEA           | SUR | EMEN                  | ITS                | 1   | 1            | , ו    | NOTE: | REFF   | R TO          |
|                           |                                                    | DATE         | TIME     | SAMPI<br>DEPT | LED CASING<br>TH DEPTH | CAV | /E-IN<br>PTH          | DRILLI<br>FLUID LE | NG  | WATI<br>LEVI |        | THE A |        |               |
|                           | 18.0 4" FA                                         | 11/28/18     | 16:00    | 18.           |                        |     |                       | FLUID LE<br>NA     | VEL | 14.0         |        | SHEET |        |               |
|                           |                                                    | 11/20/10     | 10:00    | 10.           |                        |     | A                     | INA                |     | 14.(         | ,      | EXPLA |        |               |
| DEP<br>1<br>BORIN<br>COMP | IG 11/20/10                                        |              |          |               |                        |     |                       |                    |     |              |        | ERMIN |        |               |
|                           | LETED: 11/28/18                                    |              |          |               |                        |     |                       |                    |     |              |        |       | IS LOO |               |
| DR: B                     | T LG: JR Rig: RC-1                                 |              |          |               |                        |     |                       |                    |     |              |        |       |        |               |



#### SUBSURFACE BORING LOG

| AET JO                               | OB NO: <b>17-03356</b>                   |             |           |               |                      | LC        | DG OF                  | BORING 1           | NO         | B            | -23      | (p. 1 | of 1  | )             |
|--------------------------------------|------------------------------------------|-------------|-----------|---------------|----------------------|-----------|------------------------|--------------------|------------|--------------|----------|-------|-------|---------------|
| PROJE                                | ECT: West Rapid Sub                      | ostation;   | Rapid C   | City, S       | outh Dakot           | a         |                        |                    |            |              |          |       |       |               |
| DEPTH<br>IN<br>FEET                  | SURFACE ELEVATION:                       |             |           |               | GEOLOGY              | N         | MC                     | SAMPLE<br>TYPE     | REC        | FIEL         | D & LA   | BORA  | TORY  | TESTS         |
| FEET                                 |                                          |             |           |               |                      |           | wic                    | TYPE               | IN.        | WC           | DEN      | LL    | PL    | <b>%-</b> #20 |
| 1 -                                  | LIMESTONE AGGREC                         | GATE SUI    | RFACINO   | ;<br>;<br>;   | SURFACIING           |           |                        |                    |            |              |          |       |       |               |
| 2 -                                  | FILL, Silty Lean Clay with               | th Sand, re | ddish     | -/ 🞆          | FILL                 |           |                        |                    |            |              |          |       |       |               |
| 3 -                                  | brown, gypsum, claystone<br>present (CL) | and coal f  | fragments |               |                      |           |                        |                    |            |              |          |       |       |               |
| 4                                    |                                          |             |           |               |                      |           |                        |                    |            |              |          |       |       |               |
| 5 -                                  | -                                        |             |           |               |                      |           |                        |                    |            |              |          |       |       |               |
| 6 -                                  | SILTY LEAN CLAY, red                     | d (CL)      |           |               | ALLUVIUM             |           | M                      |                    |            |              |          |       |       |               |
| 7 —                                  |                                          |             |           |               |                      |           |                        |                    |            |              |          |       |       |               |
| 8 -                                  | -                                        |             |           |               |                      |           |                        |                    |            |              |          |       |       |               |
| 9 -<br>10 -                          | ]                                        |             |           |               |                      |           |                        |                    |            |              |          |       |       |               |
|                                      |                                          |             |           |               |                      |           |                        |                    |            |              |          |       |       |               |
| 12 -                                 | -                                        |             |           |               |                      |           |                        |                    |            |              |          |       |       |               |
| 13 -                                 | -                                        |             |           |               |                      |           | $ \underline{\nabla} $ |                    |            |              |          |       |       |               |
| 14 -                                 | -                                        |             |           |               |                      |           |                        |                    |            |              |          |       |       |               |
| 15 -                                 | -                                        |             |           |               |                      |           | W                      |                    |            |              |          |       |       |               |
| 16 -                                 | CLAYSTONE, Silty Lear                    | n Clay, red | , gypsum  |               | SPEARFISH            |           | vv                     |                    |            |              |          |       |       |               |
| 17 -                                 | lenses present (CL)                      |             | , 651     |               | FORMATION            |           |                        |                    |            |              |          |       |       |               |
| 18 -                                 | Bottom of                                | Boring      |           |               |                      |           |                        |                    |            |              |          |       |       |               |
|                                      |                                          |             |           |               |                      |           |                        |                    |            |              |          |       |       |               |
|                                      |                                          |             |           |               |                      |           |                        |                    |            |              |          |       |       |               |
|                                      |                                          |             |           |               |                      |           |                        |                    |            |              |          |       |       |               |
|                                      |                                          |             |           |               |                      |           |                        |                    |            |              |          |       |       |               |
|                                      |                                          |             |           |               |                      |           |                        |                    |            |              |          |       |       |               |
|                                      |                                          |             |           |               |                      |           |                        |                    |            |              |          |       |       |               |
|                                      |                                          |             |           |               |                      |           |                        |                    |            |              |          |       |       |               |
|                                      |                                          |             |           |               |                      |           |                        |                    |            |              |          |       |       |               |
|                                      |                                          |             |           |               |                      |           |                        |                    |            |              |          |       |       |               |
| 0 10                                 |                                          |             |           |               |                      |           |                        |                    |            |              |          |       |       |               |
|                                      |                                          |             |           |               |                      |           |                        |                    |            |              |          |       |       |               |
|                                      |                                          |             |           |               |                      |           |                        |                    |            |              |          |       |       |               |
|                                      |                                          | Γ           |           |               |                      |           |                        |                    |            |              |          |       |       |               |
| DEF                                  | PTH: DRILLING METHOD                     |             |           | 1             | ER LEVEL MEA         |           |                        |                    |            |              |          | NOTE: | REFE  | ER TO         |
|                                      | 18.0 4" FA                               | DATE        | TIME      | SAMPI<br>DEPT | ED CASING<br>H DEPTH | CAV<br>DE | /E-IN<br>PTH           | DRILLI<br>FLUID LE | NG<br>EVEL | WATI<br>LEVE | ER<br>EL | THE A | TTAC  | HED           |
|                                      |                                          | 11/28/18    | 15:15     | 18.0          | ) NA                 | N         | A                      | NA                 |            | 13.0         | )        | SHEET | S FO  | R AN          |
|                                      |                                          |             |           |               |                      |           |                        |                    |            |              |          | EXPLA |       |               |
| BORIN<br>COMP                        | NG<br>PLETED: <b>11/28/18</b>            |             |           |               |                      |           |                        |                    |            |              | Т        | ERMIN |       |               |
| $\overline{\mathbf{H}}$ DR: <b>B</b> | BT LG: JR Rig: RC-1                      |             |           |               |                      |           |                        |                    |            |              |          | TH    | IS LO |               |



| West Rapid Substation; Rapid City, South Dakota         DEPTH<br>FFFT       SURFACE ELEVATION:<br>MATERIAL DESCRIPTION       GEOLOGY       N       MC       SMPLF       PLC       IPULD & LABORATOR TOTST<br>MATERIAL DESCRIPTION         1       LIMESTORE ACCRECATE SURFACING<br>7       SURFACING<br>FILL       SURFACING<br>7       SUR                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | AET JOB NO: <b>17-03356</b>                                           |               |           |             |                  |             | LC        | OG OF        | BOI      | RING N          | NO          | B            | -24      | (p. 1 | of 1   | )        |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|---------------|-----------|-------------|------------------|-------------|-----------|--------------|----------|-----------------|-------------|--------------|----------|-------|--------|----------|
| LIMESTONE ACGREGATE SURFACING<br>LIMESTONE ACGREGATE SURFACING<br>TILL Silly Lean Clay with Sand, reddish<br>brown, gypsun, claysione and coal fragments<br>present (CL)<br>SILTY LEAN CLAY, red (CL)<br>SILTY LEAN CLAY, red (CL)<br>ALLUVIUM<br>M<br>SPEARFISH<br>tenses present (CL)<br>Bottom of Boring<br>DEPTH: DRILLING METHOD<br>LAYSTONE Silly Lean Clay, red, gypsum<br>Bottom of Boring<br>DEPTH: DRILLING METHOD<br>NOTE: REFER TO<br>18.0 4" FA<br>11/28/18<br>DATE<br>11/28/18<br>DEPTH: DRILLING METHOD<br>DEPTH: DRILLING METHOD<br>NOTE: REFER TO<br>THE ATTACHED<br>SMETT FOR AN<br>NOTE: REFER TO<br>THE ATTACHED<br>SMETT FOR AN<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PROJECT: West Rapid Su                                                | bstation;     | Rapid (   | City, S     | outh D           | akot        | a         |              |          |                 |             |              |          |       |        |          |
| LIMESTONE ACGREGATE SURFACING<br>LIMESTONE ACGREGATE SURFACING<br>TILL Silly Lean Clay with Sand, reddish<br>brown, gypsun, claysione and coal fragments<br>present (CL)<br>SILTY LEAN CLAY, red (CL)<br>SILTY LEAN CLAY, red (CL)<br>ALLUVIUM<br>M<br>SPEARFISH<br>tenses present (CL)<br>Bottom of Boring<br>DEPTH: DRILLING METHOD<br>LAYSTONE Silly Lean Clay, red, gypsum<br>Bottom of Boring<br>DEPTH: DRILLING METHOD<br>NOTE: REFER TO<br>18.0 4" FA<br>11/28/18<br>DATE<br>11/28/18<br>DEPTH: DRILLING METHOD<br>DEPTH: DRILLING METHOD<br>NOTE: REFER TO<br>THE ATTACHED<br>SMETT FOR AN<br>NOTE: REFER TO<br>THE ATTACHED<br>SMETT FOR AN<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | DEPTH SURFACE ELEVATION                                               | :             |           |             | GEOLO            | OGY         | N         | MC           | SA       | MPLE            | REC         | FIELI        | D & LA   | ABORA | TORY   | TESTS    |
| 10       inches       FILL       Image: style sty |                                                                       | . DESCRIPTI   |           |             |                  |             |           | MC           | T        | YPE             | ĪN.         |              | DEN      | LL    | PL     | %-#20    |
| 2       FILL, Silly Lean Clay with Sand, reddish present (CL)       Image: Clay of the second coal fragments present (CL)         3       -       -       -         4       -       -       -         5       -       -       -         6       -       -       -         7       SILTY LEAN CLAY, red (CL)       -       -         8       -       -       -         9       -       -       -         10       -       -       -         11       -       -       -         12       -       -       -         13       -       -       -         14       -       -       -         15       -       -       -         16       CLAYSTONE, Silly Lean Clay, red, gypsum       SPEARFISH       W         17       lenses present (CL)       -       -       -         18       Bottom of Boring       -       -       -       -         18.0       4" FA       DATE       Time       SAMELDP       CASING       CAVEAN       VATER         000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | LIMESTONE AGGRE                                                       | GATE SU       | RFACINO   | ; <b>=</b>  |                  | CIING       |           |              |          |                 |             |              |          |       |        |          |
| 3       present (CL)       ALLUVIUM       M         5       5       5       5         6       5       5       5         7       SILTY LEAN CLAY, red (CL)       ALLUVIUM       M         9       9       5       5         10       -       -       5         12       -       -       5         13       -       -       -         14       -       -       -         16       CLAYSTONE Silty Lean Clay, red, gypsum       SPEARFISH       W         17       Enses present (CL)       -       W       -         18       Bottom of Boring       -       -       -         18.0       4" FA       DATE       TIME       SAMPLED CASING       CAVE-IN       PRILLING       WATER         11/28/18       11/28/18       18.0       NA       NA       NA       EXPLANATION OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2 - <b>FILL</b> , Silty Lean Clay w                                   | vith Sand, re | ddish     | _/ 🎆        | FILL             |             |           |              |          |                 |             |              |          |       |        |          |
| 4 - 5       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       - <td>brown, gypsum, claystor</td> <td>e and coal t</td> <td>fragments</td> <td></td> <td>×.</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | brown, gypsum, claystor                                               | e and coal t  | fragments |             | ×.               |             |           |              |          |                 |             |              |          |       |        |          |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                       |               |           |             | Ň                |             |           |              |          |                 |             |              |          |       |        |          |
| 7       SILTY LEAN CLAY, red (CL)       ALLUVIUM       M       M         9       -       -       -       -         10       -       -       -       -         11       -       -       -       -       -         12       -       -       -       -       -       -         13       -       -       -       -       -       -         14       -       -       -       -       -       -         15       -       -       -       -       -       -       -         16       CLAVSTONE, Silty Lean Clay, red, gypsum<br>lenses present (CL)       SPEARFISH<br>FORMATION       W       W       -       -       -         18       Bottom of Boring       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5 —                                                                   |               |           |             | X                |             |           |              |          |                 |             |              |          |       |        |          |
| SILITY LEAN CLAY, red (CL)       ALLOVION       M       M       I       I       I         9       0       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6 —                                                                   |               |           |             | X                |             |           |              |          |                 |             |              |          |       |        |          |
| 9       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7 - SILTY LEAN CLAY, r                                                | ed (CL)       |           |             | ALLUV            | IUM         |           | м            |          |                 |             |              |          |       |        |          |
| 10       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                       | - ()          |           |             |                  |             |           | IVI          |          |                 |             |              |          |       |        |          |
| 11       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 9 -                                                                   |               |           |             |                  |             |           |              |          |                 |             |              |          |       |        |          |
| 12       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                       |               |           |             |                  |             |           |              |          |                 |             |              |          |       |        |          |
| 13 -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                       |               |           |             |                  |             |           |              |          |                 |             |              |          |       |        |          |
| 14 -       15 -       SPEARFISH       W       W       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                       |               |           |             |                  |             |           |              |          |                 |             |              |          |       |        |          |
| 15       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                       |               |           |             |                  |             |           |              |          |                 |             |              |          |       |        |          |
| 16<br>17<br>18       CLAYSTONE, Silty Lean Clay, red, gypsum       SPEARFISH<br>FORMATION       W       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                       |               |           |             |                  |             |           | $\square$    |          |                 |             |              |          |       |        |          |
| 17 -       Image: Second condition of Boring       Image: Second condit on Boring       Image: Second condition of Boring                                                                                                                                                                                                                                                                                                                                                           | 16                                                                    |               |           |             |                  |             |           |              |          |                 |             |              |          |       |        |          |
| 18       Bottom of Boring       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CLAYSIONE, Silty Le                                                   | an Clay, rec  | l, gypsum |             |                  |             |           | W            |          |                 |             |              |          |       |        |          |
| Bottom of Boring       Image: Sector of Boring                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10                                                                    | <u></u>       |           |             |                  |             |           |              |          |                 |             |              |          |       |        |          |
| 18.0 4" FA     DATE     TIME     SAMPLED DEPTH     CASING DEPTH     DRILLING DEPTH     WATER LEVEL       11/28/18     15:00     18.0     NA     NA     NA     15.0       BORING COMPLETED:     11/28/18     Incompleted     Incompleted     Incompleted     Incompleted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Bottom o                                                              | f Boring      |           |             |                  |             |           |              |          |                 |             |              |          |       |        |          |
| 18.0 4" FA     DATE     TIME     SAMPLED DEPTH     CASING DEPTH     DRILLING DEPTH     WATER LEVEL       11/28/18     15:00     18.0     NA     NA     NA     15.0       BORING COMPLETED:     11/28/18     Incompleted     Incompleted     Incompleted     Incompleted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                       |               |           |             |                  |             |           |              |          |                 |             |              |          |       |        |          |
| 18.0 4" FA     DATE     TIME     SAMPLED DEPTH     CASING DEPTH     DRILLING DEPTH     WATER LEVEL       11/28/18     15:00     18.0     NA     NA     NA     15.0       BORING COMPLETED:     11/28/18     Incompleted     Incompleted     Incompleted     Incompleted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                       |               |           |             |                  |             |           |              |          |                 |             |              |          |       |        |          |
| 18.0 4" FA     DATE     TIME     SAMPLED DEPTH     CASING DEPTH     DRILLING DEPTH     WATER LEVEL       11/28/18     15:00     18.0     NA     NA     NA     15.0       BORING COMPLETED:     11/28/18     Incompleted     Incompleted     Incompleted     Incompleted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                       |               |           |             |                  |             |           |              |          |                 |             |              |          |       |        |          |
| 18.0 4" FA     DATE     TIME     SAMPLED DEPTH     CASING DEPTH     DRILLING DEPTH     WATER LEVEL       11/28/18     15:00     18.0     NA     NA     NA     15.0       BORING COMPLETED:     11/28/18     Incompleted     Incompleted     Incompleted     Incompleted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                       |               |           |             |                  |             |           |              |          |                 |             |              |          |       |        |          |
| 18.0 4" FA     DATE     TIME     SAMPLED DEPTH     CASING DEPTH     DRILLING DEPTH     WATER LEVEL       11/28/18     15:00     18.0     NA     NA     NA     15.0       BORING COMPLETED:     11/28/18     Incompleted     Incompleted     Incompleted     Incompleted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                       |               |           |             |                  |             |           |              |          |                 |             |              |          |       |        |          |
| 18.0 4" FA     DATE     TIME     SAMPLED DEPTH     CASING DEPTH     DRILLING DEPTH     WATER LEVEL       11/28/18     15:00     18.0     NA     NA     NA     15.0       BORING COMPLETED:     11/28/18     Incompleted     Incompleted     Incompleted     Incompleted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                       |               |           |             |                  |             |           |              |          |                 |             |              |          |       |        |          |
| 18.0 4" FA     DATE     TIME     SAMPLED DEPTH     CASING DEPTH     DRILLING DEPTH     WATER LEVEL       11/28/18     15:00     18.0     NA     NA     NA     15.0       BORING COMPLETED:     11/28/18     Incompleted     Incompleted     Incompleted     Incompleted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                       |               |           |             |                  |             |           |              |          |                 |             |              |          |       |        |          |
| 18.0 4" FA     DATE     TIME     SAMPLED DEPTH     CASING DEPTH     DRILLING DEPTH     WATER LEVEL       11/28/18     15:00     18.0     NA     NA     NA     15.0       BORING COMPLETED:     11/28/18     Incompleted     Incompleted     Incompleted     Incompleted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                       |               |           |             |                  |             |           |              |          |                 |             |              |          |       |        |          |
| 18.0 4" FA     DATE     TIME     SAMPLED DEPTH     CASING DEPTH     DRILLING DEPTH     WATER LEVEL       11/28/18     15:00     18.0     NA     NA     NA     15.0       BORING COMPLETED:     11/28/18     Incompleted     Incompleted     Incompleted     Incompleted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                       |               |           |             |                  |             |           |              |          |                 |             |              |          |       |        |          |
| 18.0 4" FA     DATE     TIME     SAMPLED DEPTH     CASING DEPTH     DRILLING DEPTH     WATER LEVEL       11/28/18     15:00     18.0     NA     NA     NA     15.0       BORING COMPLETED:     11/28/18     Incompleted     Incompleted     Incompleted     Incompleted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                       |               |           |             |                  |             |           |              |          |                 |             |              |          |       |        |          |
| 18.0 4" FA     DATE     TIME     SAMPLED DEPTH     CASING DEPTH     DRILLING DEPTH     WATER LEVEL       11/28/18     15:00     18.0     NA     NA     NA     15.0       BORING COMPLETED:     11/28/18     Incompleted     Incompleted     Incompleted     Incompleted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                       |               |           |             |                  |             |           |              |          |                 |             |              |          |       |        |          |
| 18.0 4" FA     DATE     TIME     SAMPLED DEPTH     CASING DEPTH     DRILLING DEPTH     WATER LEVEL       11/28/18     15:00     18.0     NA     NA     NA     15.0       BORING COMPLETED:     11/28/18     Incompleted     Incompleted     Incompleted     Incompleted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                       |               |           |             |                  |             |           |              |          |                 |             |              |          |       |        |          |
| 18.0 4" FA     DATE     TIME     SAMPLED DEPTH     CASING DEPTH     DRILLING DEPTH     WATER LEVEL       11/28/18     15:00     18.0     NA     NA     NA     15.0       BORING COMPLETED:     11/28/18     Incompleted     Incompleted     Incompleted     Incompleted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                       | -1            |           |             |                  |             |           |              |          |                 |             |              |          |       |        |          |
| 11/28/18     15:00     18.0     NA     NA     NA     15.0       BORING<br>COMPLETED:     11/28/18     Image: Complete the second sec                                                  | DEPTH: DRILLING METHOD<br>18.0 4" FA<br>BORING<br>COMPLETED: 11/28/18 |               | 1         |             |                  |             |           |              |          |                 | ,           |              |          | NOTE: | REFE   | R TO     |
| 11/28/18     15:00     18.0     NA     NA     NA     15.0       BORING<br>COMPLETED:     11/28/18     Image: Complete the second sec                                                  | 18.0 4" FA                                                            | DATE          | TIME      | SAMP<br>DEP | LED CAS<br>TH DE | SING<br>PTH | CAV<br>DE | /E-IN<br>PTH | D<br>FLU | RILLI<br>JID LE | NG<br>VEL   | WATI<br>LEVE | ER<br>EL | THE A | TTAC   | HED      |
| BORING<br>COMPLETED: 11/28/18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                       | 11/28/18      | 15:00     |             |                  |             |           |              |          | NA              | $ \uparrow$ |              |          | SHEET | ΓS FOI | R AN     |
| COMPLETED: 11/28/18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <u> </u>                                                              |               |           |             |                  |             |           |              |          |                 | +           |              |          | EXPLA | NATIO  | ON OF    |
| THISLOG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | BORING<br>COMPLETED: 11/28/18                                         |               |           |             |                  |             |           |              |          |                 |             |              | T        | ERMIN | IOLOG  | GY ON    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                       |               |           |             |                  |             |           |              |          |                 |             |              |          | TH    | IS LO  | <b>G</b> |



#### SUBSURFACE BORING LOG

| AET JO                    | OB NO: <b>17-03356</b>                   |             |           |               |                    | LC        | DG OF              | BORING         | NO    | B           | -25      | (p. 1 | of 1  | )             |
|---------------------------|------------------------------------------|-------------|-----------|---------------|--------------------|-----------|--------------------|----------------|-------|-------------|----------|-------|-------|---------------|
| PROJE                     | ECT: West Rapid Sul                      | ostation;   | Rapid C   | City, S       | outh Dakot         | a         |                    |                |       |             |          |       |       |               |
| DEPTH<br>IN<br>FEET       | SURFACE ELEVATION:                       |             |           |               | GEOLOGY            | N         | MC                 | SAMPL<br>TYPE  | E REC | ; <b></b>   | D & LA   | ABORA | TORY  | TESTS         |
| FEET                      |                                          |             |           |               |                    |           | IVIC               | TYPE           | IN.   | WC          | DEN      | LL    | PL    | <b>%-</b> #20 |
| 1                         | LIMESTONE AGGREC                         | GATE SUI    | RFACINO   | ;<br>/        | SURFACIING<br>FILL |           |                    |                |       |             |          |       |       |               |
| 2 -                       | FILL, Silty Lean Clay wi                 | th Sand, re | ddish     | -' 🎆          | FILL               |           |                    |                |       |             |          |       |       |               |
| 3 -                       | brown, gypsum, claystone<br>present (CL) | and coal f  | fragments |               |                    |           |                    |                |       |             |          |       |       |               |
| 4 -                       |                                          |             |           |               |                    |           |                    |                |       |             |          |       |       |               |
| 5 —                       | -                                        |             |           |               |                    |           |                    |                |       |             |          |       |       |               |
| 6 -                       | -                                        |             |           |               |                    |           |                    |                |       |             |          |       |       |               |
| 7 -                       | SILTY LEAN CLAY, red                     | d (CL)      |           |               | ALLUVIUM           |           | М                  |                |       |             |          |       |       |               |
| 8 –<br>9 –                |                                          |             |           |               |                    |           |                    |                |       |             |          |       |       |               |
| 10 -                      |                                          |             |           |               |                    |           |                    |                |       |             |          |       |       |               |
| 11 -                      | 1                                        |             |           |               |                    |           |                    |                |       |             |          |       |       |               |
| 12 -                      | -                                        |             |           |               |                    |           |                    |                |       |             |          |       |       |               |
| 13 -                      | -                                        |             |           |               |                    |           |                    |                |       |             |          |       |       |               |
| 14 -                      | -                                        |             |           |               |                    |           | $\bigtriangledown$ |                |       |             |          |       |       |               |
| 15 —                      | -                                        |             |           |               |                    |           | <u> </u>           |                |       |             |          |       |       |               |
| 16 -                      | CLAYSTONE, Silty Lean                    | n Clay, red | l, gypsum |               | SPEARFISH          | -<br>r    | W                  |                |       |             |          |       |       |               |
| 17 —<br>18 —              | lenses present (CL)                      |             |           |               | FORMATION          |           |                    |                |       |             |          |       |       |               |
| 10                        | Bottom of                                | Boring      |           |               |                    |           |                    |                |       |             |          |       |       |               |
|                           |                                          |             |           |               |                    |           |                    |                |       |             |          |       |       |               |
|                           |                                          |             |           |               |                    |           |                    |                |       |             |          |       |       |               |
|                           |                                          |             |           |               |                    |           |                    |                |       |             |          |       |       |               |
|                           |                                          |             |           |               |                    |           |                    |                |       |             |          |       |       |               |
|                           |                                          |             |           |               |                    |           |                    |                |       |             |          |       |       |               |
|                           |                                          |             |           |               |                    |           |                    |                |       |             |          |       |       |               |
|                           |                                          |             |           |               |                    |           |                    |                |       |             |          |       |       |               |
|                           |                                          |             |           |               |                    |           |                    |                |       |             |          |       |       |               |
| ,                         |                                          |             |           |               |                    |           |                    |                |       |             |          |       |       |               |
| ž<br>1                    |                                          |             |           |               |                    |           |                    |                |       |             |          |       |       |               |
|                           |                                          |             |           |               |                    |           |                    |                |       |             |          |       |       |               |
|                           |                                          |             |           |               |                    |           |                    |                |       |             |          |       |       |               |
| DEP                       | PTH: DRILLING METHOD                     |             |           | WAT           | ER LEVEL MEA       | L<br>ASUR | EMEN               | TS             |       |             | l<br>  , | NOTE: | REE   |               |
|                           |                                          | DATE        | TIME      | SAMPI<br>DEPT |                    |           | /E-IN<br>PTH       | DRILI<br>FLUID | ING   | WAT<br>LEVI |          | THE A |       |               |
|                           | 18.0 4" FA                               | 11/28/18    | 14:35     | 18.           |                    |           | JA                 | FLUID I<br>NA  |       | 15.0        |          | SHEET |       |               |
|                           |                                          | 11/20/10    | 14:33     | 10.           |                    |           |                    | 112            | 1     | 13.         |          | EXPLA |       |               |
| DEP<br>1<br>BORIN<br>COMP | NG<br>PLETED: <b>11/28/18</b>            |             |           |               |                    |           |                    |                |       |             | T        | ERMIN | IOLOG | GY ON         |
| $DR: \mathbf{B}$          |                                          |             |           |               |                    |           |                    |                |       |             |          | TH    | IS LO | G             |
|                           | - 20. 01 Mg. 100-1                       | 1           | 1         | 1             |                    | 1         |                    | 1              |       |             |          |       |       |               |



| AET JOB NO: <b>17-03356</b>                                  |              |          |               |                        | LC        | OG OF                   | BORING           | NO            | B           | -26      | (p. 1 | of 1   | )     |
|--------------------------------------------------------------|--------------|----------|---------------|------------------------|-----------|-------------------------|------------------|---------------|-------------|----------|-------|--------|-------|
| PROJECT: West Rapid Su                                       | bstation;    | Rapid C  | City, S       | outh Dakot             | a         |                         |                  |               |             |          |       |        |       |
| DEPTH<br>IN<br>FEET SURFACE ELEVATION:<br>MATERIAL           |              |          |               | GEOLOGY                | N         | MC                      | SAMPL<br>TYPE    | E REC         |             | D & LA   | BORA  | TORY   | TESTS |
|                                                              |              |          |               |                        |           | MC                      | TYPE             | IN.           | WC          | DEN      | LL    | PL     | %-#20 |
| LIMESTONE AGGRE(<br>$1 \rightarrow 10$ inches                | GATE SUF     | RFACING  | ;<br>/ 🔜      | SURFACIINC<br>FILL     | ĩ         |                         |                  |               |             |          |       |        |       |
| 7 - FILL, Silty Lean Clay wi                                 | th Sand, re  | ddish    | -' 🞆          | FILL                   |           |                         |                  |               |             |          |       |        |       |
| 3 - brown, gypsum, claystone<br>present (CL)                 | e and coal f | ragments |               |                        |           |                         |                  |               |             |          |       |        |       |
|                                                              |              |          |               |                        |           |                         |                  |               |             |          |       |        |       |
| 5 -                                                          |              |          |               |                        |           |                         |                  |               |             |          |       |        |       |
| 6 -                                                          |              |          |               |                        |           |                         |                  |               |             |          |       |        |       |
|                                                              |              |          |               |                        |           |                         |                  |               |             |          |       |        |       |
|                                                              |              |          |               |                        |           | М                       |                  |               |             |          |       |        |       |
| 9 SILTY LEAN CLAY, re<br>10 -                                | d (CL)       |          |               | ALLUVIUM               | 1         |                         |                  |               |             |          |       |        |       |
|                                                              |              |          |               |                        |           |                         |                  |               |             |          |       |        |       |
| 12 -                                                         |              |          |               |                        |           |                         |                  |               |             |          |       |        |       |
| 13 —                                                         |              |          |               |                        |           |                         |                  |               |             |          |       |        |       |
| 14 —                                                         |              |          |               |                        |           |                         |                  |               |             |          |       |        |       |
| 15 —                                                         |              |          |               |                        |           |                         |                  |               |             |          |       |        |       |
| 16 —                                                         |              |          |               |                        |           |                         |                  |               |             |          |       |        |       |
|                                                              | <u> </u>     |          |               |                        |           | $\frac{}{\overline{W}}$ |                  |               |             |          |       |        |       |
| 18 - CLAYSTONE, Silty Lea                                    | n Clay, red  | , gypsum |               | SPEARFISH<br>FORMATION |           |                         |                  |               |             |          |       |        |       |
| Bottom of                                                    | Boring       |          |               |                        |           |                         |                  |               |             |          |       |        |       |
|                                                              |              |          |               |                        |           |                         |                  |               |             |          |       |        |       |
|                                                              |              |          |               |                        |           |                         |                  |               |             |          |       |        |       |
|                                                              |              |          |               |                        |           |                         |                  |               |             |          |       |        |       |
|                                                              |              |          |               |                        |           |                         |                  |               |             |          |       |        |       |
|                                                              |              |          |               |                        |           |                         |                  |               |             |          |       |        |       |
|                                                              |              |          |               |                        |           |                         |                  |               |             |          |       |        |       |
|                                                              |              |          |               |                        |           |                         |                  |               |             |          |       |        |       |
|                                                              |              |          |               |                        |           |                         |                  |               |             |          |       |        |       |
|                                                              |              |          |               |                        |           |                         |                  |               |             |          |       |        |       |
|                                                              |              |          |               |                        |           |                         |                  |               |             |          |       |        |       |
|                                                              |              |          |               |                        |           |                         |                  |               |             |          |       |        |       |
|                                                              | 1            |          |               |                        |           |                         |                  |               |             |          |       |        |       |
| DEPTH: DRILLING METHOD                                       | ļ,           |          |               | ER LEVEL ME            |           |                         |                  |               |             |          | NOTE: | REFE   | R TO  |
| 18.0 4" FA                                                   | DATE         | TIME     | SAMPI<br>DEPT | LED CASING<br>TH DEPTH | CAV<br>DE | /E-IN<br>PTH            | DRILI<br>FLUID I | .ING<br>.EVEL | WAT<br>LEVI | ER<br>EL | THE A | TTAC   | HED   |
|                                                              | 11/28/18     | 12:20    | 18.           |                        | N         | A                       | NA               | 1             | 17.0        | )        | SHEET | TS FOR | R AN  |
|                                                              |              |          |               |                        |           |                         |                  |               |             | E        | XPLA  | NATIO  | ON OF |
| DEPTH: DRILLING METHOD 18.0 4" FA BORING COMPLETED: 11/28/18 |              |          |               |                        |           |                         |                  |               |             | T        | ERMIN |        |       |
| DR: BT LG: JR Rig: RC-1                                      |              |          |               |                        |           |                         |                  |               |             |          |       | 1S LOO |       |



| AET JOB NO: <b>17-03356</b>                                                      |              |          |             |                      | Ι    | .OG OF                    | BORI         | NG NO.           | B-          | 26A      | <b>(p.</b> ] | lof    | 1)    |
|----------------------------------------------------------------------------------|--------------|----------|-------------|----------------------|------|---------------------------|--------------|------------------|-------------|----------|--------------|--------|-------|
| PROJECT: West Rapid Sul                                                          | bstation;    | Rapid C  | City, S     | outh Dak             | ota  |                           |              |                  |             |          |              |        |       |
| DEPTH<br>IN<br>FEET SURFACE ELEVATION:<br>MATERIAL                               |              |          |             | GEOLOG               | Y N  | MC                        | SAMI         | LE RE            |             | D & LA   | BORA         | TORY   | TESTS |
|                                                                                  |              |          |             |                      |      |                           | TYF          | PE IN            | WC          | DEN      | LL           | PL     | %-#20 |
| LIMESTONE AGGREO<br>1 - 10 inches                                                | GATE SUF     | RFACING  | ;<br>/ 🔜    | SURFACII<br>FILL     | NG   |                           |              |                  |             |          |              |        |       |
| 7 - FILL, Silty Lean Clay wi                                                     | th Sand, re  | ddish    | - 🎆         | TILL                 |      |                           |              |                  |             |          |              |        |       |
| 3 - brown, gypsum, claystone<br>present (CL)                                     | e and coal f | ragments |             |                      |      |                           |              |                  |             |          |              |        |       |
| 4 -                                                                              |              |          |             |                      |      |                           |              |                  |             |          |              |        |       |
| 5 -                                                                              |              |          |             |                      |      |                           |              |                  |             |          |              |        |       |
| 6 -                                                                              |              |          |             |                      |      |                           |              |                  |             |          |              |        |       |
|                                                                                  |              |          |             |                      |      |                           |              |                  |             |          |              |        |       |
|                                                                                  |              |          |             |                      |      | М                         |              |                  |             |          |              |        |       |
| $\begin{array}{c c} & 9 \\ \hline & \\ 10 \\ \hline \\ 10 \\ \hline \end{array}$ | d (CL)       |          |             | ALLUVIU              | M    |                           |              |                  |             |          |              |        |       |
|                                                                                  |              |          |             |                      |      |                           |              |                  |             |          |              |        |       |
| 12 -                                                                             |              |          |             |                      |      |                           |              |                  |             |          |              |        |       |
| 13 —                                                                             |              |          |             |                      |      |                           |              |                  |             |          |              |        |       |
| 14 —                                                                             |              |          |             |                      |      |                           |              |                  |             |          |              |        |       |
| 15 —                                                                             |              |          |             |                      |      |                           |              |                  |             |          |              |        |       |
| 16 -                                                                             |              |          |             |                      |      |                           |              |                  |             |          |              |        |       |
| 17 –<br>18 – CLAYSTONE, Silty Lea                                                | n Class nod  |          |             | SPEARFIS             | ш    | $\overline{\overline{W}}$ |              |                  |             |          |              |        |       |
| l lenses present (CL)                                                            |              | , gypsum |             | FORMATI              |      |                           |              |                  |             |          |              |        |       |
| Bottom of                                                                        | Boring       |          |             |                      |      |                           |              |                  |             |          |              |        |       |
|                                                                                  |              |          |             |                      |      |                           |              |                  |             |          |              |        |       |
|                                                                                  |              |          |             |                      |      |                           |              |                  |             |          |              |        |       |
|                                                                                  |              |          |             |                      |      |                           |              |                  |             |          |              |        |       |
|                                                                                  |              |          |             |                      |      |                           |              |                  |             |          |              |        |       |
|                                                                                  |              |          |             |                      |      |                           |              |                  |             |          |              |        |       |
|                                                                                  |              |          |             |                      |      |                           |              |                  |             |          |              |        |       |
|                                                                                  |              |          |             |                      |      |                           |              |                  |             |          |              |        |       |
|                                                                                  |              |          |             |                      |      |                           |              |                  |             |          |              |        |       |
|                                                                                  |              |          |             |                      |      |                           |              |                  |             |          |              |        |       |
|                                                                                  |              |          |             |                      |      |                           |              |                  |             |          |              |        |       |
|                                                                                  |              |          |             |                      |      |                           |              |                  |             |          |              |        |       |
|                                                                                  | 1            |          |             |                      |      |                           |              |                  |             |          |              |        |       |
| DEPTH: DRILLING METHOD 18.0 4" FA BORING COMPLETED: 11/28/18                     |              |          | 1           | ER LEVEL N           |      |                           |              |                  |             |          | NOTE:        | REFE   | R TO  |
| 18.0 4" FA                                                                       | DATE         | TIME     | SAMP<br>DEP | LED CASIN<br>FH DEPT | G CA | VE-IN<br>EPTH             | DRI<br>FLUII | LLING<br>D LEVEL | WAT<br>LEVI | ER<br>EL | THE A        | TTAC   | HED   |
|                                                                                  | 11/28/18     | 12:05    | 18.         | 0 NA                 |      | NA                        | 1            | NA               | 17.         | 0        | SHEET        | FS FOI | R AN  |
|                                                                                  |              |          |             |                      |      |                           |              |                  |             |          | XPLA         |        |       |
| BORING<br>COMPLETED: 11/28/18                                                    |              |          |             |                      |      |                           |              |                  |             | Т        | ERMIN        |        |       |
| DR: <b>BT</b> LG: <b>JR</b> Rig: <b>RC-1</b>                                     |              |          |             |                      |      |                           |              |                  |             |          |              | IS LO  |       |



| AET JO              | DB NO: <b>17-03356</b>                   |              |          |         |                        | LC   | OG OF           | BORING           | NO.         | B-          | 26B    | <b>(p.</b> 1 | lof    | 1)    |
|---------------------|------------------------------------------|--------------|----------|---------|------------------------|------|-----------------|------------------|-------------|-------------|--------|--------------|--------|-------|
| PROJE               | CT: West Rapid Sul                       | bstation;    | Rapid C  | City, S | outh Dakot             | a    |                 |                  |             |             |        |              |        |       |
| DEPTH<br>IN<br>FEET | SURFACE ELEVATION:                       |              |          |         | GEOLOGY                | N    | MC              | SAMPLI<br>TYPE   | EREC        | FIEL        | D & LA | BORA         | TORY   | TESTS |
| FEET                | MATERIAL                                 |              |          |         |                        |      | MC              | ТҮРЕ             | IN.         | WC          | DEN    | LL           | PL     | %-#20 |
| 1                   | LIMESTONE AGGREO                         | GATE SUF     | RFACINO  | ;<br>;  | SURFACIING             | -    |                 |                  |             |             |        |              |        |       |
| 2 -                 | FILL, Silty Lean Clay wi                 | th Sand, re- | ddish    | _/ 🞆    | FILL                   |      |                 |                  |             |             |        |              |        |       |
| 3 —                 | brown, gypsum, claystone<br>present (CL) | e and coal f | ragments |         |                        |      |                 |                  |             |             |        |              |        |       |
| 4 —                 | present (CL)                             |              |          |         |                        |      |                 |                  |             |             |        |              |        |       |
| 5 —                 |                                          |              |          |         |                        |      |                 |                  |             |             |        |              |        |       |
| 6 —                 |                                          |              |          |         |                        |      |                 |                  |             |             |        |              |        |       |
| 7 —                 |                                          |              |          |         |                        |      |                 |                  |             |             |        |              |        |       |
| 8 —                 |                                          |              |          |         |                        |      | М               |                  |             |             |        |              |        |       |
| 9 —                 | SILTY LEAN CLAY, re                      | d (CL)       |          |         | ALLUVIUM               |      | 101             |                  |             |             |        |              |        |       |
| 10 —                |                                          |              |          |         |                        |      |                 |                  |             |             |        |              |        |       |
| 11 —                |                                          |              |          |         |                        |      |                 |                  |             |             |        |              |        |       |
| 12 -                |                                          |              |          |         |                        |      |                 |                  |             |             |        |              |        |       |
| 13 —                |                                          |              |          |         |                        |      |                 |                  |             |             |        |              |        |       |
| 14 -                |                                          |              |          |         |                        |      |                 |                  |             |             |        |              |        |       |
| 15 —<br>16 —        |                                          |              |          |         |                        |      |                 |                  |             |             |        |              |        |       |
| 16 -                |                                          |              |          |         |                        |      | $\square$       |                  |             |             |        |              |        |       |
| 18                  | CLAYSTONE, Silty Lea                     | n Clay, red  | gypsum   |         | SPEARFISH              |      | - <u>v</u><br>W |                  |             |             |        |              |        |       |
| 10                  | \lenses present (CL)                     |              |          |         | FORMATION              | 1    |                 |                  |             |             |        |              |        |       |
|                     | Bottom of                                | Boring       |          |         |                        |      |                 |                  |             |             |        |              |        |       |
|                     |                                          |              |          |         |                        |      |                 |                  |             |             |        |              |        |       |
|                     |                                          |              |          |         |                        |      |                 |                  |             |             |        |              |        |       |
|                     |                                          |              |          |         |                        |      |                 |                  |             |             |        |              |        |       |
|                     |                                          |              |          |         |                        |      |                 |                  |             |             |        |              |        |       |
|                     |                                          |              |          |         |                        |      |                 |                  |             |             |        |              |        |       |
|                     |                                          |              |          |         |                        |      |                 |                  |             |             |        |              |        |       |
|                     |                                          |              |          |         |                        |      |                 |                  |             |             |        |              |        |       |
|                     |                                          |              |          |         |                        |      |                 |                  |             |             |        |              |        |       |
|                     |                                          |              |          |         |                        |      |                 |                  |             |             |        |              |        |       |
|                     |                                          |              |          |         |                        |      |                 |                  |             |             |        |              |        |       |
|                     |                                          |              |          |         |                        |      |                 |                  |             |             |        |              |        |       |
|                     |                                          |              |          |         |                        |      |                 |                  |             |             |        |              |        |       |
| DEP'                | TH: DRILLING METHOD                      |              |          | WAT     | ER LEVEL MEA           | ASUR | EMEN            | TS               |             |             | 1      | NOTE:        | REFE   | R TO  |
| 1                   | 8.0 4" FA                                | DATE         | TIME     | SAMP    | LED CASING<br>TH DEPTH | CAV  | /E-IN<br>PTH    | DRILL<br>FLUID L | ING<br>EVEI | WAT<br>LEVI | ER     | THE A        | TTAC   | HED   |
|                     | ο.υ 4 Γ <b>Α</b>                         | 11/28/18     | 12:55    | 18.     |                        |      | A               | NA               |             | 17.0        |        | SHEET        | TS FOI | R AN  |
|                     |                                          |              |          |         |                        |      |                 | 1,11             | -           | 1.1.        |        | XPLA         | NATIO  | ON OF |
| BORIN               | G<br>LETED: <b>11/28/18</b>              |              |          |         |                        |      |                 |                  |             |             |        | ERMIN        | IOLOG  | GY OI |
| DR: <b>B</b>        |                                          |              |          |         |                        |      |                 |                  |             |             |        | TH           | IS LOO | Ĵ     |
|                     | - 20. 01 Mg. 10-1                        | 1            |          | 1       |                        |      |                 |                  |             |             |        |              | 01 DI  |       |



| AET JOB NO: <b>17-03356</b>                                          |                |           |             |                        | LC        | OG OF                 | BORING             | NO         | <b>B-</b> 2  | 26C      | <b>(p.</b> ] | lof    | 1)    |
|----------------------------------------------------------------------|----------------|-----------|-------------|------------------------|-----------|-----------------------|--------------------|------------|--------------|----------|--------------|--------|-------|
| PROJECT: West Rapid S                                                | ubstation;     | Rapid (   | City, S     | outh Dakot             | a         |                       |                    |            |              |          |              |        |       |
| DEPTH<br>IN<br>FEET SURFACE ELEVATIO<br>MATERIA                      | N:             |           |             | GEOLOGY                | N         | MC                    | SAMPLE             | REC        |              | D & LA   | BORA         | TORY   | TESTS |
|                                                                      | L DESCRIPTI    |           |             |                        |           | MC                    | TYPE               | IN.        | WC           | DEN      | LL           | PL     | %-#20 |
| LIMESTONE AGGR $1 \rightarrow 10$ inches                             | EGATE SUI      | RFACINO   | ;<br>/      | SURFACIING<br>FILL     | Ì         |                       |                    |            |              |          |              |        |       |
| FILL, Silty Lean Clay                                                | with Sand, re  | ddish     | - 🎆         |                        |           |                       |                    |            |              |          |              |        |       |
| 3 - brown, gypsum, clayste                                           | one and coal 1 | tragments |             |                        |           |                       |                    |            |              |          |              |        |       |
| 4 —                                                                  |                |           |             |                        |           |                       |                    |            |              |          |              |        |       |
| 5 -                                                                  |                |           |             |                        |           |                       |                    |            |              |          |              |        |       |
|                                                                      |                |           |             |                        |           |                       |                    |            |              |          |              |        |       |
|                                                                      |                |           |             |                        |           |                       |                    |            |              |          |              |        |       |
| 0                                                                    |                |           |             |                        | -         | М                     |                    |            |              |          |              |        |       |
| $\begin{bmatrix} 9 \\ 10 \\ - \end{bmatrix}$ SILTY LEAN CLAY,        | red (CL)       |           |             | ALLUVIUM               |           |                       |                    |            |              |          |              |        |       |
| 11 -                                                                 |                |           |             |                        |           |                       |                    |            |              |          |              |        |       |
| 12 -                                                                 |                |           |             |                        |           |                       |                    |            |              |          |              |        |       |
| 13 -                                                                 |                |           |             |                        |           |                       |                    |            |              |          |              |        |       |
|                                                                      |                |           |             |                        |           |                       |                    |            |              |          |              |        |       |
| 15 - 16 - 16 - 16 - 16 - 16 - 16 - 16 -                              |                |           |             |                        |           |                       |                    |            |              |          |              |        |       |
|                                                                      |                |           |             |                        |           | $\left  \sum \right $ |                    |            |              |          |              |        |       |
| 18 - CLAYSTONE, Silty L                                              | ean Clay, red  | l, gypsum |             | SPEARFISH              |           | Ŵ                     |                    |            |              |          |              |        |       |
| lenses present (CL)<br>Bottom                                        | of Boring      |           |             | FORMATION              |           |                       |                    |            |              |          |              |        |       |
|                                                                      | or boring      |           |             |                        |           |                       |                    |            |              |          |              |        |       |
|                                                                      |                |           |             |                        |           |                       |                    |            |              |          |              |        |       |
|                                                                      |                |           |             |                        |           |                       |                    |            |              |          |              |        |       |
|                                                                      |                |           |             |                        |           |                       |                    |            |              |          |              |        |       |
|                                                                      |                |           |             |                        |           |                       |                    |            |              |          |              |        |       |
|                                                                      |                |           |             |                        |           |                       |                    |            |              |          |              |        |       |
|                                                                      |                |           |             |                        |           |                       |                    |            |              |          |              |        |       |
|                                                                      |                |           |             |                        |           |                       |                    |            |              |          |              |        |       |
|                                                                      |                |           |             |                        |           |                       |                    |            |              |          |              |        |       |
|                                                                      |                |           |             |                        |           |                       |                    |            |              |          |              |        |       |
|                                                                      |                |           |             |                        |           |                       |                    |            |              |          |              |        |       |
|                                                                      |                |           |             |                        |           |                       |                    |            |              |          |              |        |       |
| DEPTH: DRILLING METHO<br>18.0 4" FA<br>BORING<br>COMPLETED: 11/28/18 | D              |           | WAT         | ER LEVEL MEA           |           |                       | ITS                |            |              |          | NOTE:        | REFE   | R TO  |
| 18.0 4" FA                                                           | DATE           | TIME      | SAMP<br>DEP | LED CASING<br>TH DEPTH | CAV<br>DE | /E-IN<br>PTH          | DRILLI<br>FLUID LI | NG<br>EVEL | WATI<br>LEVE | ER<br>EL | THE A        | TTAC   | HED   |
|                                                                      | 11/28/18       | 13:35     | 18.         | 0 NA                   |           | A                     | NA                 |            | 17.(         | )        | SHEET        | TS FOI | R AN  |
|                                                                      |                |           |             |                        |           |                       |                    |            |              | E        | XPLA         | NATIO  | ON OF |
| BORING<br>COMPLETED: 11/28/18                                        |                |           |             |                        |           |                       |                    |            |              | Т        | ERMIN        |        |       |
| DR: BT LG: JR Rig: RC-1                                              |                |           |             |                        |           |                       |                    |            |              |          |              | IS LOO |       |



| AET JC                     | OB NO        | 17-03356                          |             |          |            |              |                 | LC        | OG OF                     | BO  | RING              | NO        | <b>B-</b> 2  | 26D     | <b>(p.</b> 1 | lof    | l)    |
|----------------------------|--------------|-----------------------------------|-------------|----------|------------|--------------|-----------------|-----------|---------------------------|-----|-------------------|-----------|--------------|---------|--------------|--------|-------|
| PROJE                      | CT:          | West Rapid Sub                    | ostation;   | Rapid (  | City, S    | out          | h Dakota        | a         |                           |     |                   |           |              |         |              |        |       |
| DEPTH<br>IN<br>FEET        | S            | URFACE ELEVATION:                 |             |          |            | G            | EOLOGY          | N         | MC                        | SA  | MPLE              | REC       | FIELI        | D & LA  | BORA         | TORY   | TESTS |
| FEET                       |              | MATERIAL                          |             |          |            |              |                 |           | MC                        | 1   | FYPE              | IN.       | WC           | DEN     | LL           | PL     | %-#20 |
| 1                          | LIN<br>∖10 i | IESTONE AGGREC                    | GATE SUF    | RFACINO  | ; <u> </u> |              | RFACIING        |           |                           |     |                   |           |              |         |              |        |       |
| 2 -                        | FIL          | L, Silty Lean Clay wi             | th Sand, re | ddish    | -/ 🎆       | FIL          | L.              |           |                           |     |                   |           |              |         |              |        |       |
| 3 -                        | brow         | vn, gypsum, claystone<br>ent (CL) | and coal f  | ragments |            | <sup>2</sup> |                 |           |                           |     |                   |           |              |         |              |        |       |
| 4 —                        | pres         |                                   |             |          |            | X            |                 |           |                           |     |                   |           |              |         |              |        |       |
| 5 —                        |              |                                   |             |          |            | ×            |                 |           |                           |     |                   |           |              |         |              |        |       |
| 6 -                        |              |                                   |             |          |            | ×            |                 |           |                           |     |                   |           |              |         |              |        |       |
| 7 —                        |              |                                   |             |          |            | ×            |                 |           |                           |     |                   |           |              |         |              |        |       |
| 8 -                        |              |                                   |             |          |            | X            |                 |           | М                         |     |                   |           |              |         |              |        |       |
| 9 —                        | SIL          | TY LEAN CLAY, red                 | 1 (CL)      |          |            | AL           | LUVIUM          |           | 111                       |     |                   |           |              |         |              |        |       |
| 10 -                       |              | ,                                 | ( _)        |          |            |              |                 |           |                           |     |                   |           |              |         |              |        |       |
| 11 -                       |              |                                   |             |          |            |              |                 |           |                           |     |                   |           |              |         |              |        |       |
| 12 -                       |              |                                   |             |          |            |              |                 |           |                           |     |                   |           |              |         |              |        |       |
| 13 -                       |              |                                   |             |          |            |              |                 |           |                           |     |                   |           |              |         |              |        |       |
| 14 -                       |              |                                   |             |          |            |              |                 |           |                           |     |                   |           |              |         |              |        |       |
| 15 -<br>16 -               |              |                                   |             |          |            |              |                 |           |                           |     |                   |           |              |         |              |        |       |
| 10 - 17 -                  |              |                                   |             |          |            |              |                 |           | $\Box$                    |     |                   |           |              |         |              |        |       |
|                            | $\neg CL$    | AYSTONE, Silty Lear               | n Clay, red | gypsum   |            | SPI          | EARFISH         |           | $\overline{\overline{W}}$ |     |                   |           |              |         |              |        |       |
| 10                         | lens         | es present (CL)                   |             |          |            | FO           | RMATION         |           |                           |     |                   |           |              |         |              |        |       |
|                            |              | Bottom of                         | Boring      |          |            |              |                 |           |                           |     |                   |           |              |         |              |        |       |
|                            |              |                                   |             |          |            |              |                 |           |                           |     |                   |           |              |         |              |        |       |
|                            |              |                                   |             |          |            |              |                 |           |                           |     |                   |           |              |         |              |        |       |
|                            |              |                                   |             |          |            |              |                 |           |                           |     |                   |           |              |         |              |        |       |
|                            |              |                                   |             |          |            |              |                 |           |                           |     |                   |           |              |         |              |        |       |
|                            |              |                                   |             |          |            |              |                 |           |                           |     |                   |           |              |         |              |        |       |
|                            |              |                                   |             |          |            |              |                 |           |                           |     |                   |           |              |         |              |        |       |
|                            |              |                                   |             |          |            |              |                 |           |                           |     |                   |           |              |         |              |        |       |
|                            |              |                                   |             |          |            |              |                 |           |                           |     |                   |           |              |         |              |        |       |
|                            |              |                                   |             |          |            |              |                 |           |                           |     |                   |           |              |         |              |        |       |
|                            |              |                                   |             |          |            |              |                 |           |                           |     |                   |           |              |         |              |        |       |
|                            |              |                                   |             |          |            |              |                 |           |                           |     |                   |           |              |         |              |        |       |
|                            |              |                                   |             |          |            |              |                 |           |                           |     |                   |           |              |         |              |        |       |
| DEP                        | TH:          | DRILLING METHOD                   |             |          | WAT        | ER L         | LEVEL MEA       | SUR       | EMEN                      | ITS |                   |           |              | 1       | NOTE:        | REFE   | R TO  |
| 1                          | 8.0          | 4" FA                             | DATE        | TIME     | SAMP       | LED<br>TH    | CASING<br>DEPTH | CAV<br>DE | /E-IN<br>PTH              | FL  | DRILLII<br>UID LE | NG<br>VEL | WATI<br>LEVE | ER   EL | THE A        | TTAC   | HED   |
|                            | 0.0          | т Г <i>А</i>                      | 11/28/18    | 12:25    | 18.        |              | NA              |           | A                         |     | NA                |           | 17.0         |         | SHEET        | TS FOF | R AN  |
|                            |              |                                   |             |          |            | -            | - • • •         |           |                           |     | 1,11              |           | - / • (      |         | XPLA         | NATIO  | ON OF |
| DEP<br>1<br>BORIN<br>COMPI | IG<br>LETEI  | D: <b>11/28/18</b>                |             |          |            |              |                 | 1         |                           |     |                   |           |              |         | ERMIN        | IOLOG  | GY ON |
| DR: B                      |              | G: JR Rig: RC-1                   |             |          |            |              |                 |           |                           | -   |                   |           |              |         | TH           | IS LOO | 3     |
| 02/2011                    | - D          |                                   |             |          | 1          |              |                 |           |                           | I   |                   |           |              | 1       |              |        |       |



| AET JOB NO: <u>17-03356</u> LOG OF BORING NO. <u>B</u> -                                                                                                                                  | -21      | (p. 1  | of 1) | )             |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------|-------|---------------|
| PROJECT: West Rapid Substation; Rapid City, South Dakota                                                                                                                                  |          |        |       |               |
| DEPTH<br>IN<br>FEET     SURFACE ELEVATION:     GEOLOGY     N     MC     SAMPLE<br>TYPE     REC<br>IN.     FIELD<br>WC                                                                     | D & LA   | ABORAT | ORY 1 | FESTS         |
| TEET WATERIAE DESCRIPTION WC                                                                                                                                                              | DEN      | LL     | PL 9  | <b>%-</b> #20 |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                    |          |        |       |               |
| FILL, Silty Lean Clay with Sand, reddish                                                                                                                                                  |          |        |       |               |
| brown, gypsum, claystone and coal fragments<br>present (CL)                                                                                                                               |          |        |       |               |
|                                                                                                                                                                                           |          |        |       |               |
|                                                                                                                                                                                           |          |        |       |               |
|                                                                                                                                                                                           |          |        |       |               |
|                                                                                                                                                                                           |          |        |       |               |
|                                                                                                                                                                                           |          |        |       |               |
|                                                                                                                                                                                           |          |        |       |               |
|                                                                                                                                                                                           |          |        |       |               |
|                                                                                                                                                                                           |          |        |       |               |
|                                                                                                                                                                                           |          |        |       |               |
| 13     CLAYSTONE, Silty Lean Clay, red, gypsum     SPEARFISH       14 – lenses present (CL)     FORMATION                                                                                 |          |        |       |               |
|                                                                                                                                                                                           |          |        |       |               |
|                                                                                                                                                                                           |          |        |       |               |
|                                                                                                                                                                                           |          |        |       |               |
| 18 Bottom of Boring                                                                                                                                                                       |          |        |       |               |
|                                                                                                                                                                                           |          |        |       |               |
|                                                                                                                                                                                           |          |        |       |               |
|                                                                                                                                                                                           |          |        |       |               |
|                                                                                                                                                                                           |          |        |       |               |
|                                                                                                                                                                                           |          |        |       |               |
|                                                                                                                                                                                           |          |        |       |               |
|                                                                                                                                                                                           |          |        |       |               |
|                                                                                                                                                                                           |          |        |       |               |
|                                                                                                                                                                                           |          |        |       |               |
|                                                                                                                                                                                           |          |        |       |               |
|                                                                                                                                                                                           |          |        |       |               |
|                                                                                                                                                                                           |          |        |       |               |
|                                                                                                                                                                                           |          |        |       |               |
| DEPTH: DRILLING METHOD WATER LEVEL MEASUREMENTS                                                                                                                                           | 1        | NOTE:  | REFEI | R TO          |
| 18.04" FADATETIMESAMPLED<br>DEPTHCASING<br>DEPTHCAVE-IN<br>DEPTHDRILLING<br>FLUID LEVELWATH<br>LEVEL                                                                                      | ER<br>EL | THE AT | ГТАСН | HED           |
| 11/28/18 10:35 18.0 NA NA NA NA                                                                                                                                                           |          | SHEET  | S FOR | AN            |
|                                                                                                                                                                                           |          | EXPLAN | JATIO | N OF          |
| DEPTH: DRILLING METHOD WATER LEVEL MEASUREMENTS<br>18.0 4" FA DATE TIME SAMPLED DEPTH CASING CAVE-IN DRILLING WATH<br>11/28/18 10:35 18.0 NA NA NA NA NO<br>BORING<br>COMPLETED: 11/28/18 | T        | ERMIN  | OLOG  | YON           |
| DR: BT LG: JR Rig: RC-1                                                                                                                                                                   |          | THI    | S LOG | ŕ             |



#### SUBSURFACE BORING LOG

| AET J                                                                   | OB NO: <b>17-03356</b>                              |             |          |               |                    | LC   | OG OF        | BORING         | NO   | <b>B-</b> 2  | 27A    | <b>(p.</b> ]   | l of 1 | l)    |
|-------------------------------------------------------------------------|-----------------------------------------------------|-------------|----------|---------------|--------------------|------|--------------|----------------|------|--------------|--------|----------------|--------|-------|
| PROJE                                                                   | ECT: West Rapid Sub                                 | ostation;   | Rapid C  | 'ity, So      | outh Dakota        | a    |              |                |      |              |        |                |        |       |
| DEPTH<br>IN<br>FEET                                                     | SURFACE ELEVATION:                                  |             |          |               | GEOLOGY            | N    | MC           | SAMPLE<br>TYPE | REC  | FIEL         | D & LA | BORA           | TORY   | TESTS |
| FEET                                                                    |                                                     |             |          |               |                    |      | wie          | TYPE           | IN.  | WC           | DEN    | LL             | PL     | %-#20 |
| 1 -                                                                     | LIMESTONE AGGREC                                    | FATE SUI    | RFACING  |               | SURFACIING<br>FILL |      |              |                |      |              |        |                |        |       |
| 2 -                                                                     | FILL, Silty Lean Clay with brown, gypsum, claystone | th Sand, re | ddish    | -             | TILL               |      |              |                |      |              |        |                |        |       |
| 3 -                                                                     | present (CL)                                        |             | ragments |               |                    |      |              |                |      |              |        |                |        |       |
| 4 -                                                                     | _                                                   |             |          |               |                    |      |              |                |      |              |        |                |        |       |
| 5 -                                                                     | -                                                   |             |          |               |                    |      |              |                |      |              |        |                |        |       |
| 6 -                                                                     |                                                     |             |          |               |                    |      |              |                |      |              |        |                |        |       |
| 7 - 8 -                                                                 |                                                     |             |          |               |                    |      |              |                |      |              |        |                |        |       |
| 9-                                                                      |                                                     |             |          |               |                    |      | М            |                |      |              |        |                |        |       |
| 10 -                                                                    | _                                                   |             |          |               |                    |      |              |                |      |              |        |                |        |       |
| 11 -                                                                    | _                                                   |             |          |               |                    |      |              |                |      |              |        |                |        |       |
| 12 -                                                                    | -                                                   |             |          |               |                    |      |              |                |      |              |        |                |        |       |
| 13 -                                                                    | CLAYSTONE, Silty Lear                               | n Clay, red | , gypsum |               | SPEARFISH          |      |              |                |      |              |        |                |        |       |
| 14 -                                                                    | lenses present (CL)                                 | <u> </u>    | , 6, 1   |               | FORMATION          |      |              |                |      |              |        |                |        |       |
| 15 -                                                                    | -                                                   |             |          |               |                    |      |              |                |      |              |        |                |        |       |
| 16 -                                                                    | -                                                   |             |          |               |                    |      |              |                |      |              |        |                |        |       |
| 17 -                                                                    |                                                     |             |          |               |                    |      |              |                |      |              |        |                |        |       |
| 18 -                                                                    | Bottom of                                           | Boring      |          |               |                    |      |              |                |      |              |        |                |        |       |
|                                                                         |                                                     |             |          |               |                    |      |              |                |      |              |        |                |        |       |
|                                                                         |                                                     |             |          |               |                    |      |              |                |      |              |        |                |        |       |
|                                                                         |                                                     |             |          |               |                    |      |              |                |      |              |        |                |        |       |
|                                                                         |                                                     |             |          |               |                    |      |              |                |      |              |        |                |        |       |
|                                                                         |                                                     |             |          |               |                    |      |              |                |      |              |        |                |        |       |
|                                                                         |                                                     |             |          |               |                    |      |              |                |      |              |        |                |        |       |
|                                                                         |                                                     |             |          |               |                    |      |              |                |      |              |        |                |        |       |
|                                                                         |                                                     |             |          |               |                    |      |              |                |      |              |        |                |        |       |
|                                                                         |                                                     |             |          |               |                    |      |              |                |      |              |        |                |        |       |
| 2/3/18                                                                  |                                                     |             |          |               |                    |      |              |                |      |              |        |                |        |       |
|                                                                         |                                                     |             |          |               |                    |      |              |                |      |              |        |                |        |       |
|                                                                         |                                                     |             |          |               |                    |      |              |                |      |              |        |                |        |       |
| IIINO<br>CORP 17/3336 GPU AFI + CPI + MELL.GOU 12/3/18<br>IIINO<br>COMP | PTH: DRILLING METHOD                                |             |          | WATE          | ER LEVEL MEA       | SIIP |              | <br> TS        |      |              |        |                |        |       |
|                                                                         | TIII. DKILLING METHOD                               |             |          |               |                    |      |              | DRILLI         | NG   | WAT          |        | NOTE:          |        |       |
|                                                                         | 18.0 4" FA                                          | DATE        | TIME     | SAMPL<br>DEPT |                    |      | /E-IN<br>PTH | FLUID LI       | EVEL | WAT]<br>LEVE |        | THE A          |        |       |
| -03356                                                                  |                                                     | 11/28/18    | 10:55    | 18.0          | ) NA               | N    | A            | NA             |      | Non          | C      | SHEET          |        |       |
|                                                                         | NG                                                  |             |          |               |                    |      |              |                |      |              |        | XPLAI<br>ERMIN |        |       |
|                                                                         | PLETED: 11/28/18                                    |             |          |               |                    |      |              |                |      |              | I.     |                | IS LOC |       |
| $\overline{\mathbf{A}}$ DR: <b>B</b>                                    | BT LG: JR Rig: RC-1                                 |             |          |               |                    |      |              |                |      |              |        |                |        |       |



| AET J               | JOB NO: <b>17-03356</b>                 |              |          |               |                        | LC        | OG OF        | BORING           | NO.           | <b>B-</b> 2  | 27B        | <b>(p.</b> ] | l of 1 | 1)    |
|---------------------|-----------------------------------------|--------------|----------|---------------|------------------------|-----------|--------------|------------------|---------------|--------------|------------|--------------|--------|-------|
| PROJE               | ECT: West Rapid Su                      | bstation;    | Rapid Ci | ity, S        | outh Dakot             | a         |              |                  |               |              |            |              |        |       |
| DEPTH<br>IN<br>FEET | I SURFACE ELEVATION:                    |              |          |               | GEOLOGY                | N         | MC           | SAMPL<br>TYPE    | E REC         | FIEL         | D & LA     | BORA         | TORY   | TESTS |
| FEET                |                                         | DESCRIPTIO   |          |               |                        |           | MC           | TYPE             | IN.           | WC           | DEN        | LL           | PL     | %-#20 |
| 1 -                 | LIMESTONE AGGRE                         | GATE SUI     | RFACING  |               | SURFACIING             |           |              |                  |               |              |            |              |        |       |
| 2 -                 | <b>FILL</b> , Silty Lean Clay w         | ith Sand, re | ddish    | ′ 🞆           | FILL                   |           |              |                  |               |              |            |              |        |       |
| 3 -                 | brown, gypsum, clayston<br>present (CL) | e and coal f | ragments |               |                        |           |              |                  |               |              |            |              |        |       |
| 4 -                 |                                         |              |          |               |                        |           |              |                  |               |              |            |              |        |       |
| 5 -                 | _                                       |              |          |               |                        |           |              |                  |               |              |            |              |        |       |
| 6 -                 | -                                       |              |          |               |                        |           |              |                  |               |              |            |              |        |       |
| 7 -                 | -                                       |              |          |               |                        |           |              |                  |               |              |            |              |        |       |
| 8 -                 | _                                       |              |          |               |                        |           |              |                  |               |              |            |              |        |       |
| 9 -                 |                                         |              |          |               |                        |           | М            |                  |               |              |            |              |        |       |
| 10 -                | -                                       |              |          |               |                        |           |              |                  |               |              |            |              |        |       |
| 11 -                | -                                       |              |          |               |                        |           |              |                  |               |              |            |              |        |       |
| 12 -                | -                                       |              |          |               |                        |           |              |                  |               |              |            |              |        |       |
| 13 -                | CLAYSTONE, Silty Lea                    | n Clay, red  | , gypsum |               | SPEARFISH<br>FORMATION |           |              |                  |               |              |            |              |        |       |
| 14 -                | 1 ( )                                   |              |          |               | FORMATION              |           |              |                  |               |              |            |              |        |       |
| 16 -                |                                         |              |          |               |                        |           |              |                  |               |              |            |              |        |       |
| 17 -                |                                         |              |          |               |                        |           |              |                  |               |              |            |              |        |       |
| 18 -                |                                         | <u></u>      |          |               |                        |           |              |                  | _             |              |            |              |        |       |
|                     | Bottom of                               | Boring       |          |               |                        |           |              |                  |               |              |            |              |        |       |
|                     |                                         |              |          |               |                        |           |              |                  |               |              |            |              |        |       |
|                     |                                         |              |          |               |                        |           |              |                  |               |              |            |              |        |       |
|                     |                                         |              |          |               |                        |           |              |                  |               |              |            |              |        |       |
|                     |                                         |              |          |               |                        |           |              |                  |               |              |            |              |        |       |
|                     |                                         |              |          |               |                        |           |              |                  |               |              |            |              |        |       |
|                     |                                         |              |          |               |                        |           |              |                  |               |              |            |              |        |       |
|                     |                                         |              |          |               |                        |           |              |                  |               |              |            |              |        |       |
|                     |                                         |              |          |               |                        |           |              |                  |               |              |            |              |        |       |
|                     |                                         |              |          |               |                        |           |              |                  |               |              |            |              |        |       |
| 2                   |                                         |              |          |               |                        |           |              |                  |               |              |            |              |        |       |
|                     |                                         |              |          |               |                        |           |              |                  |               |              |            |              |        |       |
|                     |                                         |              |          |               |                        |           |              |                  |               |              |            |              |        |       |
|                     |                                         | 1            |          |               |                        |           |              |                  |               |              | <u> </u>   |              |        |       |
| BORIN<br>COMF       | EPTH: DRILLING METHOD                   |              | I        |               | ER LEVEL MEA           |           |              |                  |               |              |            | NOTE:        | REFE   | R TO  |
|                     | 18.0 4" FA                              | DATE         | TIME     | SAMPI<br>DEPT | LED CASING<br>TH DEPTH | CAV<br>DE | /E-IN<br>PTH | DRILI<br>FLUID I | .ING<br>.EVEL | WATI<br>LEVE | ER  <br>EL | THE A        | TTAC   | HED   |
|                     |                                         | 11/28/18     | 11:18    | 18.           | 0 NA                   | N         | A            | NA               | <b>\</b>      | Non          | ie         | SHEET        | TS FOF | R AN  |
| 2                   |                                         |              |          |               |                        |           |              |                  |               |              | Ē          | EXPLA        | NATIO  | ON OF |
| BORIN<br>COMF       | NG<br>PLETED: <b>11/28/18</b>           |              |          |               |                        |           |              |                  |               |              | T          | ERMIN        | IOLOC  | TY ON |
|                     | 1 L L L L D. $11/20/10$                 | 1 1          | 1        |               |                        |           |              |                  | 1             |              |            |              |        |       |



|                                            | AET JO              | DB NO: <b>17-03356</b>                                     |                          |                    |               |                        | LC  | OG OF        | BORING           | NO.         | <b>B-</b> 2 | 27C | <b>(p.</b> 1 | l of i | 1)    |
|--------------------------------------------|---------------------|------------------------------------------------------------|--------------------------|--------------------|---------------|------------------------|-----|--------------|------------------|-------------|-------------|-----|--------------|--------|-------|
|                                            | PROJE               | CT: West Rapid Sub                                         | ostation;                | Rapid C            | City, S       | outh Dakota            | a   |              |                  |             |             |     |              |        |       |
| Ι                                          | DEPTH<br>IN<br>FEET | SURFACE ELEVATION:                                         |                          |                    |               | GEOLOGY                | N   | MC           | SAMPL<br>TYPE    | E REC       |             | 1   | ABORA        |        |       |
| ┢                                          | FEET                | MATERIAL I                                                 |                          |                    |               | SURFACIING             |     |              |                  |             | WC          | DEN | LL           | PL     | %-#20 |
|                                            | 1 -                 | √10 inches                                                 |                          |                    | / 🐹           | FILL                   |     |              |                  |             |             |     |              |        |       |
|                                            | 2 –                 | <b>FILL</b> , Silty Lean Clay wit brown, gypsum, claystone | h Sand, re<br>and coal f | ddish<br>fragments |               |                        |     |              |                  |             |             |     |              |        |       |
|                                            | 3 -                 | present (CL)                                               |                          | 8                  |               |                        |     |              |                  |             |             |     |              |        |       |
|                                            | 4 -<br>5 -          |                                                            |                          |                    |               |                        |     |              |                  |             |             |     |              |        |       |
|                                            | 6 -                 |                                                            |                          |                    |               |                        |     |              |                  |             |             |     |              |        |       |
|                                            | 7 -                 |                                                            |                          |                    |               |                        |     |              |                  |             |             |     |              |        |       |
|                                            | 8 –                 |                                                            |                          |                    |               |                        |     |              |                  |             |             |     |              |        |       |
|                                            | 9 –                 |                                                            |                          |                    |               |                        |     | М            |                  |             |             |     |              |        |       |
|                                            | 10 -                |                                                            |                          |                    |               |                        |     |              |                  |             |             |     |              |        |       |
|                                            | 11 -                |                                                            |                          |                    |               |                        |     |              |                  |             |             |     |              |        |       |
|                                            | 12 -                |                                                            |                          |                    |               |                        |     |              |                  |             |             |     |              |        |       |
|                                            | 13 -                | CLAYSTONE, Silty Lear                                      | n Clay, red              | , gypsum           |               | SPEARFISH<br>FORMATION |     |              |                  |             |             |     |              |        |       |
|                                            | 14 —<br>15 —        | lenses present (CL)                                        |                          |                    |               | FORMATION              |     |              |                  |             |             |     |              |        |       |
|                                            | 16 -                |                                                            |                          |                    |               |                        |     |              |                  |             |             |     |              |        |       |
|                                            | 17 -                |                                                            |                          |                    |               |                        |     |              |                  |             |             |     |              |        |       |
|                                            | 18 -                | Bottom of I                                                | Boring                   |                    |               |                        |     |              |                  |             |             |     |              |        |       |
|                                            |                     |                                                            | Doring                   |                    |               |                        |     |              |                  |             |             |     |              |        |       |
|                                            |                     |                                                            |                          |                    |               |                        |     |              |                  |             |             |     |              |        |       |
|                                            |                     |                                                            |                          |                    |               |                        |     |              |                  |             |             |     |              |        |       |
|                                            |                     |                                                            |                          |                    |               |                        |     |              |                  |             |             |     |              |        |       |
|                                            |                     |                                                            |                          |                    |               |                        |     |              |                  |             |             |     |              |        |       |
|                                            |                     |                                                            |                          |                    |               |                        |     |              |                  |             |             |     |              |        |       |
|                                            |                     |                                                            |                          |                    |               |                        |     |              |                  |             |             |     |              |        |       |
|                                            |                     |                                                            |                          |                    |               |                        |     |              |                  |             |             |     |              |        |       |
|                                            |                     |                                                            |                          |                    |               |                        |     |              |                  |             |             |     |              |        |       |
| 18                                         |                     |                                                            |                          |                    |               |                        |     |              |                  |             |             |     |              |        |       |
| 12/3                                       |                     |                                                            |                          |                    |               |                        |     |              |                  |             |             |     |              |        |       |
| L.GDI                                      |                     |                                                            |                          |                    |               |                        |     |              |                  |             |             |     |              |        |       |
| CORP 17-03356.GPJ AET+CPT+WELL.GDT 12/3/18 |                     |                                                            |                          |                    |               |                        |     |              |                  |             |             |     |              |        |       |
| H-CP                                       | DEP                 | TH: DRILLING METHOD                                        |                          |                    | WAT           | ER LEVEL MEA           | SUR | EMEN         | TS               | 1           |             |     | NOTE:        | REFE   | R TO  |
| PJ AE                                      | 1                   | 8.0 4" FA                                                  | DATE                     | TIME               | SAMPI<br>DEPT | LED CASING<br>TH DEPTH | CAV | /E-IN<br>PTH | DRILI<br>FLUID I | ING<br>EVEI | WAT<br>LEVI |     | THE A        |        |       |
| 356.GI                                     | 1                   | 18.0 4" FA                                                 | 11/28/18                 | 11:40              | 18.0          |                        |     | A            | N/               |             | Non         |     | SHEET        | ſS FOI | R AN  |
| 17-03                                      |                     |                                                            |                          |                    |               |                        |     |              |                  |             |             |     | EXPLA        | NATIO  | ON OF |
| ORP<br>0                                   | BORIN               | NG<br>LETED: <b>11/28/18</b>                               |                          |                    |               |                        |     |              |                  |             |             | T   | ERMIN        | IOLOG  | GY ON |
|                                            | DR: <b>B</b> '      |                                                            |                          |                    |               |                        |     |              |                  |             |             |     | TH           | IS LO  | 3     |



#### SUBSURFACE BORING LOG

| AET JOB NO: <b>17-03356</b>                                           |              |          |               |                        | LC  | OG OF        | BORING           | NO.         | <b>B-</b> 2  | 27D    | <b>(p.</b> ] | l of 1 | 1)    |
|-----------------------------------------------------------------------|--------------|----------|---------------|------------------------|-----|--------------|------------------|-------------|--------------|--------|--------------|--------|-------|
| PROJECT: West Rapid Sul                                               | bstation;    | Rapid C  | 'ity, S       | outh Dakota            | a   |              |                  |             |              |        |              |        |       |
| DEPTH SURFACE ELEVATION:                                              |              |          |               | GEOLOGY                | N   | MC           | SAMPLI<br>TYPE   | E REC       | FIEL         | D & LA | BORA         | TORY   | TESTS |
| FEET MATERIAL                                                         | DESCRIPTIO   |          |               |                        |     | MC           | TYPE             | IN.         | WC           | DEN    | LL           | PL     | %-#20 |
| LIMESTONE AGGREO<br>$1 \rightarrow 10$ inches                         | GATE SUF     | RFACING  |               | SURFACIING<br>FILL     |     |              |                  |             |              |        |              |        |       |
| 2 – <b>FILL</b> , Silty Lean Clay wi                                  | th Sand, re  | ddish    | -′ 🞆          | FILL                   |     |              |                  |             |              |        |              |        |       |
| 3 - brown, gypsum, claystone<br>present (CL)                          | e and coal f | ragments |               |                        |     |              |                  |             |              |        |              |        |       |
|                                                                       |              |          |               |                        |     |              |                  |             |              |        |              |        |       |
| 5 —                                                                   |              |          |               |                        |     |              |                  |             |              |        |              |        |       |
| 6 —                                                                   |              |          |               |                        |     |              |                  |             |              |        |              |        |       |
| 7 —                                                                   |              |          |               |                        |     |              |                  |             |              |        |              |        |       |
| 8 -                                                                   |              |          |               |                        |     |              |                  |             |              |        |              |        |       |
| 9 -                                                                   |              |          |               |                        |     | M            |                  |             |              |        |              |        |       |
|                                                                       |              |          |               |                        |     |              |                  |             |              |        |              |        |       |
|                                                                       |              |          |               |                        |     |              |                  |             |              |        |              |        |       |
| 12                                                                    | <u> </u>     |          |               |                        |     |              |                  |             |              |        |              |        |       |
| CLAYSTONE, Silty Lea<br>14 – lenses present (CL)                      | n Clay, red  | , gypsum |               | SPEARFISH<br>FORMATION |     |              |                  |             |              |        |              |        |       |
| 15 -                                                                  |              |          |               |                        |     |              |                  |             |              |        |              |        |       |
| 16 -                                                                  |              |          |               |                        |     |              |                  |             |              |        |              |        |       |
| 17 —                                                                  |              |          |               |                        |     |              |                  |             |              |        |              |        |       |
| 18 Bottom of                                                          | Boring       |          |               |                        |     |              |                  |             |              |        |              |        |       |
|                                                                       |              |          |               |                        |     |              |                  |             |              |        |              |        |       |
|                                                                       |              |          |               |                        |     |              |                  |             |              |        |              |        |       |
|                                                                       |              |          |               |                        |     |              |                  |             |              |        |              |        |       |
|                                                                       |              |          |               |                        |     |              |                  |             |              |        |              |        |       |
|                                                                       |              |          |               |                        |     |              |                  |             |              |        |              |        |       |
|                                                                       |              |          |               |                        |     |              |                  |             |              |        |              |        |       |
|                                                                       |              |          |               |                        |     |              |                  |             |              |        |              |        |       |
|                                                                       |              |          |               |                        |     |              |                  |             |              |        |              |        |       |
|                                                                       |              |          |               |                        |     |              |                  |             |              |        |              |        |       |
|                                                                       |              |          |               |                        |     |              |                  |             |              |        |              |        |       |
|                                                                       |              |          |               |                        |     |              |                  |             |              |        |              |        |       |
|                                                                       |              |          |               |                        |     |              |                  |             |              |        |              |        |       |
|                                                                       |              |          |               |                        |     |              |                  |             |              |        |              |        |       |
| DEPTH: DRILLING METHOD<br>18.0 4" FA<br>BORING<br>COMPLETED: 11/28/18 |              |          | WAT           | ER LEVEL MEA           | SUR | EMEN         | TS               |             | ·            | 1      | NOTE:        | REFE   | R TO  |
| 18.0 4" FA                                                            | DATE         | TIME     | SAMPI<br>DEPT | LED CASING<br>TH DEPTH | CAV | /E-IN<br>PTH | DRILL<br>FLUID L | ING<br>EVEI | WATI<br>LEVE | ER     | THE A        | TTAC   | HED   |
| 10.0 4 FA                                                             | 11/28/18     | 11:10    | 18.           |                        |     | A            | NA               |             | Non          |        | SHEET        | ſS FOF | R AN  |
|                                                                       |              | •        |               |                        |     | -            |                  |             |              |        | XPLA         | NATIC  | ON OF |
| BORING<br>COMPLETED: 11/28/18                                         |              |          |               |                        |     |              |                  |             |              | T      | ERMIN        | IOLOC  | GY ON |
| DR: <b>BT</b> LG: <b>JR</b> Rig: <b>RC-1</b>                          |              |          |               |                        |     |              |                  |             |              |        | TH           | IS LOO | 3     |
| 02/2011                                                               |              |          |               | 1                      |     |              |                  |             |              |        |              | 01 DI  |       |



| IN       SURFACE ELEVATION:       GEOLOGY       N       MC       SAMPLE<br>TYPE       REC<br>IN.       WC       I         FEET       MATERIAL DESCRIPTION       SURFACING       SURFACING       WC       I         1       10 inches       III.       III.       III.       III.       III. | & LABOR<br>DEN LL |          |             |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|----------|-------------|
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                      |                   |          | TOTO        |
| LIMESTONE AGGREGATE SURFACING     SURFACING       1 - \10 inches     Image: Surfacing fill                                                                                                                                                                                                  | DEN LL            | PL %     | ESIS        |
| $1 \rightarrow 10$ inches                                                                                                                                                                                                                                                                   |                   |          | 6-#20       |
|                                                                                                                                                                                                                                                                                             |                   |          |             |
| 2 – FILL, Silty Lean Clay with Sand, reddish                                                                                                                                                                                                                                                |                   |          |             |
| brown, gypsum, claystone and coal fragments                                                                                                                                                                                                                                                 |                   |          |             |
| <sup>3 –</sup> present (CL)<br><sub>4 –</sub> with metal debris                                                                                                                                                                                                                             |                   |          |             |
| 5 -                                                                                                                                                                                                                                                                                         |                   |          |             |
|                                                                                                                                                                                                                                                                                             |                   |          |             |
|                                                                                                                                                                                                                                                                                             |                   |          |             |
|                                                                                                                                                                                                                                                                                             |                   |          |             |
| 9 -                                                                                                                                                                                                                                                                                         |                   |          |             |
|                                                                                                                                                                                                                                                                                             |                   |          |             |
|                                                                                                                                                                                                                                                                                             |                   |          |             |
| 12 SILTY LEAN CLAY, reddish brown (CL) ALLUVIUM                                                                                                                                                                                                                                             |                   |          |             |
|                                                                                                                                                                                                                                                                                             |                   |          |             |
|                                                                                                                                                                                                                                                                                             |                   |          |             |
| 13 $16$ $W$ $W$                                                                                                                                                                                                                                                                             |                   |          |             |
|                                                                                                                                                                                                                                                                                             |                   |          |             |
|                                                                                                                                                                                                                                                                                             |                   |          |             |
| Bottom of Boring                                                                                                                                                                                                                                                                            |                   |          |             |
|                                                                                                                                                                                                                                                                                             |                   |          |             |
|                                                                                                                                                                                                                                                                                             |                   |          |             |
|                                                                                                                                                                                                                                                                                             |                   |          |             |
|                                                                                                                                                                                                                                                                                             |                   |          |             |
|                                                                                                                                                                                                                                                                                             |                   |          |             |
|                                                                                                                                                                                                                                                                                             |                   |          |             |
|                                                                                                                                                                                                                                                                                             |                   |          |             |
|                                                                                                                                                                                                                                                                                             |                   |          |             |
|                                                                                                                                                                                                                                                                                             |                   |          |             |
|                                                                                                                                                                                                                                                                                             |                   |          |             |
|                                                                                                                                                                                                                                                                                             |                   |          |             |
|                                                                                                                                                                                                                                                                                             |                   |          |             |
|                                                                                                                                                                                                                                                                                             |                   |          |             |
| DEPTH: DRILLING METHOD WATER LEVEL MEASUREMENTS                                                                                                                                                                                                                                             |                   | E: REFER | <b>R</b> ТО |
| 18.0     4" FA     DATE     TIME     SAMPLED DEPTH     CASING DEPTH     CAVE-IN DEPTH     DRILLING LEVEL     WATER LEVEL                                                                                                                                                                    | THE               | ATTACH   | IED         |
| 11/28/18 10:15 18.0 NA NA NA 14.0                                                                                                                                                                                                                                                           | SHE               | ETS FOR  | AN          |
|                                                                                                                                                                                                                                                                                             | EXPL              | ANATIO   | N OF        |
| DEPTH:DRILLING METHODWATER LEVEL MEASUREMENTS18.04" FADATETIMESAMPLED<br>DEPTHCASING<br>DEPTHCAVE-IN<br>DEPTHDRILLING<br>FLUID LEVELWATER<br>LEVEL11/28/1810:1518.0NANANA14.0BORING<br>COMPLETED:11/28/18IIIIII                                                                             | TERM              | INOLOG   | Y ON        |
| DR: BT LG: JR Rig: RC-1                                                                                                                                                                                                                                                                     | T                 | HIS LOG  |             |



| AET JOB N                                  | io: <b>17-03356</b>                  |              |           |               |                       | LC        | OG OF        | BORIN         | G NO     | B           | -29    | (p. 1 | of 1   | )     |
|--------------------------------------------|--------------------------------------|--------------|-----------|---------------|-----------------------|-----------|--------------|---------------|----------|-------------|--------|-------|--------|-------|
| PROJECT:                                   | West Rapid Sul                       | ostation;    | Rapid C   | City, So      | outh Dakot            | a         |              |               |          |             |        |       |        |       |
| DEPTH                                      | SURFACE ELEVATION:                   |              |           |               | GEOLOGY               | N         | MC           | SAMPI         | E REC    | FIEL        | D & LA | ABORA | TORY   | TESTS |
| FEET                                       | MATERIAL                             |              |           |               |                       |           | MC           | SAMPI<br>TYPE | E REC    | WC          | DEN    | LL    | PL     | %-#20 |
| $1 \rightarrow 10$                         | MESTONE AGGREC                       | GATE SUI     | RFACINO   | ¢<br>ر        | SURFACIING            |           |              |               |          |             |        |       |        |       |
| $2 - \overline{FI}$                        | LL, Silty Lean Clay wi               | th Sand, re  | ddish     | -/ 🞆          | FILL                  |           |              |               |          |             |        |       |        |       |
| $3 - \frac{bro}{pro}$                      | own, gypsum, claystone<br>esent (CL) | e and coal f | fragments |               |                       |           | M            |               |          |             |        |       |        |       |
| 4 -                                        |                                      |              |           |               |                       |           | IVI          |               |          |             |        |       |        |       |
| 5 -                                        |                                      |              |           |               |                       |           |              |               |          |             |        |       |        |       |
| 6 -                                        | th metal debris at 7'                |              |           |               |                       |           |              |               |          |             |        |       |        |       |
| 7 - WI                                     | Auger Refs                           | ual at 7'    |           | -/            |                       |           |              |               |          |             |        |       |        |       |
|                                            | C                                    |              |           |               |                       |           |              |               |          |             |        |       |        |       |
|                                            |                                      |              |           |               |                       |           |              |               |          |             |        |       |        |       |
|                                            |                                      |              |           |               |                       |           |              |               |          |             |        |       |        |       |
|                                            |                                      |              |           |               |                       |           |              |               |          |             |        |       |        |       |
|                                            |                                      |              |           |               |                       |           |              |               |          |             |        |       |        |       |
|                                            |                                      |              |           |               |                       |           |              |               |          |             |        |       |        |       |
|                                            |                                      |              |           |               |                       |           |              |               |          |             |        |       |        |       |
|                                            |                                      |              |           |               |                       |           |              |               |          |             |        |       |        |       |
|                                            |                                      |              |           |               |                       |           |              |               |          |             |        |       |        |       |
|                                            |                                      |              |           |               |                       |           |              |               |          |             |        |       |        |       |
|                                            |                                      |              |           |               |                       |           |              |               |          |             |        |       |        |       |
|                                            |                                      |              |           |               |                       |           |              |               |          |             |        |       |        |       |
|                                            |                                      |              |           |               |                       |           |              |               |          |             |        |       |        |       |
|                                            |                                      |              |           |               |                       |           |              |               |          |             |        |       |        |       |
|                                            |                                      |              |           |               |                       |           |              |               |          |             |        |       |        |       |
|                                            |                                      |              |           |               |                       |           |              |               |          |             |        |       |        |       |
|                                            |                                      |              |           |               |                       |           |              |               |          |             |        |       |        |       |
|                                            |                                      |              |           |               |                       |           |              |               |          |             |        |       |        |       |
|                                            |                                      |              |           |               |                       |           |              |               |          |             |        |       |        |       |
| <u>o</u>                                   |                                      |              |           |               |                       |           |              |               |          |             |        |       |        |       |
|                                            |                                      |              |           |               |                       |           |              |               |          |             |        |       |        |       |
|                                            |                                      |              |           |               |                       |           |              |               |          |             |        |       |        |       |
|                                            |                                      |              |           |               |                       |           |              |               |          |             |        |       |        |       |
| DEPTH:                                     | DRILLING METHOD                      |              |           | WATI          | ER LEVEL MEA          | L<br>ASUR | I<br>EMEN    | TS            |          |             | L      | NOTE: | REFE   | R TO  |
|                                            |                                      | DATE         | TIME      | SAMPI<br>DEPT | LED CASING<br>H DEPTH | CAN       | /E-IN<br>PTH | DRIL          | LING     | WAT<br>LEVE |        | THE A |        |       |
| DEPTH:<br><b>7.0</b><br>BORING<br>COMPLETI | 4" FA                                | 11/28/18     | 9:20      | 18.0          |                       |           | A<br>A       | FLUID         |          | Non         |        | SHEET |        |       |
| 20                                         |                                      | 11/20/10     | 9.20      | 10.0          |                       |           | A            | 11.           | <b>A</b> |             |        | EXPLA |        |       |
| BORING                                     | ED. 11/30/10                         |              |           |               |                       |           |              |               |          |             |        | ERMIN |        |       |
|                                            | ED: 11/28/18                         |              |           |               |                       |           |              |               |          |             |        |       | IS LOO |       |
| DR: <b>BT</b>                              | LG: JR Rig: RC-1                     |              |           |               |                       |           |              |               |          |             |        |       |        |       |



| West Rapid Substation; Rapid City, South Dakota         DEPTH<br>FPET       SURFACE LEVATION:<br>MATERIAL DESCRIPTION       GROLONY       N       NC       SAMPLE<br>TO<br>TO<br>TO<br>TO<br>TO<br>TO<br>TO<br>TO<br>TO<br>TO<br>TO<br>TO<br>TO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | AET JOB NO:                                     | 17-03356           |              |          |                                                  |                        | LC        | OG OF        | BORING             | NO         | B            | -30      | (p. 1 | of 1   | )     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|--------------------|--------------|----------|--------------------------------------------------|------------------------|-----------|--------------|--------------------|------------|--------------|----------|-------|--------|-------|
| Matrix     Subsection     General Description     General Description     WC     DPN     L1     PL     wc       LIMESTONE AGGREGATE SURFACING<br>Description     Subsection     Subsection     Subsection     WC     DPN     L1     PL     wc       1     LIMESTONE AGGREGATE SURFACING<br>Description     Subsection     Subsection     Subsection     WC     DPN     L1     PL     wc       2     FILL     Sity Lean Clay with Sand, reddish<br>present (CL)     FILL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | PROJECT:                                        | West Rapid Sul     | ostation;    | Rapid C  | lity, S                                          | outh Dakot             | a         |              |                    |            |              |          |       |        |       |
| LIMESTONE ACGREGATE SURFACING<br>1 UInhos<br>FILL, Silty Lean Clay with Sand, reddish<br>brown, gypsum, claysione and coal fragments<br>5<br>6<br>7<br>7<br>6<br>7<br>7<br>6<br>7<br>7<br>6<br>7<br>7<br>6<br>7<br>7<br>6<br>7<br>7<br>7<br>6<br>7<br>7<br>7<br>6<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | DEPTH SURI                                      | FACE ELEVATION:    |              |          |                                                  | GEOLOGY                | N         | MC           | SAMPLE             | REC        | FIELI        | D & L/   | ABORA | TORY   | TESTS |
| 12 inches       - [12 inches]       - [12 inches]       - [12 inches]         2       - [12 inches]       - [12 inches]       - [12 inches]       - [12 inches]         1       - [12 inches]         4       - [12 inches]         6       - [12 inches]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                 |                    |              |          |                                                  |                        |           | WIC          | TYPE               | IN.        | WC           | DEN      | LL    | PL     | %-#20 |
| 2       -       FILL, Sity Lean Clay with Sand, reddish present (CL)       Image: Classifier of the second secon                                                      |                                                 |                    | GATE SUF     | RFACING  |                                                  |                        | _         |              |                    |            |              |          |       |        |       |
| 3       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2 - FILL, S                                     | Silty Lean Clay wi | th Sand, re  | ddish    | -⁄ 🞆                                             | FILL                   |           |              |                    |            |              |          |       |        |       |
| 4 - 5 - 7 - 8       GYPSUM, white       - 5 - 5 SPEARFISH       M         10 - 11 - 12 - 12 - 13 - 112       - 6 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3 - brown,                                      | gypsum, claystone  | e and coal f | ragments |                                                  |                        |           |              |                    |            |              |          |       |        |       |
| G       GYPSUM, white       FPEARFISH         9       GYPSUM, white       FORMATION         10       FORMATION       M         11       CLAYSTONE, Silty Lean Clay, red, gypsum       FORMATION         14       CLAYSTONE, Silty Lean Clay, red, gypsum       FORMATION         16       FORMATION       M         17       FORMATION       M         18       Bottom of Boring       FORMATION         18       Bottom of Boring       FORMATION         18.0       4" FA       DATE         11/28/18       9:45       18.0       NA       NA         EORING       FORMATION       FORMATION       FORMATION       FORMATION         EORING       FORMATION       FORMATION       FORMATION       FORMATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | l 1                                             |                    |              |          |                                                  |                        |           |              |                    |            |              |          |       |        |       |
| 7       -       -       SPEARFISH       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5 —                                             |                    |              |          |                                                  |                        |           |              |                    |            |              |          |       |        |       |
| Berth:       Derth:       Derth:       Date       Time:       South and the sout                                                                        | 6 —                                             |                    |              |          |                                                  |                        |           |              |                    |            |              |          |       |        |       |
| GYPSUM, white     GYPSUM, | 7 —                                             |                    |              |          |                                                  |                        |           |              |                    |            |              |          |       |        |       |
| 9       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                 | U <b>M</b> , white |              |          | <u>××××</u>                                      |                        | -         |              |                    |            |              |          |       |        |       |
| 11       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9 -                                             |                    |              |          | $\geq -$                                         |                        | 1         | M            |                    |            |              |          |       |        |       |
| 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                 |                    |              |          | $\left  \right\rangle \stackrel{\checkmark}{}{}$ | 4                      |           |              |                    |            |              |          |       |        |       |
| 13       Image: CLAYSTONE, Silty Lean Clay, red, gypsum       Image: CLAYSTONE, Silty Lean Clay, red, gypsum       Image: CLAYSTONE, Silty Lean Clay, red, gypsum         16       Image: CLAYSTONE, Silty Lean Clay, red, gypsum       Image: CLAYSTONE, Silty Lean Clay, red, gypsum       Image: CLAYSTONE, Silty Lean Clay, red, gypsum         18       Bottom of Boring       Image: CLAYSTONE, Silty Lean Clay, red, gypsum       Image: CLAYSTONE, Silty Lean Clay, red, gypsum       Image: CLAYSTONE, Silty Lean Clay, red, gypsum         18       Bottom of Boring       Image: CLAYSTONE, Silty Lean Clay, red, gypsum       Image: CLAYSTONE, Silty Lean Clay, red, gypsum       Image: CLAYSTONE, Silty Lean Clay, red, gypsum         18       Bottom of Boring       Image: CLAYSTONE, Silty Lean Clay, red, gypsum       Image: CLAYSTONE, Silty Lean Clay, red, gypsum       Image: CLAYSTONE, Silty Lean Clay, red, gypsum         18       Bottom of Boring       Image: CLAYSTONE, Silty Lean Clay, red, gypsum       Image: CLAYSTONE, Silty Lean Clay, red, gypsum       Image: CLAYSTONE, Silty Lean Clay, red, gypsum         Image: CLAYSTONE, Silty Lean Clay, red, gypsum       Image: CLAYSTONE, Silty Lean Clay, red, gypsum       Image: CLAYSTONE, gypsum       Image: CLAYSTONE, Gypsum         Image: CLAYSTONE, Silty Lean Clay, red, gypsum       Image: CLAYSTONE, Silty Lean Clay, red, gypsum       Image: CLAYSTONE, Gypsum       Image: CLAYSTONE, Gypsum         Image: CLAYSTONE, Silty Lean Clay, red, gypsum       Image: CLAYSTONE, Silty Lean Clay, red, g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 |                    |              |          | $\downarrow$                                     |                        |           |              |                    |            |              |          |       |        |       |
| 14       CLAYSTONE Silty Lean Clay, red, gypsum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                 |                    |              |          |                                                  |                        |           |              |                    |            |              |          |       |        |       |
| 15       Ienses present (CL)       Image: CLAYSTONE, Stirty Lean Clay, red, gypsum       Image: CLAYSTONE, Stirty Lean Clay, red, gypsum       Image: CLAYSTONE, Stirty Lean Clay, red, gypsum         16       Image: CLAYSTONE, Stirty Lean Clay, red, gypsum       Image: CLAYSTONE, Stirty Lean Clay, red, gypsum       Image: CLAYSTONE, Stirty Lean Clay, red, gypsum         18       Bottom of Boring       Image: CLAYSTONE, Stirty Lean Clay, red, gypsum       Image: CLAYSTONE, Stirty Lean Clay, red, gypsum       Image: CLAYSTONE, Stirty Lean Clay, red, gypsum         18       Bottom of Boring       Image: CLAYSTONE, Stirty Lean Clay, red, gypsum       Image: CLAYSTONE, Stirty Lean Clay, red, gypsum       Image: CLAYSTONE, Stirty Lean Clay, red, gypsum         DEPTH:       DRILLING METHOD       Image: CLAYSTONE, Stirty Lean Clay, red, gypsum       Image: CLAYSTONE, Stirty Lean Clay, red, gypsum       Image: CLAYSTONE, Stirty Lean Clay, red, gypsum         18.0       4" FA       Date       Time       SAMPLED CASING CAVE-IN FULLING WATER       Note: REFER TO THE ATTACHED SHEETS FOR AN EXPLANATION OF THE ATTACHED SHEETS FOR AN EXPLANATION OF COMPLETED:       Image: Stirty Sti                                                                                                                                                                                                                                                                                                                                                                                              | 14                                              |                    |              |          | -0-                                              |                        |           |              |                    |            |              |          |       |        |       |
| 16       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CLAY                                            | STONE, Silty Lear  | n Clay, red  | , gypsum |                                                  |                        |           |              |                    |            |              |          |       |        |       |
| 17 - 18       Bottom of Boring       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I <td></td> <td>present (CL)</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                 | present (CL)       |              |          |                                                  |                        |           |              |                    |            |              |          |       |        |       |
| 18       Bottom of Boring       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                 |                    |              |          |                                                  |                        |           |              |                    |            |              |          |       |        |       |
| Bottom of Boring       Bottom of Boring       Bottom of Boring       Bottom of Boring         Bottom of Boring       Bottom of Boring       Bottom of Boring       Bottom of Boring         Depth:       DRILLING METHOD       VIEW       Bottom of Boring       Bottom of Boring         DEPTH:       DRILLING METHOD       VIEW       VIEW       Bottom of Boring       NOTE: REFER TO         18.0       4" FA       DATE       TIME       SAMPLED DEPTH       CASING DEPTH       DRILLING WATER       THE ATTACHED         11.0       11/28/18       9:45       18.0       NA       NA       NOTE       SHEETS FOR AN         BORING       COMPLETED:       11/28/18       9:45       18.0       NA       NA       NOTE         BORING       COMPLETED:       11/28/18       0       I       I       I       I       I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 | 2                  | <u> </u>     |          |                                                  |                        |           |              |                    |            |              |          |       |        |       |
| 18.0 4" FA       DATE       TIME       SAMPLED DEPTH       CASING DEPTH       DRILLING LEVEL       WATER LEVEL       THE ATTACHED         11/28/18       9:45       18.0       NA       NA       NA       Na       SHEETS FOR AN         BORING COMPLETED: 11/28/18       Image: Completed bit in the c                                                                                                                                                                                                                      |                                                 | Bottom of          | Boring       |          |                                                  |                        |           |              |                    |            |              |          |       |        |       |
| 18.0 4" FA       DATE       TIME       SAMPLED DEPTH       CASING DEPTH       DRILLING LEVEL       WATER LEVEL       THE ATTACHED         11/28/18       9:45       18.0       NA       NA       NA       Na       SHEETS FOR AN         BORING COMPLETED: 11/28/18       Image: Completed bit in the c                                                                                                                                                                                                                      |                                                 |                    |              |          |                                                  |                        |           |              |                    |            |              |          |       |        |       |
| 18.0 4" FA       DATE       TIME       SAMPLED DEPTH       CASING DEPTH       DRILLING LEVEL       WATER LEVEL       THE ATTACHED         11/28/18       9:45       18.0       NA       NA       NA       Na       SHEETS FOR AN         BORING COMPLETED: 11/28/18       Image: Completed bit in the c                                                                                                                                                                                                                      |                                                 |                    |              |          |                                                  |                        |           |              |                    |            |              |          |       |        |       |
| 18.0 4" FA       DATE       TIME       SAMPLED DEPTH       CASING DEPTH       DRILLING LEVEL       WATER LEVEL       THE ATTACHED         11/28/18       9:45       18.0       NA       NA       NA       Na       SHEETS FOR AN         BORING COMPLETED: 11/28/18       Image: Completed bit in the c                                                                                                                                                                                                                      |                                                 |                    |              |          |                                                  |                        |           |              |                    |            |              |          |       |        |       |
| 18.0 4" FA       DATE       TIME       SAMPLED DEPTH       CASING DEPTH       DRILLING LEVEL       WATER LEVEL       THE ATTACHED         11/28/18       9:45       18.0       NA       NA       NA       Na       SHEETS FOR AN         BORING COMPLETED: 11/28/18       Image: Completed bit in the c                                                                                                                                                                                                                      |                                                 |                    |              |          |                                                  |                        |           |              |                    |            |              |          |       |        |       |
| 18.0 4" FA       DATE       TIME       SAMPLED DEPTH       CASING DEPTH       DRILLING LEVEL       WATER LEVEL       THE ATTACHED         11/28/18       9:45       18.0       NA       NA       NA       Na       SHEETS FOR AN         BORING COMPLETED: 11/28/18       Image: Completed bit in the c                                                                                                                                                                                                                      |                                                 |                    |              |          |                                                  |                        |           |              |                    |            |              |          |       |        |       |
| 18.0 4" FA       DATE       TIME       SAMPLED DEPTH       CASING DEPTH       DRILLING LEVEL       WATER LEVEL       THE ATTACHED         11/28/18       9:45       18.0       NA       NA       NA       Na       SHEETS FOR AN         BORING COMPLETED: 11/28/18       Image: Completed bit in the c                                                                                                                                                                                                                      |                                                 |                    |              |          |                                                  |                        |           |              |                    |            |              |          |       |        |       |
| 18.0 4" FA       DATE       TIME       SAMPLED DEPTH       CASING DEPTH       DRILLING LEVEL       WATER LEVEL       THE ATTACHED         11/28/18       9:45       18.0       NA       NA       NA       Na       SHEETS FOR AN         BORING COMPLETED: 11/28/18       Image: Completed bit in the c                                                                                                                                                                                                                      |                                                 |                    |              |          |                                                  |                        |           |              |                    |            |              |          |       |        |       |
| 18.0 4" FA       DATE       TIME       SAMPLED DEPTH       CASING DEPTH       DRILLING LEVEL       WATER LEVEL       THE ATTACHED         11/28/18       9:45       18.0       NA       NA       NA       Na       SHEETS FOR AN         BORING COMPLETED: 11/28/18       Image: Completed bit in the c                                                                                                                                                                                                                      |                                                 |                    |              |          |                                                  |                        |           |              |                    |            |              |          |       |        |       |
| 18.0 4" FA       DATE       TIME       SAMPLED DEPTH       CASING DEPTH       DRILLING LEVEL       WATER LEVEL       THE ATTACHED         11/28/18       9:45       18.0       NA       NA       NA       Na       SHEETS FOR AN         BORING COMPLETED: 11/28/18       Image: Completed bit in the c                                                                                                                                                                                                                      |                                                 |                    |              |          |                                                  |                        |           |              |                    |            |              |          |       |        |       |
| 18.0 4" FA       DATE       TIME       SAMPLED DEPTH       CASING DEPTH       DRILLING LEVEL       WATER LEVEL       THE ATTACHED         11/28/18       9:45       18.0       NA       NA       NA       Na       SHEETS FOR AN         BORING COMPLETED: 11/28/18       Image: Completed bit in the c                                                                                                                                                                                                                      |                                                 |                    |              |          |                                                  |                        |           |              |                    |            |              |          |       |        |       |
| 18.0 4" FA       DATE       TIME       SAMPLED DEPTH       CASING DEPTH       DRILLING LEVEL       WATER LEVEL       THE ATTACHED         11/28/18       9:45       18.0       NA       NA       NA       Na       SHEETS FOR AN         BORING COMPLETED: 11/28/18       Image: Completed bit in the c                                                                                                                                                                                                                      |                                                 |                    |              |          |                                                  |                        |           |              |                    |            |              |          |       |        |       |
| 18.0 4" FA       DATE       TIME       SAMPLED DEPTH       CASING DEPTH       DRILLING LEVEL       WATER LEVEL       THE ATTACHED         11/28/18       9:45       18.0       NA       NA       NA       Na       SHEETS FOR AN         BORING COMPLETED: 11/28/18       Image: Completed bit in the c                                                                                                                                                                                                                      |                                                 |                    |              |          |                                                  |                        |           |              |                    |            |              |          |       |        |       |
| 18.0 4" FA       DATE       TIME       SAMPLED DEPTH       CASING DEPTH       DRILLING LEVEL       WATER LEVEL       THE ATTACHED         11/28/18       9:45       18.0       NA       NA       NA       Na       SHEETS FOR AN         BORING COMPLETED: 11/28/18       Image: Completed bit in the c                                                                                                                                                                                                                      |                                                 |                    | 1            |          |                                                  |                        |           |              |                    |            |              |          |       |        |       |
| Introduction     Internation     Internat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | DEPTH: DF<br>18.0 4''<br>BORING<br>COMPLETED: 1 | RILLING METHOD     | ļ,           |          |                                                  |                        |           |              |                    |            |              |          | NOTE: | REFE   | R TO  |
| Introduction     Internation     Internat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 18.0 4"                                         | ' FA               | DATE         | TIME     | SAMPI<br>DEPT                                    | LED CASING<br>TH DEPTH | CAV<br>DE | /E-IN<br>PTH | DRILLI<br>FLUID LI | NG<br>EVEL | WATI<br>LEVE | ER<br>EL | THE A | TTAC   | HED   |
| BORING<br>COMPLETED: 11/28/18 TERMINOLOGY OF THIS LOC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                 | • • •              | 11/28/18     |          |                                                  |                        | N         | A            | NA                 |            | Non          | e        | SHEET | TS FOF | R AN  |
| COMPLETED: 11/28/18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                 |                    |              |          |                                                  |                        |           |              |                    |            |              |          | EXPLA | NATIO  | ON OF |
| THISLOC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | BORING<br>COMPLETED:                            | 11/28/18           |              |          |                                                  |                        |           |              |                    |            |              | Т        | ERMIN | IOLOC  | GY OI |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                 |                    |              |          |                                                  |                        |           |              |                    |            |              |          | TH    | IS LOO | G     |



| PROJE                     |                                  | 856                  |          |               |                       | LC  | OG OF        | BORING N            | 10        | B            | -31    | (p. 1 | 01 1   | )     |
|---------------------------|----------------------------------|----------------------|----------|---------------|-----------------------|-----|--------------|---------------------|-----------|--------------|--------|-------|--------|-------|
| 1                         | ECT: West Ra                     | pid Substation;      | Rapid C  | lity, S       | outh Dakot            | a   |              |                     |           |              |        |       |        |       |
| DEPTH<br>IN<br>FEET       | SURFACE ELEV                     | VATION:              |          |               | GEOLOGY               | N   | MC           | SAMPLE<br>TYPE      | REC       | FIELI        | ) & LA | BORA  | TORY   | TESTS |
| FEET                      |                                  | ATERIAL DESCRIPTION  |          |               |                       | 1   | MC           | TYPE                | IN.       | WC           | DEN    | LL    | PL     | %-#20 |
|                           | LIMESTONE A                      | GGREGATE SUF         | RFACING  |               | SURFACING<br>FILL     |     |              |                     |           |              |        |       |        |       |
| 2 -                       | FILL, Silty Lean                 | Clay with Sand, red  | ddish    | -/ 🞆          | TILL                  |     |              |                     |           |              |        |       |        |       |
| 3 -                       | brown, gypsum, c<br>present (CL) | claystone and coal f | ragments |               |                       |     |              |                     |           |              |        |       |        |       |
| 4 -                       |                                  |                      |          |               |                       |     |              |                     |           |              |        |       |        |       |
| 5 —                       | -                                |                      |          |               |                       |     |              |                     |           |              |        |       |        |       |
| 6 -                       | -                                |                      |          |               |                       |     |              |                     |           |              |        |       |        |       |
| 7 -                       | 1                                |                      |          |               |                       |     |              |                     |           |              |        |       |        |       |
| 8 -                       | CLAYSTONE, S                     | Silty Lean Clay, red | , gypsum |               | SPEARFISH             |     |              |                     |           |              |        |       |        |       |
| 9 -                       | lenses present (C                | L)                   |          |               | FORMATION             |     | М            |                     |           |              |        |       |        |       |
| 10 - 11 -                 |                                  |                      |          |               |                       |     |              |                     |           |              |        |       |        |       |
| 11 - 12 -                 |                                  |                      |          |               |                       |     |              |                     |           |              |        |       |        |       |
| 13 -                      | -                                |                      |          |               |                       |     |              |                     |           |              |        |       |        |       |
| 14 -                      | -                                |                      |          |               |                       |     |              |                     |           |              |        |       |        |       |
| 15 —                      | -                                |                      |          |               |                       |     |              |                     |           |              |        |       |        |       |
| 16 -                      | -                                |                      |          |               |                       |     |              |                     |           |              |        |       |        |       |
| 17 -                      | -                                |                      |          |               |                       |     |              |                     |           |              |        |       |        |       |
| 18 -                      | Bo                               | ottom of Boring      |          |               |                       |     |              |                     |           |              |        |       |        |       |
|                           |                                  | C                    |          |               |                       |     |              |                     |           |              |        |       |        |       |
|                           |                                  |                      |          |               |                       |     |              |                     |           |              |        |       |        |       |
|                           |                                  |                      |          |               |                       |     |              |                     |           |              |        |       |        |       |
|                           |                                  |                      |          |               |                       |     |              |                     |           |              |        |       |        |       |
|                           |                                  |                      |          |               |                       |     |              |                     |           |              |        |       |        |       |
|                           |                                  |                      |          |               |                       |     |              |                     |           |              |        |       |        |       |
|                           |                                  |                      |          |               |                       |     |              |                     |           |              |        |       |        |       |
|                           |                                  |                      |          |               |                       |     |              |                     |           |              |        |       |        |       |
|                           |                                  |                      |          |               |                       |     |              |                     |           |              |        |       |        |       |
|                           |                                  |                      |          |               |                       |     |              |                     |           |              |        |       |        |       |
|                           |                                  |                      |          |               |                       |     |              |                     |           |              |        |       |        |       |
|                           |                                  |                      |          |               |                       |     |              |                     |           |              |        |       |        |       |
| DEP<br>1<br>BORIN<br>COMP |                                  |                      |          |               |                       |     |              |                     |           |              |        |       |        |       |
| DEP                       | PTH: DRILLING M                  | IETHOD               |          | WAT           | ER LEVEL MEA          | SUR | EMEN         | TS                  |           | ·            |        | NOTE: | REFE   | R TO  |
| 1                         |                                  | DATE                 | TIME     | SAMPI<br>DEP1 | LED CASING<br>H DEPTH | CAV | 'E-IN<br>PTH | DRILLIN<br>FLUID LE | NG<br>VEL | WATI<br>LEVE | ER     | THE A |        |       |
|                           | 18.0 4" FA                       | 11/28/18             | 9:10     | 18.0          |                       |     | [ <b>A</b>   | NA                  |           | Non          |        | SHEET | S FOF  | R AN  |
|                           |                                  |                      |          |               |                       |     | -            |                     |           |              |        | EXPLA | NATIO  | ON OF |
| BORIN                     | NG<br>PLETED: <b>11/28/18</b>    |                      |          | ·             |                       |     |              | 1                   |           |              | T      | ERMIN | IOLOC  | GY ON |
| DR: B                     |                                  | RC-1                 |          |               |                       |     |              |                     |           |              |        | TH    | IS LOO | 3     |



| AE                                               | ET JOB N                          | IO: 17-03356            |             |          |               |                      | LC        | OG OF        | BORING           | NO          | B           | -32      | ( <b>p.</b> 1 | <b>of 1</b> | )          |
|--------------------------------------------------|-----------------------------------|-------------------------|-------------|----------|---------------|----------------------|-----------|--------------|------------------|-------------|-------------|----------|---------------|-------------|------------|
| PR                                               | OJECT:                            | West Rapid Sub          | ostation;   | Rapid C  | City, S       | outh Dakot           | a         |              |                  |             |             |          |               |             |            |
| DEP'<br>IN<br>FEE                                | TH                                | SURFACE ELEVATION:      |             |          |               | GEOLOGY              | N         | MC           | SAMPLE<br>TYPE   | REC         |             | D & LA   |               | TORY        | TESTS      |
| FEF                                              |                                   | MATERIAL I              |             |          |               |                      |           |              | IYPE             | IN.         | WC          | DEN      | LL            | PL          | %-#20      |
|                                                  | 1 - 10                            | IMESTONE AGGREC         | JATE SUI    | KFACING  | ;<br>/ 🗮      | SURFACIING<br>FILL   |           |              |                  |             |             |          |               |             |            |
|                                                  | $2 - \overline{\mathbf{FI}}$      | LL, Silty Lean Clay wit | th Sand, re | ddish    | -             |                      |           |              |                  |             |             |          |               |             |            |
|                                                  | $3 - \frac{\text{br}}{\text{pr}}$ | esent (CL)              |             | ragments |               |                      |           |              |                  |             |             |          |               |             |            |
|                                                  | 4 –                               |                         |             |          |               |                      |           |              |                  |             |             |          |               |             |            |
|                                                  | 5 -                               |                         |             |          |               |                      |           |              |                  |             |             |          |               |             |            |
|                                                  | 6 -                               |                         |             |          |               |                      |           |              |                  |             |             |          |               |             |            |
|                                                  | 7 - 8 -                           |                         |             |          |               |                      |           |              |                  |             |             |          |               |             |            |
|                                                  | 8 - 9 -                           |                         |             |          |               |                      |           | М            |                  |             |             |          |               |             |            |
|                                                  | 10 -                              |                         |             |          |               |                      |           |              |                  |             |             |          |               |             |            |
|                                                  | 1 -                               |                         |             |          |               |                      |           |              |                  |             |             |          |               |             |            |
| 1                                                | 12 -                              |                         |             |          |               |                      |           |              |                  |             |             |          |               |             |            |
| 1                                                | 13 + C                            | LAYSTONE, Silty Lear    | n Clay red  | ovnsum   |               | SPEARFISH            |           |              |                  |             |             |          |               |             |            |
| 1                                                | 4 - lei                           | nses present (CL)       | i ciuy, icu | , gypsum |               | FORMATION            |           |              |                  |             |             |          |               |             |            |
|                                                  | 15 -                              |                         |             |          |               |                      |           |              |                  |             |             |          |               |             |            |
|                                                  | 6 –                               |                         |             |          |               |                      |           |              |                  |             |             |          |               |             |            |
|                                                  | 17 —                              |                         |             |          |               |                      |           |              |                  |             |             |          |               |             |            |
|                                                  | 18                                | Bottom of               | Boring      |          |               |                      |           |              |                  |             |             |          |               |             |            |
|                                                  |                                   |                         |             |          |               |                      |           |              |                  |             |             |          |               |             |            |
|                                                  |                                   |                         |             |          |               |                      |           |              |                  |             |             |          |               |             |            |
|                                                  |                                   |                         |             |          |               |                      |           |              |                  |             |             |          |               |             |            |
|                                                  |                                   |                         |             |          |               |                      |           |              |                  |             |             |          |               |             |            |
|                                                  |                                   |                         |             |          |               |                      |           |              |                  |             |             |          |               |             |            |
|                                                  |                                   |                         |             |          |               |                      |           |              |                  |             |             |          |               |             |            |
|                                                  |                                   |                         |             |          |               |                      |           |              |                  |             |             |          |               |             |            |
|                                                  |                                   |                         |             |          |               |                      |           |              |                  |             |             |          |               |             |            |
|                                                  |                                   |                         |             |          |               |                      |           |              |                  |             |             |          |               |             |            |
| 3/18                                             |                                   |                         |             |          |               |                      |           |              |                  |             |             |          |               |             |            |
| 11 12                                            |                                   |                         |             |          |               |                      |           |              |                  |             |             |          |               |             |            |
| ELL.GI                                           |                                   |                         |             |          |               |                      |           |              |                  |             |             |          |               |             |            |
| 1W+                                              |                                   |                         |             |          |               |                      |           |              |                  |             |             |          |               |             |            |
|                                                  | DEPTH:                            | DRILLING METHOD         |             |          | 1             | ER LEVEL MEA         |           |              |                  |             |             |          | NOTE:         | REFE        | R TO       |
|                                                  | 18.0                              | 4" FA                   | DATE        | TIME     | SAMPI<br>DEPT | ED CASING<br>H DEPTH | CAV<br>DE | /E-IN<br>PTH | DRILL<br>FLUID L | ING<br>EVEL | WAT<br>LEVI | ER<br>EL | THE A         | TTAC        | HED        |
| CORP 17-03356.GPJ AET+CPT+WELL.GDT 12/3/18<br>OO | 10.0                              |                         | 11/28/18    | 10:05    | 18.0          |                      |           | A            | NA               |             | Non         | e        | SHEET         | S FOF       | R AN       |
| 17-0(                                            |                                   |                         |             |          |               |                      |           |              |                  |             |             | E        | XPLA          | NATIC       | ON OF      |
| BO<br>CO                                         | ORING<br>OMPLET                   | ED: <b>11/28/18</b>     |             |          |               |                      |           |              |                  |             |             | T        | ERMIN         | IOLOC       | GY ON      |
|                                                  |                                   | LG: JR Rig: RC-1        |             |          |               |                      |           |              |                  |             |             |          |               | IS LOO      | G<br>ID OC |



## ENGINEERING TESTING, INC.

| AET JOB N                           | IO: <b>17-03356</b>            |             |           |               |              | LC  | OG OF        | BO  | RING N      | 10  | B     | -33    | (p. 1 | of 1   | )     |
|-------------------------------------|--------------------------------|-------------|-----------|---------------|--------------|-----|--------------|-----|-------------|-----|-------|--------|-------|--------|-------|
| PROJECT:                            | West Rapid Sul                 | ostation;   | Rapid C   | lity, S       | outh Dakot   | a   |              |     |             |     |       |        |       |        |       |
| DEPTH                               | SURFACE ELEVATION:             |             |           |               | GEOLOGY      | N   | MC           | SA  | MPLE        | REC | FIELI | ) & LA | BORA  | TORY   | TESTS |
| DEPTH<br>IN<br>FEET                 | MATERIAL                       | DESCRIPTI   | ON        |               |              | N   | MC           | T   | MPLE<br>YPE | ĪN. | WC    | DEN    | LL    | PL     | %-#20 |
| $1 \rightarrow 10$                  | MESTONE AGGREO                 | GATE SU     | RFACING   | ;<br>         | SURFACIING   |     |              |     |             |     |       |        |       |        |       |
|                                     | LL, Silty Lean Clay wi         | th Sand, re | ddish     | -/ 🞆          | FILL         |     |              |     |             |     |       |        |       |        |       |
| br                                  | own, gypsum, claystone         | and coal t  | fragments |               |              |     |              |     |             |     |       |        |       |        |       |
|                                     | esent (CL)                     |             |           |               |              |     |              |     |             |     |       |        |       |        |       |
| 5                                   |                                | 1 (61)      |           |               |              |     |              |     |             |     |       |        |       |        |       |
| 6 - <b>SI</b>                       | LTY LEAN CLAY, red             | d (CL)      |           |               | ALLUVIUM     |     |              |     |             |     |       |        |       |        |       |
| 7 —                                 |                                |             |           |               |              |     |              |     |             |     |       |        |       |        |       |
| 8 -                                 |                                |             |           |               |              |     | Μ            |     |             |     |       |        |       |        |       |
| 9 —                                 |                                |             |           |               |              |     |              |     |             |     |       |        |       |        |       |
| 10 -                                |                                |             |           |               |              |     |              |     |             |     |       |        |       |        |       |
| 11 -                                |                                |             |           |               |              |     |              |     |             |     |       |        |       |        |       |
| 12 -                                |                                |             |           |               |              |     |              |     |             |     |       |        |       |        |       |
| 13 -                                |                                |             |           |               |              |     |              |     |             |     |       |        |       |        |       |
| 14 —                                |                                |             |           |               |              |     | $\nabla$     |     |             |     |       |        |       |        |       |
| 15 -                                |                                |             |           |               |              |     | <u> </u>     |     |             |     |       |        |       |        |       |
| 16 -                                |                                |             |           |               |              |     | W            |     |             |     |       |        |       |        |       |
| 17 -                                |                                |             |           |               |              |     |              |     |             |     |       |        |       |        |       |
| 18                                  | Bottom of                      | Boring      |           |               |              |     |              |     |             |     |       |        |       |        |       |
|                                     |                                |             |           |               |              |     |              |     |             |     |       |        |       |        |       |
|                                     |                                |             |           |               |              |     |              |     |             |     |       |        |       |        |       |
|                                     |                                |             |           |               |              |     |              |     |             |     |       |        |       |        |       |
|                                     |                                |             |           |               |              |     |              |     |             |     |       |        |       |        |       |
|                                     |                                |             |           |               |              |     |              |     |             |     |       |        |       |        |       |
|                                     |                                |             |           |               |              |     |              |     |             |     |       |        |       |        |       |
|                                     |                                |             |           |               |              |     |              |     |             |     |       |        |       |        |       |
|                                     |                                |             |           |               |              |     |              |     |             |     |       |        |       |        |       |
|                                     |                                |             |           |               |              |     |              |     |             |     |       |        |       |        |       |
|                                     |                                |             |           |               |              |     |              |     |             |     |       |        |       |        |       |
| 5                                   |                                |             |           |               |              |     |              |     |             |     |       |        |       |        |       |
|                                     |                                |             |           |               |              |     |              |     |             |     |       |        |       |        |       |
|                                     |                                |             |           |               |              |     |              |     |             |     |       |        |       |        |       |
| DEPTH:<br>18.0<br>BORING<br>COMPLET | DRILLING METHOD                |             |           | WAT           | ER LEVEL MEA | SUR | <br>EMEN     |     |             |     |       |        |       | DEFE   |       |
|                                     |                                |             | TDAT      |               |              | -   |              | р   | RILLIN      | NG  | WATI  | ER     | NOTE: |        |       |
| 18.0                                | 4" FA                          | DATE        | TIME      | SAMPI<br>DEPT |              |     | /E-IN<br>PTH | FLI | UID LE      | VEL | LEVE  | EL     | THE A |        |       |
|                                     |                                | 11/29/18    |           | 18.0          | ) NA         | N   | A            |     | NA          |     | 15.0  | ,      | SHEET |        |       |
| BODING                              |                                |             |           |               |              |     |              |     |             |     |       |        | XPLA  |        |       |
|                                     | ED: <b>11/29/18</b>            |             |           |               |              |     |              |     |             |     |       | T      | ERMIN |        |       |
| DR: <b>BT</b>                       | LG: <b>BB</b> Rig: <b>RC-1</b> |             |           |               |              |     |              |     |             |     |       |        | TH    | IS LOO |       |



|                                            | AET JO            | DB NO: <b>17-03356</b>                                      |                          |                    |               |                        | LC        | OG OF        | BORIN         | G NO.         | B           | -34      | (p. 1       | of 1   | )     |
|--------------------------------------------|-------------------|-------------------------------------------------------------|--------------------------|--------------------|---------------|------------------------|-----------|--------------|---------------|---------------|-------------|----------|-------------|--------|-------|
| I                                          | PROJE             | CT: West Rapid Sub                                          | station;                 | Rapid Ci           | ity, S        | outh Dakot             | a         |              |               |               |             |          |             |        |       |
| Dł                                         | EPTH<br>IN<br>EET | SURFACE ELEVATION:                                          |                          |                    |               | GEOLOGY                | N         | MC           | SAMP<br>TYP   | E REC         | - i         |          | ABORA       | TORY   | TESTS |
| F                                          | ÊÊT               |                                                             |                          |                    | =             | SURFACIING             |           |              |               | E IN.         | WC          | DEN      | LL          | PL     | %-#20 |
|                                            | 1 -               | LIMESTONE AGGREG                                            |                          |                    | / 🗮           | FILL                   |           |              |               |               |             |          |             |        |       |
|                                            | 2 -               | <b>FILL</b> , Silty Lean Clay with brown, gypsum, claystone | h Sand, re<br>and coal f | ddish<br>Fragments |               |                        |           |              |               |               |             |          |             |        |       |
|                                            | 3 - 4 -           | present (CL)                                                |                          | U                  |               |                        |           |              |               |               |             |          |             |        |       |
|                                            | 5                 |                                                             |                          |                    |               |                        |           |              |               |               |             |          |             |        |       |
|                                            | 6 -               |                                                             |                          |                    |               |                        |           |              |               |               |             |          |             |        |       |
|                                            | 7 —               |                                                             |                          |                    |               |                        |           |              |               |               |             |          |             |        |       |
|                                            | 8 -               |                                                             |                          |                    |               |                        |           |              |               |               |             |          |             |        |       |
|                                            | 9 —<br>10 —       |                                                             |                          |                    |               |                        |           | M            |               |               |             |          |             |        |       |
|                                            | 10                | SILTY LEAN CLAY, rec                                        | l (CL)                   |                    |               | ALLUVIUM               |           |              |               |               |             |          |             |        |       |
|                                            | 12 -              | CLAYSTONE, Silty Lear                                       | Clav red                 | gynsum             |               | SPEARFISH              |           |              |               |               |             |          |             |        |       |
|                                            | 13 -              | lenses present (CL)                                         | r ciay, red              | , gypsum           |               | FORMATION              |           |              |               |               |             |          |             |        |       |
|                                            | 14 -              |                                                             |                          |                    |               |                        |           |              |               |               |             |          |             |        |       |
|                                            | 15 –<br>16 –      |                                                             |                          |                    |               |                        |           |              |               |               |             |          |             |        |       |
|                                            | 17 -              |                                                             |                          |                    |               |                        |           |              |               |               |             |          |             |        |       |
|                                            | 18 -              | Bottom of                                                   | Roring                   |                    |               |                        |           |              |               |               |             |          |             |        |       |
|                                            |                   | Dottoin of                                                  | Doring                   |                    |               |                        |           |              |               |               |             |          |             |        |       |
|                                            |                   |                                                             |                          |                    |               |                        |           |              |               |               |             |          |             |        |       |
|                                            |                   |                                                             |                          |                    |               |                        |           |              |               |               |             |          |             |        |       |
|                                            |                   |                                                             |                          |                    |               |                        |           |              |               |               |             |          |             |        |       |
|                                            |                   |                                                             |                          |                    |               |                        |           |              |               |               |             |          |             |        |       |
|                                            |                   |                                                             |                          |                    |               |                        |           |              |               |               |             |          |             |        |       |
|                                            |                   |                                                             |                          |                    |               |                        |           |              |               |               |             |          |             |        |       |
|                                            |                   |                                                             |                          |                    |               |                        |           |              |               |               |             |          |             |        |       |
| Ω                                          |                   |                                                             |                          |                    |               |                        |           |              |               |               |             |          |             |        |       |
| 12/3/                                      |                   |                                                             |                          |                    |               |                        |           |              |               |               |             |          |             |        |       |
| L.GUI                                      |                   |                                                             |                          |                    |               |                        |           |              |               |               |             |          |             |        |       |
| CORP 17-03356.GPJ AE1+CP1+WELL.GDI 12/3/18 |                   |                                                             |                          |                    |               |                        |           |              |               |               |             |          |             |        |       |
|                                            | DEP               | TH: DRILLING METHOD                                         |                          |                    |               | ER LEVEL MEA           |           |              | TS            |               |             |          | NOTE:       | REFE   | R TO  |
| GPJ A                                      | 1                 | 8.0 4" FA                                                   | DATE                     | TIME               | SAMPI<br>DEPT | LED CASING<br>TH DEPTH | CAV<br>DE | /E-IN<br>PTH | DRII<br>FLUID | LING<br>LEVEL | WAT<br>LEVI | ER<br>EL | THE A       | TTAC   | HED   |
| 13356.0                                    |                   |                                                             | 11/29/18                 |                    | 18.           | ) NA                   | Ň         | A            | Ň             | A             | Nor         |          | SHEET       |        |       |
|                                            | BORIN             | IG                                                          |                          |                    |               |                        |           |              |               |               |             |          | EXPLA       |        |       |
|                                            | COMP              | LETED: 11/29/18                                             |                          |                    |               |                        |           |              |               |               |             | -        | ERMIN<br>TH | IS LOC |       |
| Į I                                        | DR: <b>B</b> '    | <b>T</b> LG: <b>BB</b> Rig: <b>RC-1</b>                     |                          |                    |               |                        |           |              |               |               |             |          |             |        |       |



| AET JC                     | DB NO: <b>17-03356</b>                |              |          |               |                        | LC     | OG OF        | BORING           | NO          | B            | -35    | (p. 1 | of 1                                   | )     |
|----------------------------|---------------------------------------|--------------|----------|---------------|------------------------|--------|--------------|------------------|-------------|--------------|--------|-------|----------------------------------------|-------|
| PROJE                      | CT: West Rapid Sul                    | ostation;    | Rapid C  | ity, S        | outh Dakot             | a      |              |                  |             |              |        |       |                                        |       |
| DEPTH<br>IN<br>FEET        | SURFACE ELEVATION:                    |              |          |               | GEOLOGY                | N      | MC           | SAMPLI<br>TYPE   | E REC       | FIELI        | ) & LA | ABORA | TORY                                   | TESTS |
| FEET                       |                                       |              |          |               |                        |        | MC           | TYPE             | IN.         | WC           | DEN    | LL    | PL                                     | %-#20 |
| 1                          | LIMESTONE AGGREC                      | JATE SUF     | RFACING  |               | SURFACIING<br>FILL     | i<br>I |              |                  |             |              |        |       |                                        |       |
| 2 -                        | FILL, Silty Lean Clay wi              | th Sand, red | ddish    | ′ 🞆           | TILL                   |        |              |                  |             |              |        |       |                                        |       |
| 3 —                        | brown, gypsum, claystone present (CL) | e and coal f | ragments |               |                        |        |              |                  |             |              |        |       |                                        |       |
| 4 -                        |                                       |              |          |               |                        |        |              |                  |             |              |        |       |                                        |       |
| 5 -                        |                                       |              |          |               |                        |        |              |                  |             |              |        |       |                                        |       |
| 6 -                        |                                       |              |          |               |                        |        |              |                  |             |              |        |       |                                        |       |
| 7 -                        |                                       |              |          |               |                        |        |              |                  |             |              |        |       |                                        |       |
| 8 - 9 -                    |                                       |              |          |               |                        |        | М            |                  |             |              |        |       |                                        |       |
|                            |                                       |              |          |               |                        |        | 141          |                  |             |              |        |       |                                        |       |
| 11 -                       | SILTY LEAN CLAY, red                  | ddish brown  | n (CL)   |               | ALLUVIUM               |        |              |                  |             |              |        |       |                                        |       |
| 12 -                       |                                       |              |          |               |                        |        |              |                  |             |              |        |       |                                        |       |
| 13 -                       |                                       |              |          |               |                        |        |              |                  |             |              |        |       |                                        |       |
| 14 -                       |                                       |              |          |               |                        |        |              |                  |             |              |        |       |                                        |       |
| 15 -                       |                                       |              |          |               |                        |        |              |                  |             |              |        |       |                                        |       |
| 16 -                       |                                       |              |          |               |                        |        |              |                  |             |              |        |       |                                        |       |
| 17 -                       |                                       |              |          |               |                        |        |              |                  |             |              |        |       |                                        |       |
| 18 -                       | Bottom of                             | Boring       |          |               |                        |        |              |                  |             | 1            |        |       |                                        |       |
|                            |                                       |              |          |               |                        |        |              |                  |             |              |        |       |                                        |       |
|                            |                                       |              |          |               |                        |        |              |                  |             |              |        |       |                                        |       |
|                            |                                       |              |          |               |                        |        |              |                  |             |              |        |       |                                        |       |
|                            |                                       |              |          |               |                        |        |              |                  |             |              |        |       |                                        |       |
|                            |                                       |              |          |               |                        |        |              |                  |             |              |        |       |                                        |       |
|                            |                                       |              |          |               |                        |        |              |                  |             |              |        |       |                                        |       |
|                            |                                       |              |          |               |                        |        |              |                  |             |              |        |       |                                        |       |
|                            |                                       |              |          |               |                        |        |              |                  |             |              |        |       |                                        |       |
|                            |                                       |              |          |               |                        |        |              |                  |             |              |        |       |                                        |       |
|                            |                                       |              |          |               |                        |        |              |                  |             |              |        |       |                                        |       |
|                            |                                       |              |          |               |                        |        |              |                  |             |              |        |       |                                        |       |
|                            |                                       |              |          |               |                        |        |              |                  |             |              |        |       |                                        |       |
|                            |                                       |              |          |               |                        |        |              |                  |             |              |        |       |                                        |       |
| DEP<br>1<br>BORIN<br>COMPI | TH: DRILLING METHOD                   | <br>         | Γ        |               | ER LEVEL MEA           |        |              |                  |             | 117 4 77     |        | NOTE: | REFE                                   | R TO  |
| 1                          | 8.0 4" FA                             | DATE         | TIME     | SAMPI<br>DEP1 | LED CASING<br>TH DEPTH | DE     | /E-IN<br>PTH | DRILL<br>FLUID L | ING<br>EVEL | WATI<br>LEVE | EL     | THE A |                                        |       |
|                            |                                       | 11/29/18     |          | 18.           | ) NA                   | N      | A            | NA               |             | Non          | C      | SHEET |                                        |       |
|                            | IC                                    |              |          |               |                        |        |              |                  |             |              |        | EXPLA |                                        |       |
|                            | LETED: 11/29/18                       |              |          |               |                        |        |              |                  |             |              | T      | ERMIN |                                        |       |
| DR: <b>B</b> '             | T LG: BB Rig: RC-1                    |              |          |               |                        |        |              |                  |             |              |        | IH    | $\frac{15 \text{ LOC}}{01 \text{ DI}}$ |       |



| AET JO                        | DB NO: <b>17-03356</b>                       |              |          |             |                        | LC        | OG OF             | BORING         | NO    | B           | -36    | (p. 1 | of 1   | )     |
|-------------------------------|----------------------------------------------|--------------|----------|-------------|------------------------|-----------|-------------------|----------------|-------|-------------|--------|-------|--------|-------|
| PROJE                         | CT: West Rapid Sul                           | ostation;    | Rapid C  | ity, S      | outh Dakot             | a         |                   |                |       |             |        |       |        |       |
| DEPTH<br>IN<br>FEET           | SURFACE ELEVATION:                           |              |          |             | GEOLOGY                | N         | MC                | SAMPLI<br>TYPE | E REC | FIEL        | D & LA | ABORA | TORY   | TESTS |
| FEET                          |                                              | DESCRIPTIO   | ON       |             |                        |           | MC                | TYPE           | IN.   | WC          | DEN    | LL    | PL     | %-#20 |
| 1 -                           | LIMESTONE AGGREO                             | GATE SUF     | RFACINĢ  |             | SURFACIING             | -         |                   |                |       |             |        |       |        |       |
| 2 -                           | FILL, Silty Lean Clay wi                     | th Sand, red | ddish    | ┘ 🞆         | FILL                   |           |                   |                |       |             |        |       |        |       |
| 3 -                           | brown, gypsum, claystone present (CL)        | e and coal f | ragments |             |                        |           |                   |                |       |             |        |       |        |       |
| 4                             |                                              |              |          |             |                        |           |                   |                |       |             |        |       |        |       |
| 5 —                           |                                              |              |          |             |                        |           |                   |                |       |             |        |       |        |       |
| 6 -                           |                                              |              |          |             |                        |           |                   |                |       |             |        |       |        |       |
| 7 -                           |                                              |              |          |             |                        |           |                   |                |       |             |        |       |        |       |
| 8 -                           |                                              |              |          |             |                        |           |                   |                |       |             |        |       |        |       |
| 9 -                           |                                              |              |          |             |                        |           | М                 |                |       |             |        |       |        |       |
| 10 - 11 -                     | SILTY LEAN CLAY, re                          | ddish brow   | n (CL)   |             | ALLUVIUM               | 1         |                   |                |       |             |        |       |        |       |
| 11 - 12 -                     |                                              |              |          |             |                        |           |                   |                |       |             |        |       |        |       |
| 13 -                          |                                              |              |          |             |                        |           |                   |                |       |             |        |       |        |       |
| 14 -                          |                                              |              |          |             |                        |           |                   |                |       |             |        |       |        |       |
| 15 -                          |                                              |              |          |             |                        |           |                   |                |       |             |        |       |        |       |
| 16 -                          |                                              |              |          |             |                        |           |                   |                |       |             |        |       |        |       |
| 17 —                          |                                              |              |          |             |                        |           |                   |                |       |             |        |       |        |       |
| 18 -                          | Bottom of                                    | Boring       |          |             | 1                      |           |                   |                |       |             |        |       |        |       |
|                               |                                              | 8            |          |             |                        |           |                   |                |       |             |        |       |        |       |
|                               |                                              |              |          |             |                        |           |                   |                |       |             |        |       |        |       |
|                               |                                              |              |          |             |                        |           |                   |                |       |             |        |       |        |       |
|                               |                                              |              |          |             |                        |           |                   |                |       |             |        |       |        |       |
|                               |                                              |              |          |             |                        |           |                   |                |       |             |        |       |        |       |
|                               |                                              |              |          |             |                        |           |                   |                |       |             |        |       |        |       |
|                               |                                              |              |          |             |                        |           |                   |                |       |             |        |       |        |       |
|                               |                                              |              |          |             |                        |           |                   |                |       |             |        |       |        |       |
|                               |                                              |              |          |             |                        |           |                   |                |       |             |        |       |        |       |
| 2                             |                                              |              |          |             |                        |           |                   |                |       |             |        |       |        |       |
|                               |                                              |              |          |             |                        |           |                   |                |       |             |        |       |        |       |
|                               |                                              |              |          |             |                        |           |                   |                |       |             |        |       |        |       |
|                               |                                              |              |          |             |                        |           |                   |                |       |             |        |       |        |       |
| DEP                           | TH: DRILLING METHOD                          |              |          | WAT         | ER LEVEL MEA           | L<br>ASUR | L<br>EMEN         | TS             |       |             |        | NOTE: | REEE   | R TO  |
|                               |                                              | DATE         | TIME     | SAMP<br>DEP | LED CASING<br>TH DEPTH | CAV       | /E-IN<br>PTH      | DRILL          | ING   | WAT<br>LEVE |        | THE A |        |       |
|                               | 8.0 4" FA                                    | 11/29/18     |          | 18.         |                        |           | РТН<br>[ <b>А</b> | FLUID L        |       | Non         |        | SHEET |        |       |
|                               |                                              | 11/29/10     |          | 10.         |                        |           | A                 |                |       | TION        | C      | EXPLA |        |       |
| DEP<br>DEP<br>BORIN<br>COMP   | IG<br>LETED. 11/30/10                        |              |          |             |                        |           |                   |                |       |             |        | ERMIN |        |       |
| $\frac{COMP}{UR: \mathbf{B}}$ | <u>LETED: 11/29/18</u><br>T LG: BB Rig: RC-1 |              |          |             |                        |           |                   |                |       |             |        | TH    | IS LOO | 3     |
|                               | I LO. DD Kig: KU-I                           |              |          |             |                        |           |                   |                |       |             |        |       |        | TD 04 |



## ENGINEERING TESTING, INC.

| AET JO                      | DB NO: <b>17-03356</b>                |                   |         |                    | LC        | OG OF        | BORING             | NO   | B-           | 36A    | <b>(p.</b> ]   | lof   | 1)    |
|-----------------------------|---------------------------------------|-------------------|---------|--------------------|-----------|--------------|--------------------|------|--------------|--------|----------------|-------|-------|
| PROJE                       | CT: West Rapid Sub                    | ostation; Rapid   | City, S | outh Dakot         | a         |              |                    |      |              |        |                |       |       |
| DEPTH<br>IN<br>FEET         | SURFACE ELEVATION:                    |                   |         | GEOLOGY            | N         | MC           | SAMPLE<br>TYPE     | REC  | FIEL         | D & LA | BORA           | TORY  | TESTS |
| FËÈT                        |                                       | DESCRIPTION       |         |                    |           |              | TYPE               | IN.  | WC           | DEN    | LL             | PL    | %-#20 |
| 1                           | LIMESTONE AGGREC                      | GATE SURFACI      | NG      | SURFACIING<br>FILL | Ì         |              |                    |      |              |        |                |       |       |
| 2 -                         | FILL, Silty Lean Clay wit             | th Sand, reddish  |         | TILL               |           |              |                    |      |              |        |                |       |       |
| 3 —                         | brown, gypsum, claystone present (CL) | and coal fragment | ts      |                    |           |              |                    |      |              |        |                |       |       |
| 4 -                         |                                       |                   |         |                    |           |              |                    |      |              |        |                |       |       |
| 5 —                         |                                       |                   |         |                    |           |              |                    |      |              |        |                |       |       |
| 6 -                         |                                       |                   |         |                    |           |              |                    |      |              |        |                |       |       |
| 7 -                         |                                       |                   |         |                    |           |              |                    |      |              |        |                |       |       |
| 8 —<br>9 —                  |                                       |                   |         |                    |           | М            |                    |      |              |        |                |       |       |
| 10 -                        |                                       | 11.11             |         |                    |           | 101          |                    |      |              |        |                |       |       |
| 11 -                        | SILTY LEAN CLAY, rec                  | idish brown (CL)  |         | ALLUVIUM           |           |              |                    |      |              |        |                |       |       |
| 12 -                        |                                       |                   |         |                    |           |              |                    |      |              |        |                |       |       |
| 13 -                        | -                                     |                   |         |                    |           |              |                    |      |              |        |                |       |       |
| 14 —                        |                                       |                   |         |                    |           |              |                    |      |              |        |                |       |       |
| 15 —                        |                                       |                   |         |                    |           |              |                    |      |              |        |                |       |       |
| 16 -                        |                                       |                   |         |                    |           |              |                    |      |              |        |                |       |       |
| 17 -                        |                                       |                   |         |                    |           |              |                    |      |              |        |                |       |       |
| 18 -                        | Bottom of                             | Boring            |         |                    |           |              |                    |      |              |        |                |       |       |
|                             |                                       |                   |         |                    |           |              |                    |      |              |        |                |       |       |
|                             |                                       |                   |         |                    |           |              |                    |      |              |        |                |       |       |
|                             |                                       |                   |         |                    |           |              |                    |      |              |        |                |       |       |
|                             |                                       |                   |         |                    |           |              |                    |      |              |        |                |       |       |
|                             |                                       |                   |         |                    |           |              |                    |      |              |        |                |       |       |
|                             |                                       |                   |         |                    |           |              |                    |      |              |        |                |       |       |
|                             |                                       |                   |         |                    |           |              |                    |      |              |        |                |       |       |
|                             |                                       |                   |         |                    |           |              |                    |      |              |        |                |       |       |
|                             |                                       |                   |         |                    |           |              |                    |      |              |        |                |       |       |
| 5                           |                                       |                   |         |                    |           |              |                    |      |              |        |                |       |       |
|                             |                                       |                   |         |                    |           |              |                    |      |              |        |                |       |       |
|                             |                                       |                   |         |                    |           |              |                    |      |              |        |                |       |       |
| DEP                         | PTH: DRILLING METHOD                  |                   | WAT     | ER LEVEL MEA       | L<br>ASUR | L<br>EMEN    |                    |      |              |        |                | DEEE  |       |
|                             |                                       | DATE TIME         | CAMD    |                    |           | /E-IN<br>PTH | DRILLI<br>FLUID LI | NG   | WAT]<br>LEVE |        | NOTE:<br>THE A |       |       |
|                             | 18.0 4" FA                            |                   |         |                    |           |              |                    | EVEL |              |        | SHEET          |       |       |
|                             |                                       | 11/29/18          | 18.     | 0 NA               |           | A            | NA                 |      | Non          | e      | XPLA           |       |       |
| DEP<br>DEP<br>BORIN<br>COMP | NG<br>1 ETED. 11/20/19                |                   |         |                    |           |              |                    |      |              |        | ERMIN          |       |       |
|                             | LETED: 11/29/18<br>T LG: BB Rig: RC-1 |                   |         |                    |           |              |                    |      |              |        |                | IS LO |       |
| DR: B                       | I LU: DD Kig: KU-I                    |                   |         |                    |           |              |                    |      |              |        |                |       |       |



| AET JO                     | DB NO: <b>17-03356</b>                   |                    |         |                    | LC        | DG OF        | BORING N           | NO  | B-          | 36B    | <b>(p.</b> 1 | l of 1 | l)    |
|----------------------------|------------------------------------------|--------------------|---------|--------------------|-----------|--------------|--------------------|-----|-------------|--------|--------------|--------|-------|
| PROJE                      | CT: West Rapid Sul                       | ostation; Rapid    | City, S | outh Dakot         | a         |              |                    |     |             |        |              |        |       |
| DEPTH<br>IN<br>FEET        | SURFACE ELEVATION:                       |                    | _       | GEOLOGY            | N         | MC           | SAMPLE<br>TYPE     | REC | FIEL        | D & LA | ABORA        | TORY   | TESTS |
| FËET                       |                                          | DESCRIPTION        |         |                    |           | me           | ТҮРЕ               | IN. | WC          | DEN    | LL           | PL     | %-#20 |
| 1                          | LIMESTONE AGGREC                         | GATE SURFACI       | NG =    | SURFACIINC<br>FILL | Î<br>-    |              |                    |     |             |        |              |        |       |
| 2 -                        | FILL, Silty Lean Clay wi                 | th Sand, reddish   |         | TILL               |           |              |                    |     |             |        |              |        |       |
| 3 -                        | brown, gypsum, claystone<br>present (CL) | e and coal fragmen | ts      | X                  |           |              |                    |     |             |        |              |        |       |
| 4 -                        |                                          |                    |         | ×                  |           |              |                    |     |             |        |              |        |       |
| 5 —                        |                                          |                    |         | ×                  |           |              |                    |     |             |        |              |        |       |
| 6 -                        |                                          |                    |         | ×                  |           |              |                    |     |             |        |              |        |       |
| 7 -                        |                                          |                    |         | ×                  |           |              |                    |     |             |        |              |        |       |
| 8 - 9 -                    |                                          |                    |         | ×                  |           | М            |                    |     |             |        |              |        |       |
| 10 -                       |                                          | 11.11              |         |                    |           | 141          |                    |     |             |        |              |        |       |
| 11 -                       | SILTY LEAN CLAY, red                     | ddish brown (CL)   |         | ALLUVIUM           |           |              |                    |     |             |        |              |        |       |
| 12 -                       |                                          |                    |         |                    |           |              |                    |     |             |        |              |        |       |
| 13 -                       |                                          |                    |         |                    |           |              |                    |     |             |        |              |        |       |
| 14 -                       |                                          |                    |         |                    |           |              |                    |     |             |        |              |        |       |
| 15 -                       |                                          |                    |         |                    |           |              |                    |     |             |        |              |        |       |
| 16 -                       | -                                        |                    |         |                    |           |              |                    |     |             |        |              |        |       |
| 17 -                       |                                          |                    |         |                    |           |              |                    |     |             |        |              |        |       |
| 18 -                       | Bottom of                                | Boring             |         |                    |           |              |                    |     |             |        |              |        |       |
|                            |                                          |                    |         |                    |           |              |                    |     |             |        |              |        |       |
|                            |                                          |                    |         |                    |           |              |                    |     |             |        |              |        |       |
|                            |                                          |                    |         |                    |           |              |                    |     |             |        |              |        |       |
|                            |                                          |                    |         |                    |           |              |                    |     |             |        |              |        |       |
|                            |                                          |                    |         |                    |           |              |                    |     |             |        |              |        |       |
|                            |                                          |                    |         |                    |           |              |                    |     |             |        |              |        |       |
|                            |                                          |                    |         |                    |           |              |                    |     |             |        |              |        |       |
|                            |                                          |                    |         |                    |           |              |                    |     |             |        |              |        |       |
|                            |                                          |                    |         |                    |           |              |                    |     |             |        |              |        |       |
| 0                          |                                          |                    |         |                    |           |              |                    |     |             |        |              |        |       |
|                            |                                          |                    |         |                    |           |              |                    |     |             |        |              |        |       |
|                            |                                          |                    |         |                    |           |              |                    |     |             |        |              |        |       |
| DEP<br>DEP                 | PTH: DRILLING METHOD                     |                    | WAT     | ER LEVEL ME        | L<br>ASUR | EMEN         | UTS                |     |             |        | NOTE:        | REEE   | R TO  |
|                            |                                          | DATE TIME          | CAM     |                    |           | /E-IN<br>PTH | DRILLI<br>FLUID LE | NG  | WAT<br>LEVE |        | THE A        |        |       |
|                            | 18.0 4" FA                               | 11/29/18           | 18.     |                    |           | A<br>NA      | FLUID LE<br>NA     | VEL | Non         |        | SHEET        |        |       |
|                            |                                          | 11/2/10            | 10.     |                    |           | 1.51         |                    | -+  | 1101        |        | EXPLA        |        |       |
| BORIN                      | NG<br>LETED: <b>11/29/18</b>             |                    |         |                    |           |              |                    |     |             | T      | ERMIN        | IOLOC  | GY ON |
| $\frac{1}{2}$ DR: <b>B</b> |                                          |                    |         |                    |           |              |                    |     |             |        | TH           | IS LOO | 3     |
|                            | - 20.20 100.001                          | I I                |         |                    | I         |              | I                  |     |             |        |              |        |       |



## ENGINEERING TESTING, INC.

#### SUBSURFACE BORING LOG

| AET JO              | OB NO: <b>17-03356</b>               |               |          |               |                        | LC | OG OF        | BORIN       | G NO.           | B-          | 36C    | <b>(p.</b> ] | lof   | 1)    |
|---------------------|--------------------------------------|---------------|----------|---------------|------------------------|----|--------------|-------------|-----------------|-------------|--------|--------------|-------|-------|
| PROJE               | ECT: West Rapid Su                   | bstation;     | Rapid Ci | ty, S         | outh Dakot             | a  |              |             |                 |             |        |              |       |       |
| DEPTH<br>IN<br>FEET | SURFACE ELEVATION:                   |               |          |               | GEOLOGY                | N  | MC           | SAMI<br>TYP | LE RE           |             | D & LA | BORA         | TORY  | TESTS |
| FEET                |                                      | DESCRIPTIO    |          |               |                        |    | me           | TYP         | E IN            | WC          | DEN    | LL           | PL    | %-#20 |
| 1 -                 | LIMESTONE AGGRE                      | GATE SUR      | RFACING  |               | SURFACIING<br>FILL     | -  |              |             |                 |             |        |              |       |       |
| 2 -                 | <b>FILL</b> , Silty Lean Clay w      | ith Sand, rec | ddish    | ′ 🞆           | FILL                   |    |              |             |                 |             |        |              |       |       |
| 3 -                 | brown, gypsum, clayston present (CL) | e and coal fi | ragments |               |                        |    |              |             |                 |             |        |              |       |       |
| 4 -                 |                                      |               |          |               |                        |    |              |             |                 |             |        |              |       |       |
| 5 -                 | -                                    |               |          |               |                        |    |              |             |                 |             |        |              |       |       |
| 6 -                 | -                                    |               |          |               |                        |    |              |             |                 |             |        |              |       |       |
| 7 -                 | -                                    |               |          |               |                        |    |              |             |                 |             |        |              |       |       |
| 8 - 9 -             | ]                                    |               |          |               |                        |    | М            |             |                 |             |        |              |       |       |
| 9 –<br>10 –         |                                      |               |          |               |                        |    | IVI          |             |                 |             |        |              |       |       |
| 11 -                | SILTY LEAN CLAY, ro                  | eddish brown  | n (CL)   |               | ALLUVIUM               |    |              |             |                 |             |        |              |       |       |
| 12 -                | -                                    |               |          |               |                        |    |              |             |                 |             |        |              |       |       |
| 13 -                | -                                    |               |          |               |                        |    |              |             |                 |             |        |              |       |       |
| 14 -                | -                                    |               |          |               |                        |    |              |             |                 |             |        |              |       |       |
| 15 -                | -                                    |               |          |               |                        |    |              |             |                 |             |        |              |       |       |
| 16 -                | -                                    |               |          |               |                        |    |              |             |                 |             |        |              |       |       |
| 17 -                | _                                    |               |          |               |                        |    |              |             |                 |             |        |              |       |       |
| 18 -                | Bottom of                            | f Boring      |          |               |                        |    |              |             |                 |             |        |              |       |       |
|                     |                                      |               |          |               |                        |    |              |             |                 |             |        |              |       |       |
|                     |                                      |               |          |               |                        |    |              |             |                 |             |        |              |       |       |
|                     |                                      |               |          |               |                        |    |              |             |                 |             |        |              |       |       |
|                     |                                      |               |          |               |                        |    |              |             |                 |             |        |              |       |       |
|                     |                                      |               |          |               |                        |    |              |             |                 |             |        |              |       |       |
|                     |                                      |               |          |               |                        |    |              |             |                 |             |        |              |       |       |
|                     |                                      |               |          |               |                        |    |              |             |                 |             |        |              |       |       |
|                     |                                      |               |          |               |                        |    |              |             |                 |             |        |              |       |       |
|                     |                                      |               |          |               |                        |    |              |             |                 |             |        |              |       |       |
| 5                   |                                      |               |          |               |                        |    |              |             |                 |             |        |              |       |       |
|                     |                                      |               |          |               |                        |    |              |             |                 |             |        |              |       |       |
|                     |                                      |               |          |               |                        |    |              |             |                 |             |        |              |       |       |
|                     |                                      |               |          |               |                        |    |              |             |                 |             |        |              |       |       |
| DEF                 | PTH: DRILLING METHOD                 | <br>  T       |          |               | ER LEVEL MEA           |    |              |             |                 | MI A T      |        | NOTE:        | REFE  | R TO  |
| 1                   | 18.0 4" FA                           | DATE          | TIME     | SAMPI<br>DEPT | LED CASING<br>TH DEPTH | DE | /E-IN<br>PTH | FLUII       | LLING<br>DLEVEL | WAT<br>LEVI |        | THE A        |       |       |
|                     |                                      | 11/29/18      |          | 18.           | ) NA                   | N  | A            | I           | IA              | Nor         | le     | SHEET        |       |       |
|                     | NG                                   |               |          |               |                        |    |              |             |                 |             |        | EXPLA        |       |       |
|                     | NG<br>PLETED: <b>11/29/18</b>        |               |          |               |                        |    |              |             |                 |             | T      | ERMIN        |       |       |
| DR: B               | BT LG: BB Rig: RC-1                  |               |          |               |                        |    |              |             |                 |             |        |              | IS LO |       |



### ERING G. INC.

## SUBSURFACE BORING LOG

| AET JO                      | OB NO: <b>17-03356</b>                   |                |          |              |                      | LC        | OG OF        | BOI      | RING N           | 10        | <b>B-</b>    | 36D          | <b>(p.</b> 1 | l of 1                                 | 1)    |
|-----------------------------|------------------------------------------|----------------|----------|--------------|----------------------|-----------|--------------|----------|------------------|-----------|--------------|--------------|--------------|----------------------------------------|-------|
| PROJE                       | ECT: West Rapid Sul                      | bstation; R    | apid Cit | y, So        | outh Dakota          | a         |              |          |                  |           |              |              |              |                                        |       |
| DEPTH                       | SURFACE ELEVATION:                       |                |          |              | GEOLOGY              | N         | MC           | SA       | MPLE<br>YPE      | REC       | FIELI        | ) & LA       | BORA         | TORY                                   | TESTS |
| IN<br>FEET                  | MATERIAL                                 | DESCRIPTION    |          | _            |                      |           | MC           | T        | YPE              | IN.       | WC           | DEN          | LL           | PL                                     | %-#20 |
| 1 -                         | LIMESTONE AGGREO                         | GATE SURF      | FACING   |              | SURFACIING<br>FILL   |           |              |          |                  |           |              |              |              |                                        |       |
| 2 -                         | FILL, Silty Lean Clay wi                 | th Sand, redd  | lish     |              | FILL                 |           |              |          |                  |           |              |              |              |                                        |       |
| 3 -                         | brown, gypsum, claystone<br>present (CL) | e and coal fra | gments   |              |                      |           |              |          |                  |           |              |              |              |                                        |       |
| 4 -                         |                                          |                |          |              |                      |           |              |          |                  |           |              |              |              |                                        |       |
| 5 -                         | -                                        |                |          |              |                      |           |              |          |                  |           |              |              |              |                                        |       |
| 6 -                         | -                                        |                |          |              |                      |           |              |          |                  |           |              |              |              |                                        |       |
| 7 -                         | 1                                        |                |          |              |                      |           |              |          |                  |           |              |              |              |                                        |       |
| 8 -                         | 1                                        |                |          |              |                      |           | 1.4          |          |                  |           |              |              |              |                                        |       |
| 9 - 10 -                    | ]                                        |                |          |              |                      |           | Μ            |          |                  |           |              |              |              |                                        |       |
| 10 -                        | SILTY LEAN CLAY, re                      | ddish brown    | (CL)     |              | ALLUVIUM             |           |              |          |                  |           |              |              |              |                                        |       |
| 12 -                        | -                                        |                |          |              |                      |           |              |          |                  |           |              |              |              |                                        |       |
| 13 -                        |                                          |                |          |              |                      |           |              |          |                  |           |              |              |              |                                        |       |
| 14 -                        | -                                        |                |          |              |                      |           |              |          |                  |           |              |              |              |                                        |       |
| 15 -                        | -                                        |                |          |              |                      |           |              |          |                  |           |              |              |              |                                        |       |
| 16 -                        | -                                        |                |          |              |                      |           |              |          |                  |           |              |              |              |                                        |       |
| 17 -                        |                                          |                |          |              |                      |           |              |          |                  |           |              |              |              |                                        |       |
| 18 -                        | Bottom of                                | Boring         |          |              |                      |           |              |          |                  |           |              |              |              |                                        |       |
|                             |                                          |                |          |              |                      |           |              |          |                  |           |              |              |              |                                        |       |
|                             |                                          |                |          |              |                      |           |              |          |                  |           |              |              |              |                                        |       |
|                             |                                          |                |          |              |                      |           |              |          |                  |           |              |              |              |                                        |       |
|                             |                                          |                |          |              |                      |           |              |          |                  |           |              |              |              |                                        |       |
|                             |                                          |                |          |              |                      |           |              |          |                  |           |              |              |              |                                        |       |
|                             |                                          |                |          |              |                      |           |              |          |                  |           |              |              |              |                                        |       |
|                             |                                          |                |          |              |                      |           |              |          |                  |           |              |              |              |                                        |       |
|                             |                                          |                |          |              |                      |           |              |          |                  |           |              |              |              |                                        |       |
|                             |                                          |                |          |              |                      |           |              |          |                  |           |              |              |              |                                        |       |
| 2                           |                                          |                |          |              |                      |           |              |          |                  |           |              |              |              |                                        |       |
|                             |                                          |                |          |              |                      |           |              |          |                  |           |              |              |              |                                        |       |
|                             |                                          |                |          |              |                      |           |              |          |                  |           |              |              |              |                                        |       |
|                             |                                          | 1              |          |              |                      |           |              |          |                  |           |              |              |              |                                        |       |
| DEI                         | PTH: DRILLING METHOD                     |                |          |              | ER LEVEL MEA         |           |              |          |                  |           |              |              | NOTE:        | REFE                                   | R TO  |
|                             | 18.0 4" FA                               | DATE           | TIME SA  | AMPL<br>DEPT | ED CASING<br>H DEPTH | CAV<br>DE | /E-IN<br>PTH | D<br>FLU | RILLIN<br>JID LE | NG<br>VEL | WATI<br>LEVE | ER   ,<br>EL | THE A        | TTAC                                   | HED   |
|                             |                                          | 11/29/18       |          | 18.0         |                      |           | A            |          | NA               |           | Non          | e            | SHEET        | S FOF                                  | R AN  |
|                             |                                          |                |          |              |                      |           |              |          |                  |           |              | E            | XPLA         | NATIC                                  | ON OF |
| DEI<br>DEI<br>BORIN<br>COMP | NG<br>PLETED: <b>11/29/18</b>            |                |          |              |                      |           |              |          |                  |           |              | T            | ERMIN        |                                        |       |
| $DR: \mathbf{B}$            | T LG: BB Rig: RC-1                       |                |          |              |                      |           |              |          |                  |           |              |              |              | $\frac{15 \text{ LOC}}{01 \text{ DI}}$ |       |



## SUBSURFACE BORING LOG

| AET JO                                  | OB NO: <b>17-03356</b>                                     |               |           |             |              | LC  | G OF         | BORING         | NO  | B            | -37    | (p. 1 | <b>of 1</b> ] | )     |
|-----------------------------------------|------------------------------------------------------------|---------------|-----------|-------------|--------------|-----|--------------|----------------|-----|--------------|--------|-------|---------------|-------|
| PROJE                                   | ECT: West Rapid Sub                                        | ostation; R   | apid City | y, So       | outh Dakota  | a   |              |                |     |              |        |       |               |       |
| DEPTH<br>IN<br>FEET                     | SURFACE ELEVATION:                                         |               |           |             | GEOLOGY      | N   | MC           | SAMPLE<br>TYPE | REC | FIELI        | ) & LA | ABORA | TORY          | TESTS |
| FEET                                    |                                                            | DESCRIPTION   | 1         |             |              |     | MC           | TYPE           | IN. | WC           | DEN    | LL    | PL            | %-#20 |
| 1 -                                     | LIMESTONE AGGREC                                           | GATE SURF     |           |             | SURFACIING   |     |              |                |     |              |        |       |               |       |
| 2 -                                     | FILL, Silty Lean Clay with                                 | th Sand, redd | lish      |             | FILL         |     |              |                |     |              |        |       |               |       |
| 3 -                                     | brown, gypsum, claystone<br>present (CL)                   | and coal frag | gments    |             |              |     |              |                |     |              |        |       |               |       |
| 4 -                                     |                                                            |               |           |             |              |     |              |                |     |              |        |       |               |       |
| 5 —                                     | -                                                          |               |           |             |              |     |              |                |     |              |        |       |               |       |
| 6 -                                     | -                                                          |               |           |             |              |     |              |                |     |              |        |       |               |       |
| 7 -                                     | -                                                          |               |           |             |              |     |              |                |     |              |        |       |               |       |
| 8 -                                     | -                                                          |               |           |             |              |     |              |                |     |              |        |       |               |       |
| 9 -                                     | -                                                          |               |           |             |              |     | M            |                |     |              |        |       |               |       |
| 10 - 11 -                               | SILTY LEAN CLAY, red                                       | ldish brown ( | (CL)      |             | ALLUVIUM     |     |              |                |     |              |        |       |               |       |
| 11 - 12 -                               |                                                            |               |           |             |              |     |              |                |     |              |        |       |               |       |
| 13 -                                    | _                                                          |               |           |             |              |     |              |                |     |              |        |       |               |       |
| 14 -                                    |                                                            |               |           |             |              |     |              |                |     |              |        |       |               |       |
| 15 -                                    | _                                                          |               |           |             |              |     |              |                |     |              |        |       |               |       |
| 16 -                                    | -                                                          |               |           |             |              |     |              |                |     |              |        |       |               |       |
| 17 —                                    | _                                                          |               |           |             |              |     |              |                |     |              |        |       |               |       |
| 18 -                                    | Bottom of                                                  | Boring        |           |             |              |     |              |                |     |              |        |       |               |       |
|                                         |                                                            | 8             |           |             |              |     |              |                |     |              |        |       |               |       |
|                                         |                                                            |               |           |             |              |     |              |                |     |              |        |       |               |       |
|                                         |                                                            |               |           |             |              |     |              |                |     |              |        |       |               |       |
|                                         |                                                            |               |           |             |              |     |              |                |     |              |        |       |               |       |
|                                         |                                                            |               |           |             |              |     |              |                |     |              |        |       |               |       |
|                                         |                                                            |               |           |             |              |     |              |                |     |              |        |       |               |       |
|                                         |                                                            |               |           |             |              |     |              |                |     |              |        |       |               |       |
|                                         |                                                            |               |           |             |              |     |              |                |     |              |        |       |               |       |
|                                         |                                                            |               |           |             |              |     |              |                |     |              |        |       |               |       |
| 2                                       |                                                            |               |           |             |              |     |              |                |     |              |        |       |               |       |
| 10121                                   |                                                            |               |           |             |              |     |              |                |     |              |        |       |               |       |
| 2                                       |                                                            |               |           |             |              |     |              |                |     |              |        |       |               |       |
|                                         |                                                            |               |           |             |              |     |              |                |     |              |        |       |               |       |
| DEP                                     | PTH: DRILLING METHOD                                       |               | v         | VATE        | ER LEVEL MEA | SUR | EMEN         | ITS            | 1   | 1            | <br>   | NOTE: | BEEE          | R TO  |
|                                         |                                                            | DATE          |           | MPL<br>DEPT |              |     | 'E-IN<br>PTH | DRILL          | NG  | WATI<br>LEVE |        | THE A |               |       |
|                                         | 18.0 4" FA                                                 | 11/29/18      |           |             |              |     |              | FLUID L        |     |              |        | SHEET |               |       |
|                                         |                                                            | 11/27/10      |           | 18.0        | NA           | 1   | A            | NA             |     | Non          | C      | EXPLA |               |       |
| DEP<br>DEP                              | NG<br>1 ETED. 11/20/19                                     |               |           |             |              |     |              |                |     |              |        | ERMIN |               |       |
| $\frac{COMP}{\frac{1}{2}}$ DR: <b>B</b> | <u>LETED: 11/29/18</u><br>T LG: <b>BB</b> Rig: <b>RC-1</b> |               |           |             |              |     |              |                |     |              |        |       | IS LOO        |       |
|                                         | T LG: BB Rig: RC-1                                         |               | I         |             |              |     |              |                |     |              |        |       |               |       |



## SUBSURFACE BORING LOG

| AET JO                                      | DB NO: <b>17-03356</b>   |              |           |             |        |                | LC        | OG OF        | BO | RING N      | NO  | <b>B-</b>   | 37A          | <b>(p.</b> ) | lof   | 1)            |
|---------------------------------------------|--------------------------|--------------|-----------|-------------|--------|----------------|-----------|--------------|----|-------------|-----|-------------|--------------|--------------|-------|---------------|
| PROJE                                       | CT: West Rapid Sul       | ostation;    | Rapid C   | ity, S      | outh   | Dakot          | a         |              |    |             |     |             |              |              |       |               |
| DEPTH<br>IN<br>FEET                         | SURFACE ELEVATION:       |              |           |             | GEO    | LOGY           | N         | MC           | SA | MPLE<br>YPE | REC | FIEL        | D & L/       | ABORA        | TORY  | TESTS         |
| FEET                                        | MATERIAL                 | DESCRIPTI    | ON        |             |        |                | IN        | MC           | T  | YPE         | IN. | WC          | DEN          | LL           | PL    | <b>%-</b> #20 |
| 1 -                                         | LIMESTONE AGGREO         | GATE SUI     | RFACING   |             |        | ACIING         | -         |              |    |             |     |             |              |              |       |               |
| $\begin{vmatrix} 1 \\ 2 \\ - \end{vmatrix}$ | FILL, Silty Lean Clay wi | th Sand, re  | ddish     | -/ 🞆        | FILL   |                |           |              |    |             |     |             |              |              |       |               |
| 3 -                                         | brown, gypsum, claystone | e and coal f | fragments |             | X      |                |           |              |    |             |     |             |              |              |       |               |
| 4 -                                         | present (CL)             |              |           |             | ×      |                |           |              |    |             |     |             |              |              |       |               |
| 5                                           |                          |              |           |             |        |                |           |              |    |             |     |             |              |              |       |               |
| 6 -                                         |                          |              |           |             | ×.     |                |           |              |    |             |     |             |              |              |       |               |
| 7 —                                         |                          |              |           |             | ×.     |                |           |              |    |             |     |             |              |              |       |               |
| 8 -                                         |                          |              |           |             | X      |                |           |              |    |             |     |             |              |              |       |               |
| 9                                           |                          |              |           |             |        |                |           | М            |    |             |     |             |              |              |       |               |
| 10 -                                        | SILTY LEAN CLAY, re      | ddish brow   | m (CL)    | -))))       | ALLU   | VIUM           |           |              |    |             |     |             |              |              |       |               |
| 11 -                                        |                          |              | II (02)   |             |        |                |           |              |    |             |     |             |              |              |       |               |
| 12 -                                        |                          |              |           |             |        |                |           |              |    |             |     |             |              |              |       |               |
| 13 -                                        |                          |              |           |             |        |                |           |              |    |             |     |             |              |              |       |               |
| 14 -                                        |                          |              |           |             |        |                |           |              |    |             |     |             |              |              |       |               |
| 15 —                                        |                          |              |           |             |        |                |           |              |    |             |     |             |              |              |       |               |
| 16 -                                        |                          |              |           |             |        |                |           |              |    |             |     |             |              |              |       |               |
| 17 -                                        |                          |              |           |             |        |                |           |              |    |             |     |             |              |              |       |               |
| 18 -                                        | Bottom of                | Boring       |           |             |        |                |           |              |    |             |     |             |              |              |       |               |
|                                             |                          |              |           |             |        |                |           |              |    |             |     |             |              |              |       |               |
|                                             |                          |              |           |             |        |                |           |              |    |             |     |             |              |              |       |               |
|                                             |                          |              |           |             |        |                |           |              |    |             |     |             |              |              |       |               |
|                                             |                          |              |           |             |        |                |           |              |    |             |     |             |              |              |       |               |
|                                             |                          |              |           |             |        |                |           |              |    |             |     |             |              |              |       |               |
|                                             |                          |              |           |             |        |                |           |              |    |             |     |             |              |              |       |               |
|                                             |                          |              |           |             |        |                |           |              |    |             |     |             |              |              |       |               |
|                                             |                          |              |           |             |        |                |           |              |    |             |     |             |              |              |       |               |
|                                             |                          |              |           |             |        |                |           |              |    |             |     |             |              |              |       |               |
| 2                                           |                          |              |           |             |        |                |           |              |    |             |     |             |              |              |       |               |
| -                                           |                          |              |           |             |        |                |           |              |    |             |     |             |              |              |       |               |
|                                             |                          |              |           |             |        |                |           |              |    |             |     |             |              |              |       |               |
|                                             |                          |              |           |             |        |                |           |              |    |             |     |             |              |              |       |               |
| DEP                                         | TH: DRILLING METHOD      |              |           | WAT         | ER LEV | EL MEA         | L<br>ASUR | EMEN         |    |             | I   | 1           | <u> </u>     | NOTE:        | REE   |               |
|                                             |                          | DATE         | TIME      | SAMP<br>DEP |        | ASING<br>DEPTH |           | 'E-IN<br>PTH | Г  | RILLI       | NG  | WAT<br>LEVE |              | THE A        |       |               |
| DEP<br>DEP                                  | 18.0 4" FA               |              |           |             |        |                |           |              | FL | UID LE      | VEL |             |              | SHEET        |       |               |
|                                             |                          | 11/29/18     |           | 18.         | U      | NA             |           | A            |    | NA          |     | Non         |              | EXPLA        |       |               |
| BORIN                                       | NG 14/20/40              |              |           |             |        |                |           |              | -  |             |     |             |              | ERMIN        |       |               |
|                                             | LETED: 11/29/18          |              |           |             |        |                |           |              |    |             |     |             | <sup>1</sup> |              | IS LO |               |
| DR: B                                       | T LG: BB Rig: RC-1       |              |           |             |        |                |           |              |    |             |     |             |              |              |       |               |



## RING

| PROJECT: West Rapid Substation; Rapid City, South Dakota         DEPTH<br>INFEET       SURFACE ELEVATION:<br>MATERIAL DESCRIPTION       GEOLOGY       N       MC       SAMPLE<br>TYPE       REC<br>IVE       FIELD & LABORATON         UP       LIMESTONE AGGREGATE SURFACING<br>10 inches       SURFACING       SURFACING<br>SURFACING       N       MC       SAMPLE<br>TYPE       REC<br>IV.       FIELD & LABORATON         2       -       LIMESTONE AGGREGATE SURFACING<br>0 brown, gypsum, claystone and coal fragments<br>present (CL)       -       SURFACING<br>FILL       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       - |                |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| LIMESTONE AGGREGATE SURFACING<br>1 - U0 inches<br>FILL, Silty Lean Clay with Sand, reddish<br>brown, gypsum, claystone and coal fragments<br>resent (CL)<br>4 -<br>5 -<br>6 -<br>7 -<br>8 -<br>9 -<br>10<br>SILTY LEAN CLAY, reddish brown (CL)<br>ALLUVIUM<br>M<br>M<br>M<br>M<br>M<br>M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                |
| LIMESTONE AGGREGATE SURFACING<br>1 - U0 inches<br>FILL, Silty Lean Clay with Sand, reddish<br>brown, gypsum, claystone and coal fragments<br>resent (CL)<br>4 -<br>5 -<br>6 -<br>7 -<br>8 -<br>9 -<br>10<br>SILTY LEAN CLAY, reddish brown (CL)<br>ALLUVIUM<br>M<br>M<br>M<br>M<br>M<br>M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Y TEST         |
| 1 10 inches   2 FILL, Silty Lean Clay with Sand, reddish<br>brown, gypsum, claystone and coal fragments<br>present (CL)   4   5   6   7   8   9   10   11   12   13   14   15   16   17   18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <b>~</b> %-#20 |
| FILL, Silty Lean Clay with Sand, reddish<br>brown, gypsum, claystone and coal fragments<br>present (CL)<br>4 -<br>5 -<br>6 -<br>7 -<br>8 -<br>9 -<br>10<br>11 -<br>12 -<br>13 -<br>14 -<br>15 -<br>16 -<br>17 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |
| 3 - present (CL)         4 -         5 -         6 -         7 -         8 -         9 -         10         SILTY LEAN CLAY, reddish brown (CL)         ALLUVIUM         M         11 -         12 -         13 -         14 -         15 -         16 -         17 -         18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |
| 4 - 5 - 6 - 7 - 8 - 9 - 9 - 9 - 9 - 9 - 10 - <b>SILTY LEAN CLAY</b> , reddish brown (CL) ALLUVIUM M M M - 11 - 12 - 13 - 14 - 15 - 16 - 17 - 18 - 14 - 15 - 16 - 17 - 18 - 14 - 15 - 16 - 17 - 18 - 14 - 15 - 16 - 17 - 18 - 18 - 18 - 18 - 18 - 18 - 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |
| 6 -<br>7 -<br>8 -<br>9 -<br>10 -<br>11 -<br>12 -<br>13 -<br>14 -<br>15 -<br>16 -<br>17 -<br>18 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |
| 7 -       8 -         9 -       9 -         10       SILTY LEAN CLAY, reddish brown (CL)         11 -       12 -         13 -       14 -         15 -       16 -         17 -       18 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |
| $ \begin{array}{c} 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 16 \\ 17 \\ 18 \\ \end{array} $ M M M M M M M M M M M M M M M M M M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |
| 9 -<br>10 -<br>11 -<br>12 -<br>13 -<br>14 -<br>15 -<br>16 -<br>17 -<br>18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                |
| 10       SILTY LEAN CLAY, reddish brown (CL)         11 -         12 -         13 -         14 -         15 -         16 -         17 -         18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |
| SILTY LEAN CLAY, reddish brown (CL)<br>11 -<br>12 -<br>13 -<br>14 -<br>15 -<br>16 -<br>17 -<br>18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |
| $ \begin{array}{c} 11 - \\ 12 - \\ 13 - \\ 14 - \\ 15 - \\ 16 - \\ 17 - \\ 18 \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                |
| $ \begin{array}{c} 13 - \\ 14 - \\ 15 - \\ 16 - \\ 17 - \\ 18 \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                |
| $ \begin{array}{c} 14 - \\ 15 - \\ 16 - \\ 17 - \\ 18 \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |
| Bottom of Boring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |
| DEPTH: DRILLING METHOD WATER LEVEL MEASUREMENTS NOTE: RE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | FER TO         |
| 18.0     4" FA     DATE     TIME     SAMPLED DEPTH     CASING DEPTH     DRILLING DEPTH     WATER LEVEL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CHED           |
| 1010     111       11/29/18     18.0     NA     NA     None     SHEETS F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | OR AN          |
| EXPLANA'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |
| DEPTH:       DRILLING METHOD       VATER LEVEL MEASUREMENTS       NOTE: RE         18.0       4" FA       DATE       TIME       SAMPLED       CASING       CAVE-IN       DRILLING       WATER       THE ATTA         11/29/18       18.0       NA       NA       NA       None       EXPLANATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | TION OF        |
| DR: BT LG: BB Rig: RC-1 THIS I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                |



| AET JOB NO:                                  | 17-03356           |              |          |             |                        | LC | OG OF        | BO  | RING N            | IO  | <b>B-</b> .  | 37C    | <b>(p.</b> 1 | lof    | 1)    |
|----------------------------------------------|--------------------|--------------|----------|-------------|------------------------|----|--------------|-----|-------------------|-----|--------------|--------|--------------|--------|-------|
| PROJECT:                                     | West Rapid Sul     | ostation;    | Rapid Ci | ity, S      | outh Dakot             | a  |              |     |                   |     |              |        |              |        |       |
| DEPTH<br>IN<br>FEET SURI                     | FACE ELEVATION:    |              |          |             | GEOLOGY                | N  | MC           | SA  | MPLE<br>YPE       | REC | FIELI        | ) & LA | BORA         | TORY   | TESTS |
|                                              | MATERIAL           |              |          |             |                        |    | MC           | Т   | YPE               | IN. | WC           | DEN    | LL           | PL     | %-#20 |
| $1 \rightarrow 10$ inch                      | STONE AGGRE(       | GATE SUF     | RFACING  |             | SURFACIING             | Ì  |              |     |                   |     |              |        |              |        |       |
| 2 - FILL,                                    | Silty Lean Clay wi | th Sand, re  | ddish    | ′           | FILL                   |    |              |     |                   |     |              |        |              |        |       |
| 3 - brown, present                           | gypsum, claystone  | e and coal f | ragments |             |                        |    |              |     |                   |     |              |        |              |        |       |
| 4 - present                                  |                    |              |          |             |                        |    |              |     |                   |     |              |        |              |        |       |
| 5 —                                          |                    |              |          |             |                        |    |              |     |                   |     |              |        |              |        |       |
| 6 —                                          |                    |              |          |             |                        |    |              |     |                   |     |              |        |              |        |       |
| 7 —                                          |                    |              |          |             |                        |    |              |     |                   |     |              |        |              |        |       |
| 8 -                                          |                    |              |          |             |                        |    |              |     |                   |     |              |        |              |        |       |
| 9 —                                          |                    |              |          |             |                        |    | М            |     |                   |     |              |        |              |        |       |
| 10 SILTY                                     | LEAN CLAY, red     | ddish brow   | n (CL)   |             | ALLUVIUM               | -  |              |     |                   |     |              |        |              |        |       |
| 11 -                                         |                    |              |          |             |                        |    |              |     |                   |     |              |        |              |        |       |
| 12 -                                         |                    |              |          |             |                        |    |              |     |                   |     |              |        |              |        |       |
| 13 - 14 -                                    |                    |              |          |             |                        |    |              |     |                   |     |              |        |              |        |       |
|                                              |                    |              |          |             |                        |    |              |     |                   |     |              |        |              |        |       |
| 16 -                                         |                    |              |          |             |                        |    |              |     |                   |     |              |        |              |        |       |
| 17 -                                         |                    |              |          |             |                        |    |              |     |                   |     |              |        |              |        |       |
| 18                                           |                    | D :          |          |             |                        |    |              | I   |                   |     |              |        |              |        |       |
|                                              | Bottom of          | Boring       |          |             |                        |    |              |     |                   |     |              |        |              |        |       |
|                                              |                    |              |          |             |                        |    |              |     |                   |     |              |        |              |        |       |
|                                              |                    |              |          |             |                        |    |              |     |                   |     |              |        |              |        |       |
|                                              |                    |              |          |             |                        |    |              |     |                   |     |              |        |              |        |       |
|                                              |                    |              |          |             |                        |    |              |     |                   |     |              |        |              |        |       |
|                                              |                    |              |          |             |                        |    |              |     |                   |     |              |        |              |        |       |
|                                              |                    |              |          |             |                        |    |              |     |                   |     |              |        |              |        |       |
|                                              |                    |              |          |             |                        |    |              |     |                   |     |              |        |              |        |       |
|                                              |                    |              |          |             |                        |    |              |     |                   |     |              |        |              |        |       |
|                                              |                    |              |          |             |                        |    |              |     |                   |     |              |        |              |        |       |
|                                              |                    |              |          |             |                        |    |              |     |                   |     |              |        |              |        |       |
|                                              |                    |              |          |             |                        |    |              |     |                   |     |              |        |              |        |       |
|                                              |                    |              |          |             |                        |    |              |     |                   |     |              |        |              |        |       |
|                                              |                    |              |          |             |                        |    |              |     |                   |     |              |        |              |        |       |
| DEPTH: DI                                    | RILLING METHOD     |              |          |             | ER LEVEL MEA           | 1  |              |     |                   |     | 117 4 777    |        | NOTE:        | REFE   | R TO  |
| 18.0 4'                                      | ' FA               | DATE         | TIME     | SAMP<br>DEP | LED CASING<br>TH DEPTH |    | /E-IN<br>PTH | FLU | ORILLIN<br>UID LE | VEL | WATI<br>LEVE | EL     | THE A        |        |       |
|                                              |                    | 11/29/18     |          | 18.         | 0 NA                   | N  | A            |     | NA                |     | Non          | e      | SHEET        |        |       |
|                                              |                    |              |          |             |                        |    |              |     |                   |     |              |        | XPLA         |        |       |
| DEPTH: DI<br>18.0 4'<br>BORING<br>COMPLETED: | 11/29/18           |              |          |             |                        |    |              |     |                   |     |              | T      | ERMIN        |        |       |
| DR: <b>BT</b> LG:                            | BB Rig: RC-1       |              |          |             |                        |    |              |     |                   |     |              |        |              | IS LOO |       |



| AET JO                     | DB NO: <b>17-03356</b>                  |                 |              |       |                 | LC  | OG OF        | BOI | RING N           | IO        | <b>B-</b> .  | 37D    | <b>(p.</b> 1 | lof    | 1)    |
|----------------------------|-----------------------------------------|-----------------|--------------|-------|-----------------|-----|--------------|-----|------------------|-----------|--------------|--------|--------------|--------|-------|
| PROJE                      | CT: West Rapid Su                       | bstation; R     | apid City, S | Sout  | h Dakota        | a   |              |     |                  |           |              |        |              |        |       |
| DEPTH<br>IN<br>FEET        | SURFACE ELEVATION:                      |                 |              | Gl    | EOLOGY          | N   | MC           | SA  | MPLE<br>YPE      | REC       | FIELI        | ) & LA | BORA         | TORY   | TESTS |
| FEET                       |                                         | DESCRIPTION     |              |       |                 |     | MC           | Т   | YPE              | IN.       | WC           | DEN    | LL           | PL     | %-#20 |
| 1                          | LIMESTONE AGGRE                         | GATE SURF       | ACING        |       | RFACIING        |     |              |     |                  |           |              |        |              |        |       |
| 2 -                        | FILL, Silty Lean Clay wi                | th Sand, redd   | ish 🛛        | FIL   | L               |     |              |     |                  |           |              |        |              |        |       |
| 3 -                        | brown, gypsum, clayston<br>present (CL) | e and coal frag | gments       | 8     |                 |     |              |     |                  |           |              |        |              |        |       |
| 4                          |                                         |                 |              | 8     |                 |     |              |     |                  |           |              |        |              |        |       |
| 5 —                        |                                         |                 |              | 8     |                 |     |              |     |                  |           |              |        |              |        |       |
| 6 -                        |                                         |                 |              | 8     |                 |     |              |     |                  |           |              |        |              |        |       |
| 7 —                        |                                         |                 |              | 8     |                 |     |              |     |                  |           |              |        |              |        |       |
| 8                          |                                         |                 |              | 8     |                 |     |              |     |                  |           |              |        |              |        |       |
| 9 —                        |                                         |                 |              | 8     |                 |     | М            |     |                  |           |              |        |              |        |       |
| 10 -                       | SILTY LEAN CLAY, re                     | ddish brown (   | (CL)         | ALI   | LUVIUM          |     |              |     |                  |           |              |        |              |        |       |
| 11 -                       |                                         |                 |              |       |                 |     |              |     |                  |           |              |        |              |        |       |
| 12 -                       |                                         |                 |              |       |                 |     |              |     |                  |           |              |        |              |        |       |
| 13 -                       |                                         |                 |              |       |                 |     |              |     |                  |           |              |        |              |        |       |
| 14 —<br>15 —               |                                         |                 |              |       |                 |     |              |     |                  |           |              |        |              |        |       |
| 15 -                       |                                         |                 |              |       |                 |     |              |     |                  |           |              |        |              |        |       |
| 17 -                       |                                         |                 |              |       |                 |     |              |     |                  |           |              |        |              |        |       |
| 18 -                       |                                         | ~ .             |              |       |                 |     |              |     |                  |           |              |        |              |        |       |
| 10                         | Bottom of                               | Boring          |              |       |                 |     |              |     |                  |           |              |        |              |        |       |
|                            |                                         |                 |              |       |                 |     |              |     |                  |           |              |        |              |        |       |
|                            |                                         |                 |              |       |                 |     |              |     |                  |           |              |        |              |        |       |
|                            |                                         |                 |              |       |                 |     |              |     |                  |           |              |        |              |        |       |
|                            |                                         |                 |              |       |                 |     |              |     |                  |           |              |        |              |        |       |
|                            |                                         |                 |              |       |                 |     |              |     |                  |           |              |        |              |        |       |
|                            |                                         |                 |              |       |                 |     |              |     |                  |           |              |        |              |        |       |
|                            |                                         |                 |              |       |                 |     |              |     |                  |           |              |        |              |        |       |
|                            |                                         |                 |              |       |                 |     |              |     |                  |           |              |        |              |        |       |
|                            |                                         |                 |              |       |                 |     |              |     |                  |           |              |        |              |        |       |
| 5                          |                                         |                 |              |       |                 |     |              |     |                  |           |              |        |              |        |       |
| 1                          |                                         |                 |              |       |                 |     |              |     |                  |           |              |        |              |        |       |
|                            |                                         |                 |              |       |                 |     |              |     |                  |           |              |        |              |        |       |
|                            |                                         |                 |              |       |                 |     |              |     |                  |           |              |        |              |        |       |
| DEP                        | TH: DRILLING METHOD                     |                 | WA           | TER L | EVEL MEA        | SUR | EMEN         | TS  |                  |           |              | N      | IOTE:        | REFE   | R TO  |
| 1                          |                                         | DATE            | TIME SAMI    | PLED  | CASING<br>DEPTH | CAV | 'E-IN<br>PTH | D   | RILLIN<br>JID LE | NG<br>VEI | WATI<br>LEVE | ER ,   | ГНЕ А        | TTAC   | HED   |
|                            | 18.0 4" FA                              | 11/29/18        | 18           |       | NA              |     | [ <b>A</b>   |     | NA               | ·         | Non          | _      | SHEET        |        |       |
|                            |                                         |                 |              | ••    | 11/1            | 1   |              |     | 1 1 <b>1 1</b>   | -+        | 1 1011       |        | XPLA         | NATIO  | ON OF |
| DEP<br>DEP                 | NG<br>LETED: <b>11/29/18</b>            |                 |              |       |                 |     |              |     |                  |           |              | TI     | ERMIN        | IOLOC  | GY ON |
| $\frac{1}{2}$ DR: <b>B</b> |                                         |                 |              |       |                 |     |              |     |                  | -+        |              |        | TH           | IS LOO | 3     |
|                            | 1 10. DD Mg. NC-1                       |                 |              |       |                 |     |              |     |                  |           |              |        |              |        | ID A  |



## SUBSURFACE BORING LOG

| AET JOB NO: <b>17-03356</b>                                           |               |          |               |              | LC | G OF                        | BORING         | NO   | B     | -38    | (p. 1 | of 1   | )     |
|-----------------------------------------------------------------------|---------------|----------|---------------|--------------|----|-----------------------------|----------------|------|-------|--------|-------|--------|-------|
| PROJECT: West Rapid Su                                                | bstation;     | Rapid C  | ity, S        | outh Dakot   | a  |                             |                |      |       |        |       |        |       |
| DEPTH<br>IN<br>FEET SURFACE ELEVATION:<br>MATERIAL                    |               |          |               | GEOLOGY      | N  | MC                          | SAMPLE<br>TYPE | REC  | FIELI | ) & LA | BORA  | TORY   | TESTS |
|                                                                       | DESCRIPTIO    |          |               |              |    | WIC                         | TYPE           | IN.  | WC    | DEN    | LL    | PL     | %-#20 |
| $1 \rightarrow 10 \text{ inches}$                                     | GATE SUR      | RFACINĢ  |               | SURFACIING   |    |                             |                |      |       |        |       |        |       |
| 7 – <b>FILL</b> , Silty Lean Clay w                                   | ith Sand, rec | ddish    | - 🎆           | FILL         |    |                             |                |      |       |        |       |        |       |
| 3 - brown, gypsum, clayston present (CL)                              | e and coal fi | ragments |               |              |    |                             |                |      |       |        |       |        |       |
| 4 -                                                                   |               |          |               |              |    |                             |                |      |       |        |       |        |       |
| 5 —                                                                   |               |          |               |              |    |                             |                |      |       |        |       |        |       |
| 6 —                                                                   |               |          |               |              |    |                             |                |      |       |        |       |        |       |
| 7 —                                                                   |               |          |               |              |    |                             |                |      |       |        |       |        |       |
| 8 -                                                                   |               |          |               |              |    | М                           |                |      |       |        |       |        |       |
| 9 -                                                                   |               |          |               |              |    |                             |                |      |       |        |       |        |       |
| 10 - SILTY LEAN CLAY, re                                              | ddish brown   | n (CL)   |               | ALLUVIUM     | 1  |                             |                |      |       |        |       |        |       |
|                                                                       |               |          |               |              |    |                             |                |      |       |        |       |        |       |
|                                                                       |               |          |               |              |    |                             |                |      |       |        |       |        |       |
|                                                                       |               |          |               |              |    |                             |                |      |       |        |       |        |       |
| 15 -                                                                  |               |          |               |              |    |                             |                |      |       |        |       |        |       |
| 16 CLAYSTONE, Silty Lea                                               | m Class and   |          |               | SPEARFISH    | -  |                             |                |      |       |        |       |        |       |
| 17 - lenses present (CL)                                              | in Clay, red, | , gypsum |               | FORMATION    |    | $ \frac{\bigvee}{\bar{W}} $ |                |      |       |        |       |        |       |
| 18 Bottom of                                                          | Boring        |          |               |              |    | w                           |                |      |       |        |       |        |       |
|                                                                       | 201118        |          |               |              |    |                             |                |      |       |        |       |        |       |
|                                                                       |               |          |               |              |    |                             |                |      |       |        |       |        |       |
|                                                                       |               |          |               |              |    |                             |                |      |       |        |       |        |       |
|                                                                       |               |          |               |              |    |                             |                |      |       |        |       |        |       |
|                                                                       |               |          |               |              |    |                             |                |      |       |        |       |        |       |
|                                                                       |               |          |               |              |    |                             |                |      |       |        |       |        |       |
|                                                                       |               |          |               |              |    |                             |                |      |       |        |       |        |       |
|                                                                       |               |          |               |              |    |                             |                |      |       |        |       |        |       |
|                                                                       |               |          |               |              |    |                             |                |      |       |        |       |        |       |
|                                                                       |               |          |               |              |    |                             |                |      |       |        |       |        |       |
|                                                                       |               |          |               |              |    |                             |                |      |       |        |       |        |       |
|                                                                       |               |          |               |              |    |                             |                |      |       |        |       |        |       |
|                                                                       |               |          |               |              |    |                             |                |      |       |        |       |        |       |
| DEPTH: DRILLING METHOD<br>18.0 4" FA<br>BORING<br>COMPLETED: 11/29/18 |               |          | WAT           | ER LEVEL MEA |    | EMEN                        | <br> TS        |      |       |        |       |        |       |
| DEFTII. DRILLING METHOD                                               | DATE          |          |               |              |    | EMEN<br>E-IN                | DRILLI         | NG   | WATI  | 7D     | NOTE: |        |       |
| 18.0 4" FA                                                            | DATE          | TIME     | SAMPI<br>DEPT |              | DE | РТН                         | FLUID LI       | ËVEL | LEVE  | EL     | THE A |        |       |
|                                                                       | 11/29/18      |          | 18.0          | ) NA         | N  | A                           | NA             |      | 17.(  | ,      | SHEET |        |       |
| BORING                                                                |               |          |               |              |    |                             |                |      |       |        | EXPLA |        |       |
|                                                                       |               |          |               |              |    |                             |                |      |       | 1      | ERMIN | IS LOC |       |
| DR: BT LG: BB Rig: RC-1                                               |               |          |               |              |    |                             |                |      |       |        | IH    |        |       |



| AET J                                                               | OB NO: <b>17-03356</b>                                   |              |          |               |                        | LO | DG OF        | BORIN         | G NO.         | B           | -39      | (p. 1 | of 1   | )             |
|---------------------------------------------------------------------|----------------------------------------------------------|--------------|----------|---------------|------------------------|----|--------------|---------------|---------------|-------------|----------|-------|--------|---------------|
| PROJE                                                               | ECT: West Rapid Sul                                      | ostation;    | Rapid C  | ity, S        | outh Dakot             | a  |              |               |               |             |          |       |        |               |
| DEPTH                                                               | SURFACE ELEVATION:                                       |              |          |               | GEOLOGY                | N  | MC           | SAMPI<br>TYPE | LE REC        | FIEL        | D & LA   | ABORA | TORY   | TESTS         |
| IN<br>FEET                                                          | MATERIAL                                                 |              |          |               |                        |    | IVIC         | TYPE          | IN.           | WC          | DEN      | LL    | PL     | <b>%-</b> #20 |
| 1 -                                                                 | LIMESTONE AGGREC                                         | GATE SUI     | RFACING  |               | SURFACIINC<br>FILL     | Ĭ  |              |               |               |             |          |       |        |               |
| 2 -                                                                 | FILL, Silty Lean Clay wi                                 | th Sand, re  | ddish    | - 🎆           | FILL                   |    |              |               |               |             |          |       |        |               |
| 3 -                                                                 | brown, gypsum, claystone<br>present (CL)                 | and coal f   | ragments |               |                        |    |              |               |               |             |          |       |        |               |
| 4 -                                                                 | with possible gypsum bou                                 | lder presei  | nt       |               |                        |    |              |               |               |             |          |       |        |               |
| 5 -                                                                 |                                                          | p            |          |               |                        |    |              |               |               |             |          |       |        |               |
| 6 -                                                                 | -                                                        |              |          |               |                        |    |              |               |               |             |          |       |        |               |
| 7 -                                                                 | -                                                        |              |          |               |                        |    |              |               |               |             |          |       |        |               |
| 8 - 9 -                                                             |                                                          |              |          |               |                        |    | М            |               |               |             |          |       |        |               |
| 10 -                                                                |                                                          |              | (        |               |                        |    |              |               |               |             |          |       |        |               |
| 11 -                                                                | SILTY LEAN CLAY, red                                     | dish brow    | m (CL)   |               | ALLUVIUM               |    |              |               |               |             |          |       |        |               |
| 12 -                                                                | -                                                        |              |          |               |                        |    |              |               |               |             |          |       |        |               |
| 13 -                                                                | -                                                        |              |          |               |                        |    |              |               |               |             |          |       |        |               |
| 14 -                                                                | -                                                        |              |          |               |                        |    |              |               |               |             |          |       |        |               |
| 15 -                                                                |                                                          |              |          |               |                        |    |              |               |               |             |          |       |        |               |
| 16 -                                                                | with strong hydrocarbon of <b>CLAYSTONE</b> , Silty Leas |              |          |               | SPEARFISH              |    | <u> </u>     |               |               |             |          |       |        |               |
| 17 -                                                                | lenses present (CL)                                      | il Clay, Icu | , gypsum |               | FORMATION              | I  | W            |               |               |             |          |       |        |               |
| 18 -                                                                | Bottom of                                                | Boring       |          |               | -                      |    |              |               |               |             |          |       |        |               |
|                                                                     |                                                          |              |          |               |                        |    |              |               |               |             |          |       |        |               |
|                                                                     |                                                          |              |          |               |                        |    |              |               |               |             |          |       |        |               |
|                                                                     |                                                          |              |          |               |                        |    |              |               |               |             |          |       |        |               |
|                                                                     |                                                          |              |          |               |                        |    |              |               |               |             |          |       |        |               |
|                                                                     |                                                          |              |          |               |                        |    |              |               |               |             |          |       |        |               |
|                                                                     |                                                          |              |          |               |                        |    |              |               |               |             |          |       |        |               |
|                                                                     |                                                          |              |          |               |                        |    |              |               |               |             |          |       |        |               |
|                                                                     |                                                          |              |          |               |                        |    |              |               |               |             |          |       |        |               |
|                                                                     |                                                          |              |          |               |                        |    |              |               |               |             |          |       |        |               |
| 81/6/                                                               |                                                          |              |          |               |                        |    |              |               |               |             |          |       |        |               |
|                                                                     |                                                          |              |          |               |                        |    |              |               |               |             |          |       |        |               |
|                                                                     |                                                          |              |          |               |                        |    |              |               |               |             |          |       |        |               |
| IIAO<br>CORP 17/33365 GPJ AET+CPT +WELL-GDJ 12/3718<br>IIAO<br>COMP |                                                          |              |          |               |                        |    |              |               |               |             |          |       |        |               |
| DEI                                                                 | PTH: DRILLING METHOD                                     |              |          |               | ER LEVEL ME            |    |              |               |               | <b>-</b>    |          | NOTE: | REFE   | R TO          |
| GPJ -                                                               | 18.0 4" FA                                               | DATE         | TIME     | SAMPI<br>DEPT | LED CASING<br>TH DEPTH |    | VE-IN<br>PTH | DRIL<br>FLUID | LING<br>LEVEL | WAT<br>LEVI | ER<br>EL | THE A | TTAC   | HED           |
| 3356.                                                               |                                                          | 11/29/18     |          | 18.           | 0 NA                   | N  | IA           | N             | A             | 16.         | 0        | SHEET | ΓS FOF | R AN          |
|                                                                     |                                                          |              |          |               |                        |    |              |               |               |             | E        | EXPLA | NATIO  | ON OF         |
| BORIN<br>COMP                                                       | NG<br>PLETED: <b>11/29/18</b>                            |              |          |               |                        |    |              |               |               |             | Т        | ERMIN |        |               |
| DR: B                                                               | BT LG: BB Rig: RC-1                                      |              |          |               |                        |    |              |               |               |             |          |       | IS LOO |               |



| AET JO                    | OB NO: <u>17-03356</u>                   |              |                                         |               |                        | LC  | OG OF                    | BORING            | NO       | B            | -40      | (p. 1 | of 1  | )     |
|---------------------------|------------------------------------------|--------------|-----------------------------------------|---------------|------------------------|-----|--------------------------|-------------------|----------|--------------|----------|-------|-------|-------|
| PROJE                     | ECT: West Rapid Sul                      | ostation;    | Rapid C                                 | ity, So       | outh Dakot             | a   |                          |                   |          |              |          |       |       |       |
| DEPTH<br>IN<br>FEET       | SURFACE ELEVATION:                       |              |                                         |               | GEOLOGY                | N   | MC                       | SAMPLE<br>TYPE    | REC      | FIEL         | D & LA   | BORA  | TORY  | TESTS |
| FEET                      |                                          |              |                                         |               |                        |     | MC                       | TYPE              | IN.      | WC           | DEN      | LL    | PL    | %-#20 |
| 1 -                       | LIMESTONE AGGREC                         | GATE SUI     | RFACING                                 | _             | SURFACIING<br>FILL     |     |                          |                   |          |              |          |       |       |       |
| 2 -                       | FILL, Silty Lean Clay wi                 | th Sand, re  | ddish                                   | - XXX         | TILL                   |     |                          |                   |          |              |          |       |       |       |
| 3 -                       | brown, gypsum, claystone<br>present (CL) | e and coal f | ragments                                |               |                        |     |                          |                   |          |              |          |       |       |       |
| 4 -                       |                                          |              |                                         |               |                        |     |                          |                   |          |              |          |       |       |       |
| 5 -                       | -                                        |              |                                         |               |                        |     |                          |                   |          |              |          |       |       |       |
| 6 -                       | -                                        |              |                                         |               |                        |     |                          |                   |          |              |          |       |       |       |
| 7 - 8 -                   |                                          |              |                                         |               |                        |     | М                        |                   |          |              |          |       |       |       |
| 8 –<br>9 –                | -                                        |              |                                         |               |                        |     |                          |                   |          |              |          |       |       |       |
| 10 -                      |                                          | 1.1. 1. 1    |                                         |               |                        |     |                          |                   |          |              |          |       |       |       |
| 11 -                      | SILTY LEAN CLAY, red                     | adish brow   | m (CL)                                  |               | ALLUVIUM               |     |                          |                   |          |              |          |       |       |       |
| 12 -                      |                                          |              |                                         |               |                        |     |                          |                   |          |              |          |       |       |       |
| 13 -                      | -                                        |              |                                         |               |                        |     |                          |                   |          |              |          |       |       |       |
| 14 -                      | -                                        |              |                                         |               |                        |     |                          |                   |          |              |          |       |       |       |
| 15 -                      |                                          |              |                                         |               |                        |     | $  \underline{\nabla}  $ |                   |          |              |          |       |       |       |
| 16 -                      | <b>CLAYSTONE</b> , Silty Lear            | n Clay, red  | , gypsum                                |               | SPEARFISH<br>FORMATION |     | W                        |                   |          |              |          |       |       |       |
| 17 -<br>18 -              | lenses present (CL)                      |              |                                         |               | FORMATION              |     |                          |                   |          |              |          |       |       |       |
| 10                        | Bottom of                                | Boring       |                                         |               |                        |     |                          |                   |          |              |          |       |       |       |
|                           |                                          |              |                                         |               |                        |     |                          |                   |          |              |          |       |       |       |
|                           |                                          |              |                                         |               |                        |     |                          |                   |          |              |          |       |       |       |
|                           |                                          |              |                                         |               |                        |     |                          |                   |          |              |          |       |       |       |
|                           |                                          |              |                                         |               |                        |     |                          |                   |          |              |          |       |       |       |
|                           |                                          |              |                                         |               |                        |     |                          |                   |          |              |          |       |       |       |
|                           |                                          |              |                                         |               |                        |     |                          |                   |          |              |          |       |       |       |
|                           |                                          |              |                                         |               |                        |     |                          |                   |          |              |          |       |       |       |
|                           |                                          |              |                                         |               |                        |     |                          |                   |          |              |          |       |       |       |
|                           |                                          |              |                                         |               |                        |     |                          |                   |          |              |          |       |       |       |
|                           |                                          |              |                                         |               |                        |     |                          |                   |          |              |          |       |       |       |
|                           |                                          |              |                                         |               |                        |     |                          |                   |          |              |          |       |       |       |
|                           |                                          |              |                                         |               |                        |     |                          |                   |          |              |          |       |       |       |
| DEF                       | PTH: DRILLING METHOD                     |              |                                         | WATE          | ER LEVEL MEA           | SUR | I<br>EMEN                | TS                | <u> </u> |              | ,  <br>, | NOTE: | REFE  |       |
|                           |                                          | DATE         | TIME                                    | SAMPL<br>DEPT | ED CASING<br>H DEPTH   | CAV | /E-IN<br>PTH             | DRILLI<br>FLUID L | NG       | WAT]<br>LEVI | ER       | THE A |       |       |
|                           | 18.0 4" FA                               | 11/29/18     |                                         | 18.0          |                        |     | РТН<br>[ <b>А</b>        | FLUID L           |          | 15.5         |          | SHEET |       |       |
|                           |                                          | 11/4/10      |                                         | 10.0          |                        | 1   | 11                       | 11/1              |          | 13.          |          | XPLA  | NATIO | ON OF |
| DEF<br>1<br>BORIN<br>COMP | NG<br>PLETED: <b>11/29/18</b>            |              |                                         |               |                        |     |                          |                   |          |              | T        | ERMIN | IOLOG | GY OI |
| $DR: \mathbf{B}$          |                                          |              |                                         |               |                        |     |                          |                   |          |              |          | TH    | IS LO | G     |
|                           |                                          |              | ı – – – – – – – – – – – – – – – – – – – |               |                        |     |                          | 1                 |          |              |          |       |       |       |



## SUBSURFACE BORING LOG

| AET JOB                          | NO: <b>17-03356</b>                         |              |          |               |               |                | LO | G OF         | BORI  | NG NO           |    | B            | -41    | ( <b>p.</b> 1 | <b>of 1</b> | )     |
|----------------------------------|---------------------------------------------|--------------|----------|---------------|---------------|----------------|----|--------------|-------|-----------------|----|--------------|--------|---------------|-------------|-------|
| PROJECT                          | West Rapid Sub                              | ostation;    | Rapid C  | ity, S        | outh I        | Dakot          | a  |              |       |                 |    |              |        |               |             |       |
| DEPTH<br>IN<br>FEET              | SURFACE ELEVATION:                          |              |          |               | GEOI          | LOGY           | N  | MC           | SAM   | PLE R<br>PE I   | EC | FIELI        | ) & LA | BORA          | TORY        | TESTS |
|                                  | MATERIAL                                    |              |          |               |               |                |    | WIC          | TYI   | 'E I            | N. | WC           | DEN    | LL            | PL          | %-#20 |
|                                  | LIMESTONE AGGREC                            | GATE SUF     | RFACING  |               |               | ACIING         |    |              |       |                 |    |              |        |               |             |       |
|                                  | FILL, Silty Lean Clay wit                   | th Sand, red | ddish    | ′             | FILL          |                |    |              |       |                 |    |              |        |               |             |       |
| $3 - \frac{1}{r}$                | prown, gypsum, claystone<br>present (CL)    | and coal f   | ragments |               |               |                |    |              |       |                 |    |              |        |               |             |       |
| 4 -                              |                                             |              |          |               |               |                |    |              |       |                 |    |              |        |               |             |       |
| 5 —                              |                                             |              |          |               |               |                |    |              |       |                 |    |              |        |               |             |       |
| 6 -                              |                                             |              |          |               |               |                |    |              |       |                 |    |              |        |               |             |       |
| 7 —                              |                                             |              |          |               |               |                |    |              |       |                 |    |              |        |               |             |       |
| 8 -                              |                                             |              |          |               |               |                |    | М            |       |                 |    |              |        |               |             |       |
| 9 -                              |                                             |              |          |               |               |                |    |              |       |                 |    |              |        |               |             |       |
| 10 5                             | SILTY LEAN CLAY, red                        | ldish brow   | n (CL)   |               | ALLU          | VIUM           |    |              |       |                 |    |              |        |               |             |       |
| 11 -                             |                                             |              |          |               |               |                |    |              |       |                 |    |              |        |               |             |       |
| 12 —<br>13 —                     |                                             |              |          |               |               |                |    |              |       |                 |    |              |        |               |             |       |
| 13 - 14 -                        |                                             |              |          |               |               |                |    |              |       |                 |    |              |        |               |             |       |
| 14 - 15 -                        |                                             |              |          |               |               |                |    |              |       |                 |    |              |        |               |             |       |
| 10                               |                                             | ~1           |          |               |               |                |    | $\sum$       |       |                 |    |              |        |               |             |       |
|                                  | CLAYSTONE, Silty Lean<br>enses present (CL) | n Clay, red, | , gypsum |               | SPEAF<br>FORM | RFISH<br>ATION |    | W            |       |                 |    |              |        |               |             |       |
| 18                               | Bottom of                                   | Doning       |          |               |               |                |    |              |       |                 |    |              |        |               |             |       |
|                                  | Bottom                                      | Doring       |          |               |               |                |    |              |       |                 |    |              |        |               |             |       |
|                                  |                                             |              |          |               |               |                |    |              |       |                 |    |              |        |               |             |       |
|                                  |                                             |              |          |               |               |                |    |              |       |                 |    |              |        |               |             |       |
|                                  |                                             |              |          |               |               |                |    |              |       |                 |    |              |        |               |             |       |
|                                  |                                             |              |          |               |               |                |    |              |       |                 |    |              |        |               |             |       |
|                                  |                                             |              |          |               |               |                |    |              |       |                 |    |              |        |               |             |       |
|                                  |                                             |              |          |               |               |                |    |              |       |                 |    |              |        |               |             |       |
|                                  |                                             |              |          |               |               |                |    |              |       |                 |    |              |        |               |             |       |
|                                  |                                             |              |          |               |               |                |    |              |       |                 |    |              |        |               |             |       |
|                                  |                                             |              |          |               |               |                |    |              |       |                 |    |              |        |               |             |       |
|                                  |                                             |              |          |               |               |                |    |              |       |                 |    |              |        |               |             |       |
|                                  |                                             |              |          |               |               |                |    |              |       |                 |    |              |        |               |             |       |
|                                  |                                             |              |          |               |               |                |    |              |       |                 |    |              |        |               |             |       |
| DEPTH<br>18.<br>BORING<br>COMPLE |                                             |              |          |               |               |                |    |              | TC    |                 |    |              |        |               |             |       |
| DEPTH                            | H: DRILLING METHOD                          |              |          |               | ER LEV        |                |    |              |       |                 | ,  | W/ A TT      | 7D     | NOTE:         |             |       |
| 18.                              | 0 4" FA                                     | DATE         | TIME     | SAMPI<br>DEPT |               | ASING<br>EPTH  | DE | 'E-IN<br>PTH | FLUII | LLING<br>D LEVI | EL | WATE<br>LEVE | L      | THE A         |             |       |
|                                  |                                             | 11/29/18     |          | 18.           | 0             | NA             | N  | Α            | ]     | NA              |    | 16.0         |        | SHEET         |             |       |
| Dopper                           |                                             |              |          |               |               |                |    |              |       |                 |    |              |        | XPLA          |             |       |
|                                  | TED: <b>11/29/18</b>                        |              |          |               |               |                |    |              |       |                 |    |              | T      | ERMIN         |             |       |
| DR: <b>BT</b>                    | LG: <b>BB</b> Rig: <b>RC-1</b>              |              |          |               |               |                |    |              |       |                 |    |              |        |               | IS LOO      |       |



## SUBSURFACE BORING LOG

| AET JO                      | OB NO: <b>17-03356</b>                         |                |          |               |                       | LC         | OG OF               | BORING         | NO  | B            | -42        | (p. 1 | <b>of 1</b> | )             |
|-----------------------------|------------------------------------------------|----------------|----------|---------------|-----------------------|------------|---------------------|----------------|-----|--------------|------------|-------|-------------|---------------|
| PROJE                       | ECT: West Rapid Sul                            | bstation; F    | Rapid Ci | ity, S        | outh Dakot            | a          |                     |                |     |              |            |       |             |               |
| DEPTH<br>IN<br>FEET         | SURFACE ELEVATION:                             |                |          |               | GEOLOGY               | N          | MC                  | SAMPLE<br>TYPE | REC | FIELI        | ) & LA     | BORA  | TORY        | TESTS         |
| FEET                        |                                                | DESCRIPTIO     |          |               |                       |            | WIC                 | TYPE           | IN. | WC           | DEN        | LL    | PL          | <b>%-</b> #20 |
| 1 -                         | LIMESTONE AGGREC                               | GATE SUR       | FACINĢ   |               | SURFACIING            |            |                     |                |     |              |            |       |             |               |
| 2 -                         | FILL, Silty Lean Clay wi                       | th Sand, red   | dish     | ┘ 💥           | FILL                  |            |                     |                |     |              |            |       |             |               |
| 3 -                         | brown, gypsum, claystone<br>present (CL)       | e and coal fra | agments  |               |                       |            |                     |                |     |              |            |       |             |               |
| 4 -                         | ()                                             |                |          |               |                       |            |                     |                |     |              |            |       |             |               |
| 5 -                         | -                                              |                |          |               |                       |            |                     |                |     |              |            |       |             |               |
| 6 -                         | -                                              |                |          |               |                       |            |                     |                |     |              |            |       |             |               |
| 7 -                         | -                                              |                |          |               |                       |            |                     |                |     |              |            |       |             |               |
| 8 -                         | -                                              |                |          |               |                       |            | М                   |                |     |              |            |       |             |               |
| 9 -                         |                                                |                |          |               |                       |            |                     |                |     |              |            |       |             |               |
| 10 - 11 -                   | SILTY LEAN CLAY, re                            | ddish brown    | (CL)     |               | ALLUVIUM              |            |                     |                |     |              |            |       |             |               |
| 11 - 12 -                   | ]                                              |                |          |               |                       |            |                     |                |     |              |            |       |             |               |
| 13 -                        |                                                |                |          |               |                       |            |                     |                |     |              |            |       |             |               |
| 14 -                        | -                                              |                |          |               |                       |            |                     |                |     |              |            |       |             |               |
| 15 -                        | -                                              |                |          |               |                       |            |                     |                |     |              |            |       |             |               |
| 16 -                        | CLAYSTONE, Silty Lea                           | n Clay rad     | aunalum) |               | SPEARFISH             |            |                     |                |     |              |            |       |             |               |
| 17 -                        | lenses present (CL)                            | li Clay, Ieu,  | gypsum   |               | FORMATION             |            | $\frac{1}{\bar{W}}$ |                |     |              |            |       |             |               |
| 18 -                        | Bottom of                                      | Boring         |          |               |                       |            | vv                  |                |     |              |            |       |             |               |
|                             |                                                | 8              |          |               |                       |            |                     |                |     |              |            |       |             |               |
|                             |                                                |                |          |               |                       |            |                     |                |     |              |            |       |             |               |
|                             |                                                |                |          |               |                       |            |                     |                |     |              |            |       |             |               |
|                             |                                                |                |          |               |                       |            |                     |                |     |              |            |       |             |               |
|                             |                                                |                |          |               |                       |            |                     |                |     |              |            |       |             |               |
|                             |                                                |                |          |               |                       |            |                     |                |     |              |            |       |             |               |
|                             |                                                |                |          |               |                       |            |                     |                |     |              |            |       |             |               |
|                             |                                                |                |          |               |                       |            |                     |                |     |              |            |       |             |               |
|                             |                                                |                |          |               |                       |            |                     |                |     |              |            |       |             |               |
| 2                           |                                                |                |          |               |                       |            |                     |                |     |              |            |       |             |               |
|                             |                                                |                |          |               |                       |            |                     |                |     |              |            |       |             |               |
|                             |                                                |                |          |               |                       |            |                     |                |     |              |            |       |             |               |
|                             |                                                |                |          |               |                       |            |                     |                |     |              |            |       |             |               |
| DEF                         | PTH: DRILLING METHOD                           |                |          | WAT           | ER LEVEL MEA          | I<br>ASURI | EMEN                | TS             |     |              | <br>       | NOTE: | REFE        | R TO          |
|                             |                                                | DATE           | TIME     | SAMPI<br>DEPT | LED CASING<br>H DEPTH | CAV        | E-IN                | DRILLI         | NG  | WATI         | ER         | THE A |             |               |
|                             | 18.0 4" FA                                     | 11/29/18       |          | 18.0          |                       |            | РТН<br>[ <b>А</b>   | FLUID LI<br>NA |     | LEVE<br>17.( | э <b>г</b> | SHEET |             |               |
|                             |                                                | 11/23/10       |          | 10.0          |                       |            | A                   | INA            |     | 1/.(         | ,          | EXPLA |             |               |
| DEF                         | NG<br>NG ETED. 11/30/19                        |                |          |               |                       |            |                     |                |     |              |            | ERMIN |             |               |
| $\overline{F}$ DR: <b>B</b> | <u>PLETED: 11/29/18</u><br>BT LG: BB Rig: RC-1 |                |          |               |                       |            |                     |                |     |              |            |       | IS LOO      |               |
|                             | LU. DD KIG: KU-I                               |                |          |               |                       |            |                     |                |     |              |            |       |             |               |



**CONSULTANTS** 

- **GEOTECHNICAL**
- **MATERIALS**
- **ENVIRONMENTAL**
- **FORENSICS**



## **REPORT OF GEOTECHNICAL EXPLORATION AND REVIEW**

WEST RAPID SUBSTATION TRANSMISSION LINE POLES RAPID CITY, SOUTH DAKOTA

AET No. 17-03356

Date:

January 16, 2019

**Prepared for:** 

Black Hills Energy 7001 Mt. Rushmore Road Rapid City, South Dakota 57702



January 16, 2019

Black Hills Energy 7001 Mt. Rushmore Road Rapid City, South Dakota 57702

Attn: Mr. Ron Williams, PE

RE: Geotechnical Exploration and Review West Rapid Substation Transmission Line Poles Rapid City, South Dakota Report No.17-03356

Dear Ron,

American Engineering Testing, Inc. (AET) is pleased to present the results of our subsurface exploration program and geotechnical engineering review for the proposed transmission line poles to be constructed as part of the West Rapid Substation project, in Rapid City, South Dakota. These services were performed in general accordance with our proposal dated December 5, 2018 and the signed Statement of Services No. 38863, Change Order No. 4, dated December 17, 2018. We are submitting one (1) electronic copy of the report to you.

Within the limitations of scope, budget, and schedule, our services have been conducted according to generally accepted geotechnical engineering practices at this time and location. Other than this, no warranty, either expressed or implied, is intended. Important information regarding risk management and proper use of this report is given in the Appendix entitled "Geotechnical Report Limitations and Guidelines for Use".

Please contact our office if you have any questions about the report. We can also be contacted to arrange the observation and testing services during construction of the project.

Sincerely, American Engineering Testing, Inc.

Walt Feeger, P.E. Senior Geotechnical Engineer Phone: (605) 388-0029 wfeeger@amengtest.com

Page i

#### SIGNATURE PAGE

Prepared for:

Black Hills Energy 7001 Mt. Rushmore Road Rapid City, South Dakota 57701

Attn: Mr. Ron Williams, PE

Prepared by:

American Engineering Testing, Inc. 1745 Samco Road Rapid City, South Dakota 57702

Report Authored By:

Walt Feeger, P.E. Senior Geotechnical Engineer



Peer Review Conducted By:

Robert Temme, P.E. Vice President – Western Region

Page ii

Unauthorized use or copying of this document is strictly prohibited by anyone other than the client for the specific project.

Copyright 2019 American Engineering Testing, Inc. All Rights Reserved

### TABLE OF CONTENTS

| Signature Pageii                            |
|---------------------------------------------|
| TABLE OF CONTENTSiii                        |
| 1.0 INTRODUCTION                            |
| 2.0 SCOPE OF SERVICES                       |
| 3.0 PROJECT INFORMATION 1                   |
| 4.0 SUBSURFACE EXPLORATION AND TESTING      |
| 4.1 Field Exploration Program               |
| 4.2 Laboratory Testing                      |
| 5.0 SITE CONDITIONS                         |
| 5.1 Surface Observations                    |
| 5.2 Subsurface Soils/Geology                |
| 5.3 Groundwater                             |
| 6.0 RECOMMENDATIONS                         |
| 6.1 Discussion                              |
| 6.2 Drilled Pier Foundation Recommendations |
| 7.0 LIMITATIONS                             |

APPENDIX A - Geotechnical Field Exploration and Testing Boring Log Notes Unified Soil Classification System Site Location Map Boring Location Map Subsurface Boring Logs Unconfined Compression Test Results Swell-Consolidation Test Results

APPENDIX B - Geotechnical Report Limitations and Guidelines for Use

#### **1.0 INTRODUCTION**

We understand a new transmission line will be constructed as part of the proposed West Rapid Substation project in Rapid City, South Dakota. Please refer to the Site Location Map in Appendix A for the approximate location of the sites. To assist with the planning and design, American Engineering Testing, Inc. (AET) has been authorized to conduct a subsurface exploration program at the locations of the transmission poles, conduct soil laboratory testing, and perform a geotechnical engineering review for the project. This report presents the results of the above services, and provides our engineering recommendations based on this data.

#### 2.0 SCOPE OF SERVICES

AET's services were performed in general accordance with our proposal dated December 5, 2018.

The authorized scope consists of the following:

- Eight (8) standard penetration test (SPT) borings at the proposed transmission pole locations to depths of about 50 feet below existing grade.
- Soil laboratory testing.
- Geotechnical engineering analysis based on the gained data and preparation of this report.

These services are intended for geotechnical purposes only. The scope is not intended to explore for the presence or extent of environmental contamination.

#### **3.0 PROJECT INFORMATION**

AET recently completed the geotechnical services for the proposed West Rapid Substation project, and submitted our findings and recommendations in our Report No. 17-03356, dated May 31, 2018. We understand that, as part of the new substation, a transmission line will also be required. Furthermore, we understand these types of pole structures are typically placed on reinforced concrete drilled piers (caissons). The following loading information at the respective boring locations was provided by HDR Engineering, Inc.

• B-1

Moment: 13,000 ft-k Shear Force: 185 kips Vertical Force: 85 kips

• B-3

Moment: 18,900 ft-k Shear Force: 205 kips Vertical Force: 125 kips

- B-4 Moment: 11,100 ft-k Shear Force: 135 kips Vertical Force: 65 kips
   B-5
  - Moment: 3,000 ft-k Shear Force: 35 kips Vertical Force: 65 kips
  - B-6 Moment: 2,000 ft-k Shear Force: 40 kips Vertical Force: 25 kips
    - B-7 Moment: 5,300 ft-k Shear Force: 75 kips Vertical Force: 35 kips
- B-8

•

Moment: 3,500 ft-k Shear Force: 55 kips Vertical Force: 100 kips

The previously stated information represents our understanding of the proposed construction. This information is an integral part of our engineering review. It is important that you contact us if there are changes from that described so that we can evaluate whether modifications to our recommendations are appropriate.

#### 4.0 SUBSURFACE EXPLORATION AND TESTING

#### 4.1 Field Exploration Program

The subsurface exploration program conducted for the project consisted of eight (8) SPT borings which were drilled on December 19-21 and 27, 2018. The borings were located in the field by HDR personnel at the approximate locations shown on the Boring Location Map within Appendix A. Surface elevations at the boring locations were also provided by HDR.

The logs of the borings and details of the methods used appear in Appendix A. The logs contain information concerning soil layering, soil classification, geologic description, and moisture condition. Relative density or consistency is also noted for the natural soils, which is based on the standard penetration resistance (N-value).

#### 4.2 Laboratory Testing

The laboratory test program included water content, dry density, unconfined compression, swell-consolidation. The laboratory test results appear in Appendix A on the individual boring logs adjacent to the samples upon which they were performed with the exception of the unconfined compression and swell-consolidation tests, which can be found on separate sheets within Appendix A of this report.

#### **5.0 SITE CONDITIONS**

#### **5.1 Surface Observations**

At the time of our field work, the areas surrounding the proposed transmission pole locations consisted of the existing Black Hills Energy Service Center (Borings B-3 through B-8) facility as well as vacant tracts of property around Borings B-1 and B-2, which were vegetated with native grasses and weeds.

#### 5.2 Subsurface Soils/Geology

Underlying a thin layer of gravel surfacing or topsoil, the following subsurface conditions were encountered at the boring locations:

Boring B-1: Approximately 19<sup>1</sup>/<sub>2</sub> feet of alluvium comprised of medium dense silty sands, firm to hard sandy lean clays, and dense to very dense sandy gravels overlying shale bedrock, associated with the Sundance Formation, which extended to the total depth explored.

Boring B-2: Approximately 7 feet of alluvium comprised of very stiff fat clay and hard silty lean clay overlying stiff to very stiff weathered to hard, competent shale bedrock, associated with the Spearfish Formation, which extended to the total depth explored.

Boring B-3: Approximately 9½ feet of alluvium comprised of hard silty lean clays and very dense sandy gravels overlying hard shale of the Sundance Formation, over gypsum and hard siltstone bedrock of the Gypsum Spring Formation, which extended to the total depth explored.

Boring B-4: Near surface hard shale of the Sundance Formation was encountered overlying gypsum, and interbedded hard siltstone and shale bedrock of the Gypsum Spring Formation, which extended to the total depth explored.

Boring B-5: Approximately 14 feet of lean to fat clay fill was encountered overlying about 3<sup>1</sup>/<sub>2</sub> feet of firm sandy lean clay alluvium. The alluvium in underlain by hard weathered to competent shale of the Spearfish Formation, which extended to the terminal boring depth.

Boring B-6: About 9 feet of silty lean clay fill overlying approximately 13<sup>1</sup>/<sub>2</sub> feet of alluvium comprised of soft to firm lean clays. The alluvium is underlain by stiff to hard weathered to competent shale, associated with the Spearfish Formation.

Boring B-7: Near surface stiff to hard weathered to competent shale bedrock, associated with the Spearfish Formation was encountered to the total depth explored. Approximately 10 feet of gypsum was encountered at a depth of about 25 feet below grade.

Boring B-8: Approximately 4<sup>1</sup>/<sub>2</sub> feet of lean clay fill was encountered overlying about 9<sup>1</sup>/<sub>2</sub> feet of alluvium comprised of very stiff fat clay and very stiff lean clay. The alluvium is underlain by hard weathered to competent shale bedrock of the Spearfish Formation.

Conditions encountered at each boring location are indicated on the individual boring logs in Appendix A of this report.

#### 5.3 Groundwater

At the time of our field work, measurable groundwater was encountered at the approximate noted depths in the following borings:

B-1: 7½ feet below grade (BG)B-2: 15 feet BGB-5: 8 feet BGB-6: 11 feet BGB-7: 20 feet BG

The presence or lack of groundwater noted at the boring locations should not be taken as an accurate representation of the actual groundwater levels. Groundwater level fluctuations occur due to seasonal variations in the amount of precipitation, surface drainage, local irrigation practices, level of water in Rapid Creek, and other factors not evident at the time the borings were performed. Due to the relatively low permeability of the clay/silt soils and shale/siltstone bedrock encountered in the borings, a relatively long period of time may be needed for a groundwater level to develop and/or stabilize in the borings.

The possibility of encountering groundwater and associated fluctuations in groundwater levels should be considered when developing the design and construction plans for the project.

#### 6.0 RECOMMENDATIONS

#### 6.1 Discussion

Our recommendations in the following sections are based on our understanding of the project details at this time. The geotechnical engineer should be allowed to review the final project plans to verify the following recommendations remain applicable for construction.

Based on the field and laboratory data, it is our opinion drilled pier foundations can be used to support the proposed transmission line poles. For drilled piers, loadings should provide a theoretical safety factor of 2 or more with total and differential movements not exceeding 1-inch and 1/2-inch, respectively.

Additionally, it should be noted that gypsum is a common geologic feature found in the Spearfish Formation derived soils at this site. Once exposed, gypsum material can degrade which could cause future movement related distress to the structures, especially if water is introduced to the gypsum matrix. Therefore, drilled pier foundations <u>should not</u> terminate (end bear) on gypsum.

#### **6.2 Drilled Pier Foundation Recommendations**

Based on the results of the borings, laboratory testing, and our analysis, we have developed the following design parameters. We recommend all drilled piers bear at least 5 feet into the noted bedrock stratum with the recommended minimum length.

| Soil Type           | Allowable Skin Friction<br>(psf) | Allowable End Bearing Pressure<br>(psf) |
|---------------------|----------------------------------|-----------------------------------------|
| Frost Zone $(0-5')$ | Ignore                           | Ignore                                  |
| Lean Clay Alluvium  | 300                              | na                                      |
| Gravel Alluvium     | 200                              | na                                      |
| Shale Bedrock       | 1,000                            | 20,000<br>(minimum pier length – 25')   |

#### **Boring B-1**

#### **Boring B-2**

| Soil Type           | Allowable Skin Friction<br>(psf) | Allowable End Bearing Pressure<br>(psf) |
|---------------------|----------------------------------|-----------------------------------------|
| Frost Zone $(0-5')$ | Ignore                           | Ignore                                  |
| Lean Clay Alluvium  | 300                              | na                                      |
| W. Shale Bedrock    | 300                              | na                                      |
| Shale Bedrock       | 1,000                            | 20,000<br>(minimum pier Length – 28')   |

#### **Boring B-3**

| Soil Type           | Soil Type Allowable Skin Friction Allow (psf) |                                                                              |
|---------------------|-----------------------------------------------|------------------------------------------------------------------------------|
| Frost Zone $(0-5')$ | Ignore                                        | Ignore                                                                       |
| Lean Clay Alluvium  | 300                                           | na                                                                           |
| Gravel Alluvium     | 200                                           | na                                                                           |
| Shale Bedrock       | 1,000                                         | 20,000<br>(minimum pier length – 15')<br>Do not end bear in gypsum formation |
| Siltstone Bedrock   | 750                                           | 20,000                                                                       |

#### **Boring B-4**

| Soil Type           | Allowable Skin Friction<br>(psf) | Allowable End Bearing Pressure<br>(psf) |
|---------------------|----------------------------------|-----------------------------------------|
| Frost Zone $(0-5')$ | Ignore                           | Ignore                                  |
| Gypsum              | na                               | na                                      |
| Siltstone Bedrock   | 750                              | 20,000<br>(minimum pier length – 20')   |

#### **Boring B-5**

| Soil Type             | Allowable Skin Friction<br>(psf) | Allowable End Bearing Pressure<br>(psf) |
|-----------------------|----------------------------------|-----------------------------------------|
| Frost Zone (0 – 5')   | Ignore                           | Ignore                                  |
| Lean to Fat Clay Fill | 150                              | na                                      |
| Lean Clay Alluvium    | 200                              | na                                      |
| W. Shale Bedrock      | 300                              | na                                      |
| Shale Bedrock         | 1,000                            | 20,000<br>(minimum pier length – 28')   |

#### **Boring B-6**

| Soil Type           | Allowable Skin Friction<br>(psf) | Allowable End Bearing Pressure<br>(psf) |
|---------------------|----------------------------------|-----------------------------------------|
| Frost Zone $(0-5')$ | Ignore                           | Ignore                                  |
| Lean Clay Fill      | 150                              | na                                      |
| Lean Clay Alluvium  | 200                              | na                                      |
| W. Shale Bedrock    | 300                              | na                                      |
| Shale Bedrock       | 1,000                            | 20,000<br>(minimum pier length – 43')   |

#### **Boring B-7**

| Soil Type           | Allowable Skin Friction<br>(psf) | Allowable End Bearing Pressure<br>(psf) |
|---------------------|----------------------------------|-----------------------------------------|
| Frost Zone $(0-5')$ | Ignore                           | Ignore                                  |
| W. Shale Bedrock    | 300                              | na                                      |
| Shale Bedrock       | 1,000                            | na                                      |
| Gypsum              | na                               | na                                      |
| Shale Bedrock       | 1,000                            | 20,000<br>(minimum pier length 40')     |

#### **Boring B-8**

| Soil Type                    | Allowable Skin Friction<br>(psf) | Allowable End Bearing Pressure<br>(psf) |
|------------------------------|----------------------------------|-----------------------------------------|
| Frost Zone $(0-5')$          | Ignore                           | Ignore                                  |
| Lean to Fat Clay<br>Alluvium | 300                              | na                                      |
| W. Shale Bedrock             | 300                              | na                                      |
| Shale Bedrock                | 1,000                            | 20,000<br>(minimum pier length – 23')   |

In designing to resist uplift,  $\frac{2}{3}$  of the allowable side friction values provided for compressive loading could be used along with the effective weight of the drilled shafts. Straight shaft piers with a minimum diameter of 18-inches are recommended. Proper reinforcing steel should be included in the drilled shaft designs.

Lateral deflections of drilled shafts should be evaluated using an appropriate design procedure, and would be dependent on shaft diameter, length, configuration, stiffness and "fixed head" or "free head" conditions.

Single pier lateral load capacity can be estimated using the following design parameters for the soil profile in a p-y analysis such as conducted using the computer program LPILE:

#### **Boring B-1**

| Design Parameter                          | Lean Clay Alluvium | Gravel Alluvium    | Shale Bedrock |
|-------------------------------------------|--------------------|--------------------|---------------|
| Moist Unit Weight (pcf)                   | 115                | 130                | 125           |
| Undrained Shear Strength (psf)            | 500                | na                 | 4,000         |
| Friction Angle (degrees)                  | 18                 | 34                 | 15            |
| Static Soil Modulus Parameter, k<br>(pci) | 100                | 125<br>(submerged) | 2,000         |
| Strain, ε <sub>50</sub> (in/in)           | 0.010              | na                 | 0.005         |

#### **Boring B-2**

| Design Parameter                          | Lean Clay Alluvium | W. Shale Bedrock | Shale Bedrock |  |
|-------------------------------------------|--------------------|------------------|---------------|--|
| Moist Unit Weight (pcf)                   | 115                | 120              | 125           |  |
| Undrained Shear Strength (psf)            | 1,000              | 1,500            | 4,000         |  |
| Friction Angle (degrees)                  | 18                 | 15               | 15            |  |
| Static Soil Modulus Parameter, k<br>(pci) | 500                | 500              | 2,000         |  |
| Strain, ε50 (in/in)                       | 0.005              | 0.005            | 0.004         |  |

#### **Boring B-3**

| Design Parameter                          | Lean Clay<br>Alluvium | Gravel<br>Alluvium | Shale<br>Bedrock | Gypsum | Siltstone<br>Bedrock |
|-------------------------------------------|-----------------------|--------------------|------------------|--------|----------------------|
| Moist Unit Weight (pcf)                   | 115                   | 120                | 125              | na     | 120                  |
| Undrained Shear Strength (psf)            | 1,000                 | na                 | 4,000            | na     | 6,000                |
| Friction Angle (degrees)                  | 18                    | 34                 | 10               | na     | 15                   |
| Static Soil Modulus Parameter, k<br>(pci) | 500                   | 225                | 2,000            | na     | 2,000                |
| Strain, ɛ50 (in/in)                       | 0.005                 | na                 | 0.005            | na     | 0.004                |

#### **Boring B-4**

| Design Parameter                       | Gypsum | Siltstone Bedrock | Shale Bedrock |
|----------------------------------------|--------|-------------------|---------------|
| Moist Unit Weight (pcf)                | na     | 120               | 125           |
| Undrained Shear Strength (psf)         | na     | 4,000             | 6,000         |
| Friction Angle (degrees)               | na     | 15                | 18            |
| Static Soil Modulus Parameter, k (pci) | na     | 1,000             | 2,000         |
| Strain, 850 (in/in)                    | na     | 0.004             | 0.004         |

#### **Boring B-5**

| Design Parameter                          | Lean to Fat Clay<br>Fill | Lean Clay<br>Alluvium                                                                                                                                                                     | W. Shale<br>Bedrock | Shale<br>Bedrock |
|-------------------------------------------|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|------------------|
| Moist Unit Weight (pcf)                   | 110                      | 115                                                                                                                                                                                       | 120                 | 125              |
| Undrained Shear Strength (psf)            | 250                      | 500                                                                                                                                                                                       | 1,500               | 6,000            |
| Friction Angle (degrees)                  | 18                       | 110         115         120         12           250         500         1,500         6,0           18         18         15         1           100         100         500         2,0 | 15                  |                  |
| Static Soil Modulus Parameter,<br>k (pci) | 100                      | 100                                                                                                                                                                                       | 500                 | 2,000            |
| Strain, ɛ50 (in/in)                       | 0.020                    | 0.010                                                                                                                                                                                     | 0.005               | 0.004            |

#### **Boring B-6**

| Design Parameter                       | Lean Clay<br>Fill | Lean Clay<br>Alluvium | W. Shale<br>Bedrock | Shale<br>Bedrock |
|----------------------------------------|-------------------|-----------------------|---------------------|------------------|
| Moist Unit Weight (pcf)                | 110               | 110                   | 120                 | 125              |
| Undrained Shear Strength (psf)         | 250               | 250                   | 1,000               | 6,000            |
| Friction Angle (degrees)               | 18                | 18                    | 15                  | 15               |
| Static Soil Modulus Parameter, k (pci) | 100               | 30                    | 1,000               | 2,000            |
| Strain, 850 (in/in)                    | 0.010             | 0.020                 | 0.005               | 0.004            |

#### **Boring B-7**

| Design Parameter                          | W. Shale<br>Bedrock | Shale<br>Bedrock | Gypsum | Shale<br>Bedrock |
|-------------------------------------------|---------------------|------------------|--------|------------------|
| Moist Unit Weight (pcf)                   | 120                 | 120              | na     | 125              |
| Undrained Shear Strength (psf)            | 1,000               | 2,000            | na     | 6,000            |
| Friction Angle (degrees)                  | 18                  | 18               | na     | 15               |
| Static Soil Modulus Parameter, k<br>(pci) | 500                 | 1,000            | na     | 2,000            |
| Strain, 850 (in/in)                       | 0.005               | 0.005            | na     | 0.004            |

#### **Boring B-8**

| Design Parameter                       | Lean to Fat Clay<br>Alluvium | W. Shale<br>Bedrock | Shale<br>Bedrock |
|----------------------------------------|------------------------------|---------------------|------------------|
| Moist Unit Weight (pcf)                | 115                          | 120                 | 125              |
| Undrained Shear Strength (psf)         | 1,000                        | 1,500               | 6,000            |
| Friction Angle (degrees)               | 18                           | 15                  | 15               |
| Static Soil Modulus Parameter, k (pci) | 500                          | 500                 | 2,000            |
| Strain, 250 (in/in)                    | 0.005                        | 0.005               | 0.004            |

Drilling to design depths should be possible with conventional large drilled pier equipment. Difficult drilling should be anticipated where gypsum masses are encountered which may require rock cutting teeth and/or coring in order to advance the drilled pier hole. We highly recommend a separate bid item be provided in the bid documents that addresses drilling through the gypsum.

Additionally, it should be noted that cobbles and boulders as well as wet, sloughing soils should be expected within the gravel alluvium encountered in Boring B-1. The drilled pier contractor should have the proper muck buckets, casing and dewatering equipment on-site prior to advancing the pier holes. Additionally, auger flites and cutting teeth should be capable of removing cobble to boulder sized rock from the pier holes. Care should be taken so that the sides and bottom of the shaft excavations are not disturbed during drilling. The bottom of the shaft excavations should be free of loose material and water when concrete is placed. Concrete should be placed as soon as possible after the foundation excavation is completed to reduce the potential for disturbance of the bearing surface.

Groundwater was encountered at the time of our field work; therefore, the use of temporary casing will likely be required. The need for casing will depend on the conditions encountered at the time the pier excavations are made. A sufficient head of plastic concrete having a minimum slump on the order of 6-8 inches should be maintained inside the casing as it is withdrawn to prevent concrete arching and the influx of soil and water (if encountered) and creation of voids in the pier shaft.

Drilled shaft construction should be constructed in accordance with applicable portions of ACI 336.3R-93 or other similar, approved specification. Concrete mix should be designed utilizing cement to have a minimum 28-day compressive strength of 4,000 psi and a maximum water cement ratio of 0.45. A super plasticizer may be necessary to increase concrete slump/flow temporarily for drilled shaft placement.

Concrete should be on-site and ready for placement as soon as practical after each pier excavation is completed. Concrete placement in pier excavations should occur on the same day as pier excavation is completed.

We do not recommend free-fall concrete placement in piers. The use of a bottom-dump hopper, tremie, or pump, discharging near the bottom of the hole where concrete segregation will be minimized, is recommended.

A representative from AET should observe all drilled shaft excavations to evaluate the suitability of the bearing materials and to verify that conditions in the drilled shaft excavations are consistent with those encountered in the test borings. If unsuitable materials are encountered at planned depths, it may be necessary to deepen the shaft.

#### 7.0 LIMITATIONS

Within the limitations of scope, budget, and schedule, our services have been conducted according to generally accepted geotechnical engineering practices at this time and location. Other than this, no warranty, either expressed or implied, is intended. Important information regarding risk management and proper use of this report is given in Appendix B entitled "Geotechnical Report Limitations and Guidelines for Use".



AET Project No. 17-03356

Boring Log Notes Unified Soil Classification System Site Location Map Boring Location Map Subsurface Boring Logs Unconfined Compression Test Results Swell-Consolidation Test Results

#### A.1 FIELD EXPLORATION

The subsurface conditions at the site were explored by drilling and sampling standard penetration test borings. The locations of the borings appear on the Boring Location Map, preceding the Subsurface Boring Logs in this appendix.

#### A.2 SAMPLING METHODS

#### A.2.1 Ring-lined barrel Samples - Calibrated to N<sub>60</sub> Values

Standard penetration (ring-lined barrel) samples were collected in general accordance with ASTM: D3550. The ASTM test method consists of driving a 2.5-inch O.D. thick-walled, split-barrel sampler lined with brass rings into the in-situ soil with a 140-pound hammer dropped from a height of 30 inches. The sampler is driven a total of 18 inches into the soil. After an initial set of 6 inches, the number of hammer blows to drive the sampler the final 12 inches is known as the standard penetration resistance or N-value.

#### A.2.2 Disturbed Samples (DS)/Spin-up Samples (SU)

Sample types described as "DS" or "SU" on the boring logs are disturbed samples, which are taken from the flights of the auger. Because the auger disturbs the samples, possible soil layering and contact depths should be considered approximate.

#### A.2.3 Sampling Limitations

Unless actually observed in a sample, contacts between soil layers are estimated based on the spacing of samples and the action of drilling tools. Cobbles, boulders, and other large objects generally cannot be recovered from test borings, and they may be present in the ground even if they are not noted on the boring logs.

Determining the thickness of "topsoil" layers is usually limited, due to variations in topsoil definition, sample recovery, and other factors. Visual-manual description often relies on color for determination, and transitioning changes can account for significant variation in thickness judgment. Accordingly, the topsoil thickness presented on the logs should not be the sole basis for calculating topsoil stripping depths and volumes. If more accurate information is needed relating to thickness and topsoil quality definition, alternate methods of sample retrieval and testing should be employed.

#### A.3 CLASSIFICATION METHODS

Soil descriptions shown on the boring logs are based on the Unified Soil Classification (USC) system. The USC system is described in ASTM: D2487 and D2488. Where laboratory classification tests (sieve analysis or Atterberg Limits) have been performed, accurate classifications per ASTM: D2487 are possible. Otherwise, soil descriptions shown on the boring logs are visual-manual judgments. Charts are attached which provide information on the USC system, the descriptive terminology, and the symbols used on the boring logs.

Visual-manual judgment of the AASHTO Soil Group is also noted as a part of the soil description. A chart presenting details of the AASHTO Soil Classification System is also attached.

The boring logs include descriptions of apparent geology. The geologic depositional origin of each soil layer is interpreted primarily by observation of the soil samples, which can be limited. Observations of the surrounding topography, vegetation, and development can sometimes aid this judgment.

#### A.4 WATER LEVEL MEASUREMENTS

The ground water level measurements are shown at the bottom of the boring logs. The following information appears under "Water Level Measurements" on the logs:

- Date and Time of measurement
- Sampled Depth: lowest depth of soil sampling at the time of measurement
- Casing Depth: depth to bottom of casing or hollow-stem auger at time of measurement
- Cave-in Depth: depth at which measuring tape stops in the borehole
- Water Level: depth in the borehole where free water is encountered
- Drilling Fluid Level: same as Water Level, except that the liquid in the borehole is drilling fluid

The true location of the water table at the boring locations may be different than the water levels measured in the boreholes. This is possible because there are several factors that can affect the water level measurements in the borehole. Some of these factors include: permeability of each soil layer in profile, presence of perched water, amount of time between water level readings, presence of drilling fluid, weather conditions, and use of borehole casing.

#### A.5 LABORATORY TEST METHODS

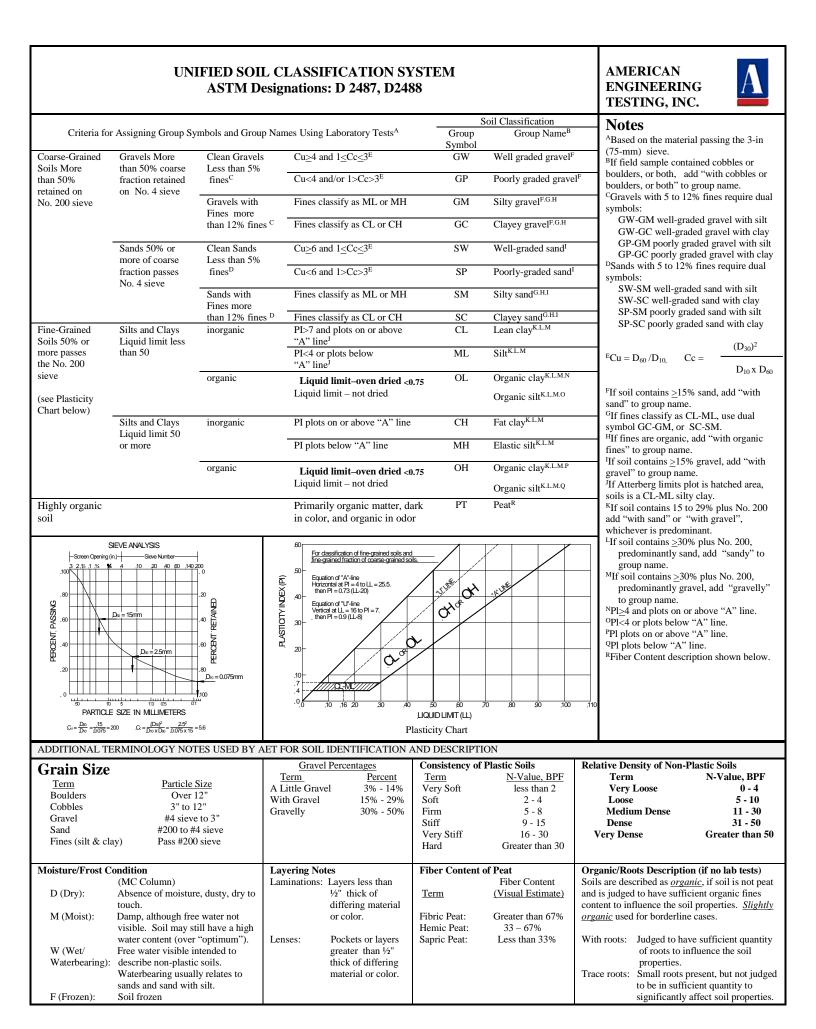
#### A.5.1 Water Content Tests

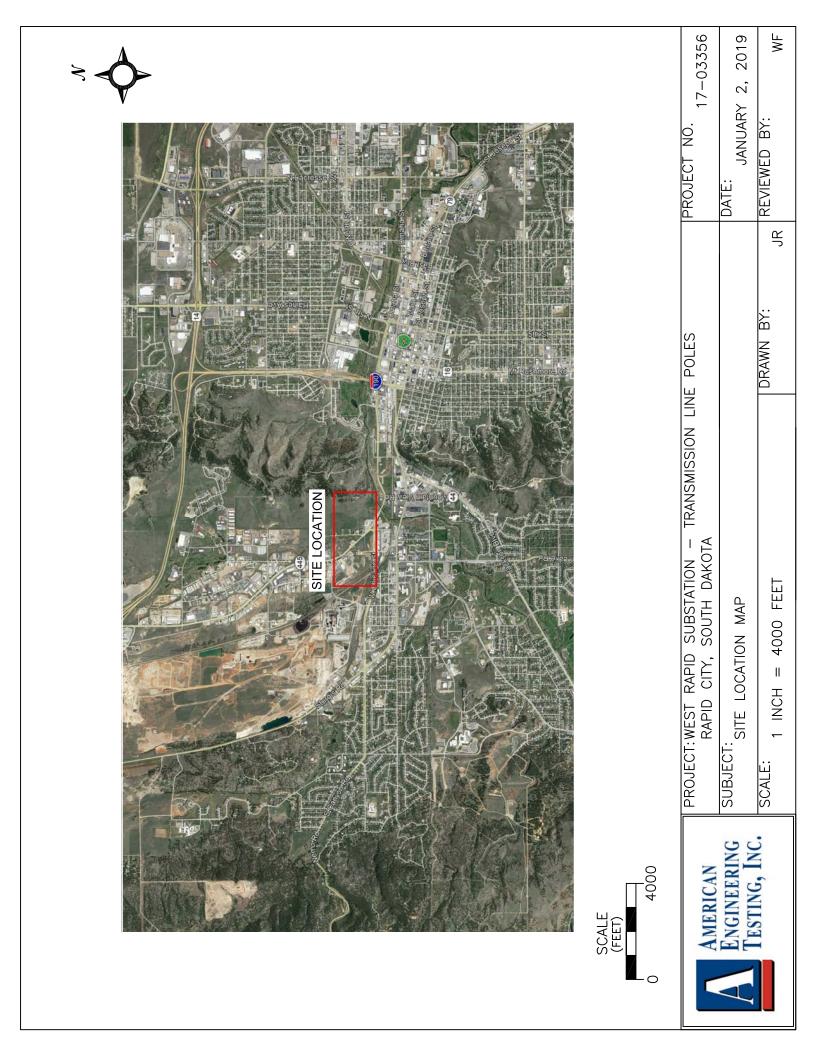
Conducted per AET Procedure 01-LAB-010, which is performed in general accordance with ASTM: D2216 and AASHTO: T265.

#### A.5.2 Atterberg Limits Tests

Conducted per AET Procedure 01-LAB-030, which is performed in general accordance with ASTM: D4318 and AASHTO: T89, T90.

#### A.5.3 Sieve Analysis of Soils (thru #200 Sieve)


Conducted per AET Procedure 01-LAB-040, which is performed in general conformance with ASTM: D6913, Method A.


#### A.6 TEST STANDARD LIMITATIONS

Field and laboratory testing is done in general conformance with the described procedures. Compliance with any other standards referenced within the specified standard is neither inferred nor implied.

#### A.7 SAMPLE STORAGE

Unless notified to do otherwise, we routinely retain representative samples of the soils recovered from the borings for a period of 30 days.









| AET JO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | B NO: <b>17-03356</b>                             |              |            |                  |                     | LO    | G OF                 | во          | RING N      | NO    | B            | -1 (   | ( <b>p.</b> 1  | of 1  | )            |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|--------------|------------|------------------|---------------------|-------|----------------------|-------------|-------------|-------|--------------|--------|----------------|-------|--------------|
| PROJE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CT: West Rapid Sul                                | bstation -   | - Transm   | ission <b>I</b>  | ine Poles           | ; Ra  | pid                  | Cit         | y, So       | uth I | Dako         | ta     |                |       |              |
| DEPTH<br>IN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | SURFACE ELEVATION:                                | 3256.3       |            |                  | GEOLOGY             | N     | MC                   | SA          | MPLE        | REC   | FIELI        | D & LA | BORA           | TORY  | TES          |
| FEET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MATERIAL                                          | DESCRIPTI    | ON         |                  |                     |       | MC                   | T           | MPLE<br>YPE | ĪN.   | WC           | DEN    | LL             | PL    | <b>%-</b> #2 |
| 1 - 2 - 3 - 4 - 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | TOPSOIL<br>SILTY SAND, brown, m<br>present (SM)   | edium dens   | se, gravel |                  | OPSOIL<br>LLUVIUM   | 14    | М                    |             | MC          | 18    | 11           |        |                |       |              |
| 5 —<br>6 —<br>7 —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SANDY LEAN CLAY, b<br>hard to firm, gravel preser |              | rk brown,  |                  |                     | 31    | M                    | R           | MC          | 18    | 6            |        |                |       |              |
| 8 —<br>9 —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                   | . ,          |            |                  |                     | 5     | ₩<br>W               | R           | MC          | 18    |              |        |                |       |              |
| 10 - 11 - 12 - 12 - 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | SANDY GRAVEL, brow<br>dense (GP)                  | n, dense to  | very       |                  |                     | 34    | W                    | R           | MC          | 18    |              |        |                |       |              |
| 13 - 14 - 15 - 15 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 10 | with cobbles                                      |              |            |                  |                     | 68    | W                    | ł           | MC          | 18    |              |        |                |       |              |
| 16 —<br>17 —<br>18 —<br>19 —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                   |              |            |                  |                     | 50/.3 | W                    | 2222        | MC          | 10    |              |        |                |       |              |
| $\begin{array}{c} 20 \\ 21 \\ -22 \\ -23 \\ -24 \\ -25 \\ -25 \\ -26 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SHALE, Silty Lean Clay,<br>(CL)                   | , greenish g | gray, hard |                  | UNDANCE<br>ORMATION | 50/.4 | М                    | 4 22222     | MC          | 5     |              |        |                |       |              |
| $\begin{array}{c} 26 \\ -27 \\ -28 \\ -29 \\ -30 \\ -31 \\ -32 \\ -33 \\ -34 \\ -35 \\ -36 \\ -\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                   |              |            |                  |                     | 50/.4 | М                    | VILLA VILLA | МС          | 5     |              |        |                |       |              |
| $\begin{array}{r} 37 - \\ 38 - \\ 39 - \\ 40 - \\ 41 - \\ 42 - \\ 43 - \\ 44 - \\ 45 - \\ 46 - \\ 47 - \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                   |              |            |                  |                     | 50/.4 | М                    | LILL LILLA  | MC          | 5     |              |        |                |       |              |
| 48<br>49<br>50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                   |              |            |                  |                     | 50/.4 | M                    | ł           | _MC_        | 5     |              |        |                |       |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Bottom of                                         | Boring       |            |                  |                     |       |                      |             |             |       |              |        |                |       |              |
| DEP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | TH: DRILLING METHOD                               |              |            | WATER            | LEVEL MEA           | ASURI | EMEN                 |             |             |       |              |        |                |       |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                   | DATE         | TIME       | SAMPLEI<br>DEPTH |                     |       | ENILI<br>E-IN<br>PTH | -           | RILLI       | NG    | WATH<br>LEVE |        | NOTE:<br>THE A |       |              |
| 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0 3.25" HSA                                     |              |            | DEPTH<br>50.4    |                     |       |                      |             |             | VEL   | 1.5          |        | SHEET          |       |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                   | 12/27/18     | 15:00      | 30.4             |                     | -     | -                    | -           |             |       | 7.5          |        | XPLA           |       |              |
| BORIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | G<br>LETED: <b>12/27/18</b>                       |              |            |                  |                     |       |                      |             |             |       |              |        | ERMIN          |       |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                   |              |            |                  |                     |       |                      | -           |             |       |              |        |                | IS LO |              |
| DR: ES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <b>5</b> LG: <b>BB</b> Rig: <b>RC-2</b>           |              |            |                  |                     |       |                      |             |             |       |              |        |                | 01-D  |              |



| PROJE             | CT: West Rapid Sul                           |             |            |               |                        |            |                         |     |                   |       | B            |        |       |               |              |
|-------------------|----------------------------------------------|-------------|------------|---------------|------------------------|------------|-------------------------|-----|-------------------|-------|--------------|--------|-------|---------------|--------------|
| DEPŢH             |                                              | bstation -  | - Transm   | ission        | Line Poles             | ; Ra       | pid                     | Cit | ty, So            | uth l | Dako         | ta     |       |               |              |
|                   | SURFACE ELEVATION:                           | 3289.8      |            |               | GEOLOGY                |            |                         | SA  | MDI F             | REC   | FIELI        | D & LA | BORA  | TORY          | TEST         |
| IN<br>FEET        |                                              | DESCRIPTION |            |               | GEOLOGI                | N          | MC                      |     | MPLE<br>TYPE      | IN.   | WC           | DEN    | LL    | PL            | <b>%-</b> #2 |
| 1 -               | TOPSOIL                                      |             |            |               | TOPSOIL                |            |                         | R   |                   |       |              |        |       |               |              |
| 2 —               | FAT CLAY, tan, very stit                     | ff (CH)     |            |               | ALLUVIUM               |            |                         | 1   |                   |       |              |        |       |               |              |
| 3 - 4 - 4         |                                              |             |            |               |                        | 22         | Μ                       |     | MC                | 18    | 13           |        |       |               |              |
| 5 -<br>6 -        | SILTY LEAN CLAY, tai                         | n-brown, h  | ard, sand  |               |                        | 80         | М                       | 5   | MC                | 18    | 7            |        |       |               |              |
| 7 —               | and gravel present (CL)                      | ~ 11        |            |               |                        |            |                         | ł   |                   |       |              |        |       |               |              |
| 8 -<br>9 -        | WEATHERED SHALE,<br>very stiff to stiff (CL) | Silty Lean  | Clay, red, | Ħ             | SPEARFISH<br>FORMATION | 29         | М                       |     | MC                | 18    | 16           | 111    |       |               |              |
| 10 -<br>11 -      |                                              |             |            |               |                        | 14         | М                       | 5   | MC                | 18    | 19           |        |       |               |              |
| 12 -              |                                              |             |            | Ħ             |                        |            |                         | R   |                   |       |              |        |       |               |              |
| 13 —<br>14 —      | with concretions                             |             |            | Ħ             |                        | 14         | $\frac{M}{\nabla}$      |     | MC                | 18    | 17           |        |       |               |              |
| 15 —              |                                              |             |            | Ħ             |                        | 11         | $\frac{}{\overline{W}}$ | 4   | MC                | 18    |              |        |       |               |              |
| 16 —<br>17 —      | -                                            |             |            | Ħ             |                        |            | ••                      | Ł   | me                | 10    |              |        |       |               |              |
| 18 —<br>19 —      |                                              |             |            | Ħ             |                        |            |                         | H   |                   |       |              |        |       |               |              |
| 20 -              |                                              |             |            | Ħ             |                        | 39         | М                       | ¥   | MC                | 18    |              |        |       |               |              |
| 21 -<br>22 -      |                                              |             |            |               |                        | 39         | IVI                     | Я   | MC                | 10    |              |        |       |               |              |
| 23 —              | SHALE, Silty Lean Clay,                      | red. hard.  | siltstone  |               |                        |            |                         | ł   |                   |       |              |        |       |               |              |
| 24 -<br>25 -      | lenses present (CL)                          |             |            |               |                        |            |                         | 5   |                   | _     |              |        |       |               |              |
| 26 -<br>27 -      |                                              |             |            |               |                        | 50/.4      | Μ                       |     | MC                | 5     |              |        |       |               |              |
| 28 -              |                                              |             |            |               |                        |            |                         | ł   |                   |       |              |        |       |               |              |
| 29 -<br>30 -      |                                              |             |            |               |                        |            |                         | I   |                   |       |              |        |       |               |              |
| 31 -              | _                                            |             |            |               |                        |            |                         | Ł   |                   |       |              |        |       |               |              |
| 32 - 33 - 33 - 33 | -                                            |             |            |               |                        |            |                         | ł   |                   |       |              |        |       |               |              |
| 34 -              |                                              |             |            |               |                        |            |                         | I   |                   |       |              |        |       |               |              |
| 35 -<br>36 -      |                                              |             |            |               |                        | 50/.4      | W                       | Ì   | MC                | 5     |              |        |       |               |              |
| 37 -              |                                              |             |            |               |                        |            |                         | Ł   |                   |       |              |        |       |               |              |
| 38 -<br>39 -      |                                              |             |            |               |                        |            |                         | 1   |                   |       |              |        |       |               |              |
| 40 -              |                                              |             |            |               |                        |            |                         | Ł   |                   |       |              |        |       |               |              |
| 41 -<br>42 -      |                                              |             |            |               |                        |            |                         | ł   |                   |       |              |        |       |               |              |
| 43 -<br>44 -      | _                                            |             |            |               |                        |            |                         | Į   |                   |       |              |        |       |               |              |
| 44 - 45 -         | -                                            |             |            |               |                        |            | ** 7                    | Ł   |                   | NGD   |              |        |       |               |              |
| 46 -<br>47 -      |                                              |             |            |               |                        | 50/.4      | W                       | И   | MC                | NSR   |              |        |       |               |              |
| 48 —              | _                                            |             |            |               |                        |            |                         | X   |                   |       |              |        |       |               |              |
| 49 -<br>50 -      |                                              |             |            |               |                        | 50/.4      | W                       | 1   | MC                | NSR   |              |        |       |               |              |
| 00                | Bottom of                                    | Boring      |            |               |                        | -50/.4     |                         |     |                   |       |              |        |       |               |              |
| DEI               | PTH: DRILLING METHOD                         |             |            | WAT           | ER LEVEL MEA           |            | IMEN                    |     |                   |       |              |        |       |               |              |
|                   | TII. DKILLING METHOD                         |             | TD C       |               |                        |            |                         |     |                   | NG    | WATI         |        | NOTE: |               |              |
| 5                 | 50.0 3.25" HSA                               | DATE        |            | SAMPI<br>DEPT |                        | CAV<br>DEI | Ϋ́́ΤΗ̈́`                | FĹ  | DRILLII<br>UID LE | VEL   | WATI<br>LEVE |        | THE A |               |              |
|                   |                                              | 12/27/18    | 12:00      | 50.5          | 5                      | -          | -                       |     |                   |       | 15.0         | ,      | SHEET |               |              |
| DODE              |                                              |             |            |               |                        |            |                         |     |                   |       |              |        | XPLA  |               |              |
| COMP              | NG<br>LETED: <b>12/27/18</b>                 |             |            |               |                        |            |                         |     |                   |       |              | Т      | ERMIN |               |              |
| DR: E             | S LG: BB Rig: RC-2                           |             |            |               |                        |            |                         |     |                   |       |              |        |       | IS LO<br>01-D | G            |



|                                         | DB NO: <u>17-03356</u>                  | -b-4-4° m         | •       | •                                                                                                 | I                     |       |             |     | RING N            |       |              |     | (p. 1 | 01 1  | )           |
|-----------------------------------------|-----------------------------------------|-------------------|---------|---------------------------------------------------------------------------------------------------|-----------------------|-------|-------------|-----|-------------------|-------|--------------|-----|-------|-------|-------------|
| PROJE                                   | CT: West Rapid S                        | ubstation - T     | ransmis | sion                                                                                              | Line Poles            | s; Ra | pid         |     | ty, So            | uth I |              |     |       |       |             |
| EPTH<br>IN<br>EET                       | SURFACE ELEVATION                       |                   |         |                                                                                                   | GEOLOGY               | N     | MC          | SA  | MPLE<br>YPE       | REC   |              |     | ABORA |       |             |
| EET                                     |                                         | L DESCRIPTION     |         |                                                                                                   |                       |       |             |     | YPE               | IN.   | WC           | DEN | LL    | PL    | <b>%-</b> # |
| 1 -                                     | <b>TOPSOIL</b><br>SILTY LEAN CLAY, 1    |                   | /       |                                                                                                   | TOPSOIL               | 1     |             | Į   |                   |       |              |     |       |       |             |
| 2 - 3 - 3 - 3                           | present (CL)                            | red, nard, gypsu  | 111     |                                                                                                   |                       | 37    | М           | Þ   | MC                | 18    |              |     |       |       |             |
| 4 -                                     |                                         |                   |         |                                                                                                   |                       |       | 141         | Ł   | wie               | 10    |              |     |       |       |             |
| 5 - 6 - 6                               |                                         |                   |         |                                                                                                   |                       | 50/.5 | М           |     | MC                | 18    | 5            |     |       |       |             |
| 7                                       | SANDY GRAVEL, gra                       | v verv dense o    | obbles  |                                                                                                   |                       | 50/ 4 | м           | Ł   | MC                | 18    | 4            |     |       |       |             |
| 9 –                                     | present (GP)                            | y, very dense, et | 000103  | =                                                                                                 |                       | 50/.4 | М           | Я   | MC                | 18    | 4            |     |       |       |             |
| 10 - 11 - 11 - 11 - 10 - 10 - 10 - 10 - | SHALE, Fat Clay, gray                   | -green, hard (CH  | H)      |                                                                                                   | SUNDANCE<br>FORMATION | 62    | М           |     | MC                | 18    | 23           | 98  |       |       |             |
| 12 –<br>13 –                            |                                         |                   |         |                                                                                                   | TOKMATION             |       | м           | Ł   | MG                | 10    |              |     |       |       |             |
| 14 -                                    |                                         |                   |         |                                                                                                   |                       | 80    | Μ           | Р   | MC                | 18    |              |     |       |       |             |
| 15 –<br>16 –                            |                                         |                   |         |                                                                                                   |                       | 86/.9 | М           |     | MC                | 17    | 23           | 97  |       |       |             |
| 17 —<br>18 —                            |                                         |                   |         |                                                                                                   |                       |       |             | Ł   |                   |       |              |     |       |       |             |
| 19 –                                    |                                         |                   |         |                                                                                                   |                       |       |             | ł   |                   |       |              |     |       |       |             |
| 20 - 21 - 21                            |                                         |                   |         |                                                                                                   |                       |       |             | Į   |                   |       |              |     |       |       |             |
| 22 -                                    |                                         |                   |         |                                                                                                   |                       |       |             | Ľ   |                   |       |              |     |       |       |             |
| 23 –<br>24 –                            |                                         |                   |         |                                                                                                   |                       |       |             | ł   |                   |       |              |     |       |       |             |
| 25 - 26 -                               | GYPSUM, white, very                     | dense             |         |                                                                                                   | GYPSUM                | 50/.4 | М           | 5   | MC                | 5     |              |     |       |       |             |
| 27 -                                    | · · · ·                                 |                   |         |                                                                                                   | SPRING<br>FORMATION   |       |             | R   |                   |       |              |     |       |       |             |
| 28 —<br>29 —                            |                                         |                   |         |                                                                                                   |                       |       |             | Į   |                   |       |              |     |       |       |             |
| 30 - 31 - 31 - 31 - 31 - 31 - 31 - 31 - |                                         |                   |         |                                                                                                   |                       |       |             | ß   |                   |       |              |     |       |       |             |
| 32 –                                    |                                         |                   |         | $\left[ \diamond \right]$                                                                         |                       |       |             | ł   |                   |       |              |     |       |       |             |
| 33 —<br>34 —                            |                                         |                   |         | $  \diamond  $                                                                                    |                       |       |             | ł   |                   |       |              |     |       |       |             |
| 35 -                                    |                                         |                   |         |                                                                                                   |                       | 50/.1 | М           | И   | MC                | 2     |              |     |       |       |             |
| 36 –<br>37 –                            |                                         |                   |         | $\rightarrow$                                                                                     |                       | 00/.1 | 1.11        | R   | me                |       |              |     |       |       |             |
| 38 –<br>39 –                            |                                         |                   |         |                                                                                                   |                       |       |             | ß   |                   |       |              |     |       |       |             |
| 40 +                                    | SILTSTONE, Silt, red,                   | hard (ML)         |         | × ×                                                                                               |                       |       |             | Ł   |                   |       |              |     |       |       |             |
| 41 –<br>42 –                            | 511151 61 (1, 510, 100,                 |                   |         | $\begin{array}{c} \times & \times \\ \times & \times \\ \times & \times \end{array}$              |                       |       |             | ł   |                   |       |              |     |       |       |             |
| 43 –<br>44 –                            |                                         |                   |         | × ×<br>× ×<br>× ×                                                                                 |                       |       |             | Ħ   |                   |       |              |     |       |       |             |
| 45 –                                    |                                         |                   |         |                                                                                                   |                       | 50/.3 | М           | R   | MC                | 4     |              |     |       |       |             |
| 46 –<br>47 –                            |                                         |                   |         | $\left \begin{array}{c} \times & \times \\ \times & \times \\ \times & \times \end{array}\right $ |                       | 50/.5 | IVI         | R   | WIC               | -     |              |     |       |       |             |
| 48 –<br>49 –                            |                                         |                   |         | × ×<br>× ×                                                                                        |                       |       |             | Ł   |                   |       |              |     |       |       |             |
| 50 -                                    | Sampler Re                              | fusal at 50.1'    |         | × ×<br>× ×                                                                                        |                       | 50/.1 | M           | 꿘   | MC                | 2     |              |     |       |       |             |
|                                         | Sampler Re                              | uoui ut 20.1      |         |                                                                                                   |                       |       |             |     |                   |       |              |     |       |       |             |
| DEP                                     | TH: DRILLING METHOD                     | )                 | ,       | WATE                                                                                              | R LEVEL MEA           | ASURI | EMEN        | VTS |                   |       |              |     | NOTE: | PEE   |             |
|                                         |                                         | DATE 7            |         | AMPLE<br>DEPTE                                                                                    |                       | 1     | E-IN<br>PTH | -   | ORILLII<br>UID LE | NG    | WATI<br>LEVE |     | THE A |       |             |
| 5                                       | 0.0 3.25" HSA                           |                   |         |                                                                                                   |                       |       |             | FL  |                   | VEL   |              | _   | SHEET |       |             |
|                                         |                                         | 12/19/18 1        | 5:00    | 50.1                                                                                              |                       | -     | -           | -   |                   |       | Non          |     | EXPLA |       |             |
| ORIN                                    | G                                       |                   |         |                                                                                                   |                       |       |             | -   |                   |       |              |     | ERMIN |       |             |
| OMPI                                    | LETED: 12/19/18                         |                   |         |                                                                                                   |                       |       |             | -   |                   |       |              | 1   |       | IS LO |             |
| R: ES                                   | <b>S</b> LG: <b>BB</b> Rig: <b>RC-2</b> |                   |         |                                                                                                   |                       |       |             |     |                   |       |              |     |       | 01-D  |             |



| AET JC                                  | DB NO: <b>17-03356</b>                  |              |           |                                               |                        | LO    | G OF         | BO   | RING             | NO     | B            | -4 ( | <b>p.</b> 1 | of 1  | )    |
|-----------------------------------------|-----------------------------------------|--------------|-----------|-----------------------------------------------|------------------------|-------|--------------|------|------------------|--------|--------------|------|-------------|-------|------|
| PROJE                                   | CT: West Rapid Sul                      | bstation -   | Transm    | nission                                       | Line Poles             | s; Ra | pid          | Cit  | ty, So           | uth I  | Dako         | ta   |             |       |      |
| DEPTH<br>IN                             | SURFACE ELEVATION:                      |              | GEOLOGY   |                                               | MC                     | SA    | MPLE         | REC  | FIELI            | D & LA | LABORATORY   |      |             |       |      |
| FEET                                    | MATERIAL                                | DESCRIPTI    | ON        |                                               |                        |       | WIC          | TYPE |                  | IN.    | WC           | DEN  | LL          | PL    | %-#2 |
| 1 -                                     | CRUSHED LIMESTON                        | E AGGRI      | EGATE, 12 | 2                                             | SURFACING<br>SUNDANCE  |       |              | ß    |                  |        |              |      |             |       |      |
| 2 - 3 - 3 - 3                           | SHALE, Fat Clay, green-                 | gray, hard   | (CH)      |                                               | FORMATION              | 50/0  | М            | ¥    | MC               | NSR    |              |      |             |       |      |
| 4 —<br>5 —                              |                                         |              |           |                                               |                        | 50/.0 | 141          | R    | wie              |        |              |      |             |       |      |
| 6 —                                     | GYPSUM, white, very de                  | ense         |           |                                               | - GYPSUM<br>SPRING     | 50/.4 | М            |      | MC               | 5      |              |      |             |       |      |
| 7 —<br>8 —                              |                                         |              |           | -0-                                           | FORMATION              | 50/.1 | М            | 4    | MC               | 2      |              |      |             |       |      |
| 9 —<br>10 —                             |                                         |              |           |                                               |                        | 00/11 |              | ß    | me               | _      |              |      |             |       |      |
| 11 -                                    |                                         |              |           |                                               |                        | 50/.1 | Μ            |      | MC               | 2      |              |      |             |       |      |
| 12 - 13 - 13 - 13                       |                                         |              |           | $\rightarrow$ - $\langle$                     |                        | 50/.1 | М            | 5    | MC               | 2      |              |      |             |       |      |
| 14 —<br>15 —                            |                                         | 1(2)(7)      |           | - \> -<br>                                    |                        |       |              | ß    |                  |        |              |      |             |       |      |
| 16 -<br>17 -                            | SILTSTONE, Silt, red, h                 | ard (ML)     |           |                                               |                        | 50/.4 | Μ            | R    | MC               | 5      |              |      |             |       |      |
| 18 -                                    |                                         |              |           |                                               |                        |       |              | ł    |                  |        |              |      |             |       |      |
| 19 —<br>20 —                            |                                         |              |           |                                               |                        |       |              | Ħ    |                  |        |              |      |             |       |      |
| 21 - 22 - 22                            |                                         |              |           |                                               |                        |       |              | Į    |                  |        |              |      |             |       |      |
| 23 -                                    |                                         |              |           |                                               |                        |       |              | ß    |                  |        |              |      |             |       |      |
| 24 —<br>25 —                            |                                         |              |           |                                               |                        |       |              | ł    |                  | NGD    |              |      |             |       |      |
| 26 —<br>27 —                            |                                         |              |           |                                               |                        | 50/.0 | Μ            | И    | MC               | NSR    |              |      |             |       |      |
| 28 -                                    |                                         |              |           | x x                                           |                        |       |              | ł    |                  |        |              |      |             |       |      |
| 29 -<br>30 -                            |                                         |              |           |                                               |                        |       |              | Ħ    |                  |        |              |      |             |       |      |
| 31 - 32 - 32                            |                                         |              |           |                                               |                        |       |              | Ħ    |                  |        |              |      |             |       |      |
| 33 —                                    |                                         |              |           |                                               |                        |       |              | ß    |                  |        |              |      |             |       |      |
| 34 - 35 - 35                            | SHALE, Fat Clay, green-                 | grov hard    | (CH)      |                                               |                        | 50/4  | M            | Ł    | MC               | _      |              |      |             |       |      |
| 36 -<br>37 -                            | SITALE, Fat Clay, green-                | glay, fiaru  | (CII)     |                                               |                        | 50/.4 | M            | Я    | MC               | 5      |              |      |             |       |      |
| 38 -                                    |                                         |              |           |                                               |                        |       |              | ł    |                  |        |              |      |             |       |      |
| 39 -<br>40 -                            |                                         |              |           |                                               |                        |       |              | ł    |                  |        |              |      |             |       |      |
| 41 - 42 - 42 - 42 - 42 - 42 - 42 - 42 - |                                         |              |           |                                               |                        |       |              | Ħ    |                  |        |              |      |             |       |      |
| 43 —<br>44 —                            |                                         |              |           |                                               |                        |       |              | Į    |                  |        |              |      |             |       |      |
| 45 —                                    | SILTSTONE, Silt, red, h                 | ard (ML)     |           |                                               | SPEARFISH              | 50/.4 | М            | R    | MC               | 5      |              |      |             |       |      |
| 46 —<br>47 —                            |                                         | uru (1112)   |           | × ×<br>× ×<br>× ×<br>× ×<br>× ×<br>× ×<br>× × | FORMATION              | 50/.4 | IVI          | R    | WIC              |        |              |      |             |       |      |
| 48 —<br>49 —                            |                                         |              |           |                                               |                        |       |              | ß    |                  |        |              |      |             |       |      |
| 50 -                                    | Sampler Refu                            | sal at 50 1' |           |                                               |                        | 50/.1 | M            | Ш    | -MC-             | 2      |              |      |             |       |      |
|                                         | Sumptor Rora                            | Sur ut 2011  |           |                                               |                        |       |              |      |                  |        |              |      |             |       |      |
| DEP                                     | TH: DRILLING METHOD                     |              |           | WAT                                           | ER LEVEL MEA           | ASURI | EMEN         | VTS  |                  | I      |              |      | NOTE:       | REF   | R TO |
| _                                       |                                         | DATE         | TIME      | SAMPI<br>DEPT                                 | LED CASING<br>TH DEPTH | CAV   | 'E-IN<br>PTH | I    | ORILLI<br>UID LE | NG     | WATI<br>LEVE |      | THE A       |       |      |
| 5                                       | 0.0 3.25" HSA                           |              |           |                                               |                        |       |              | FL   |                  | VEL    |              |      | SHEET       |       |      |
|                                         |                                         | 12/21/18     | 12:30     | 50.1                                          | l                      |       | -            | -    |                  |        | Non          | C    | XPLA        |       |      |
| BORIN                                   | G<br>LETED: <b>12/21/18</b>             |              |           |                                               |                        |       |              | -    |                  |        |              |      | ERMIN       |       |      |
|                                         |                                         |              |           |                                               |                        |       |              | -    |                  |        |              |      |             | IS LO |      |
| DR: E                                   | <b>S</b> LG: <b>BB</b> Rig: <b>RC-2</b> |              |           |                                               |                        |       |              |      |                  |        |              |      |             | 01-D  |      |

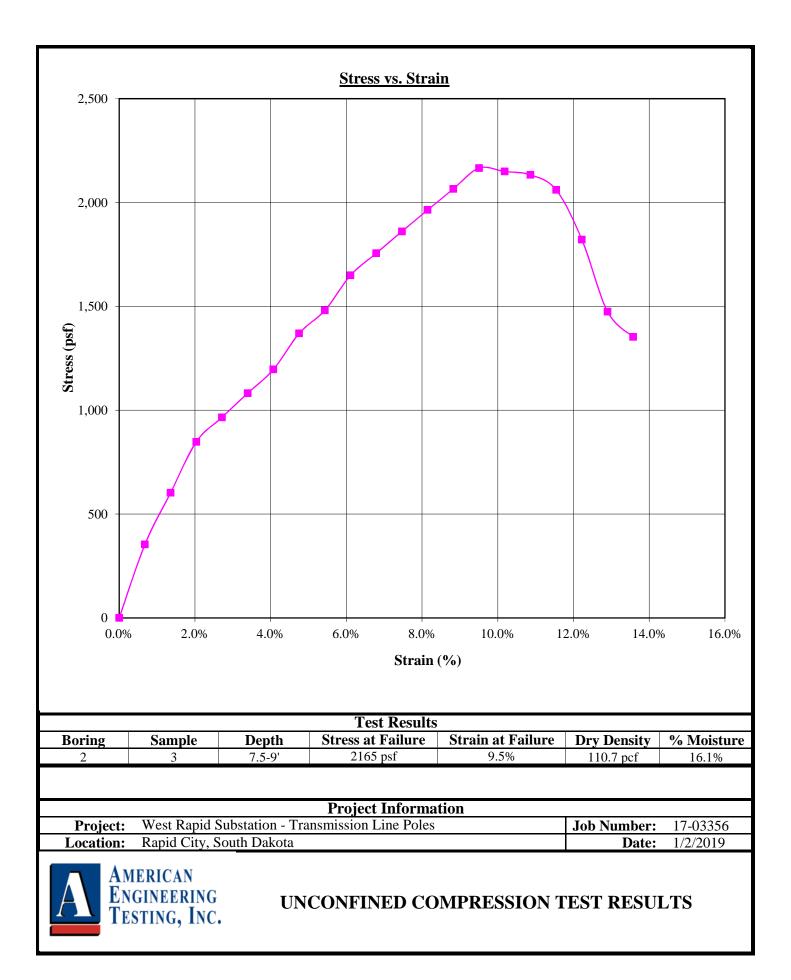


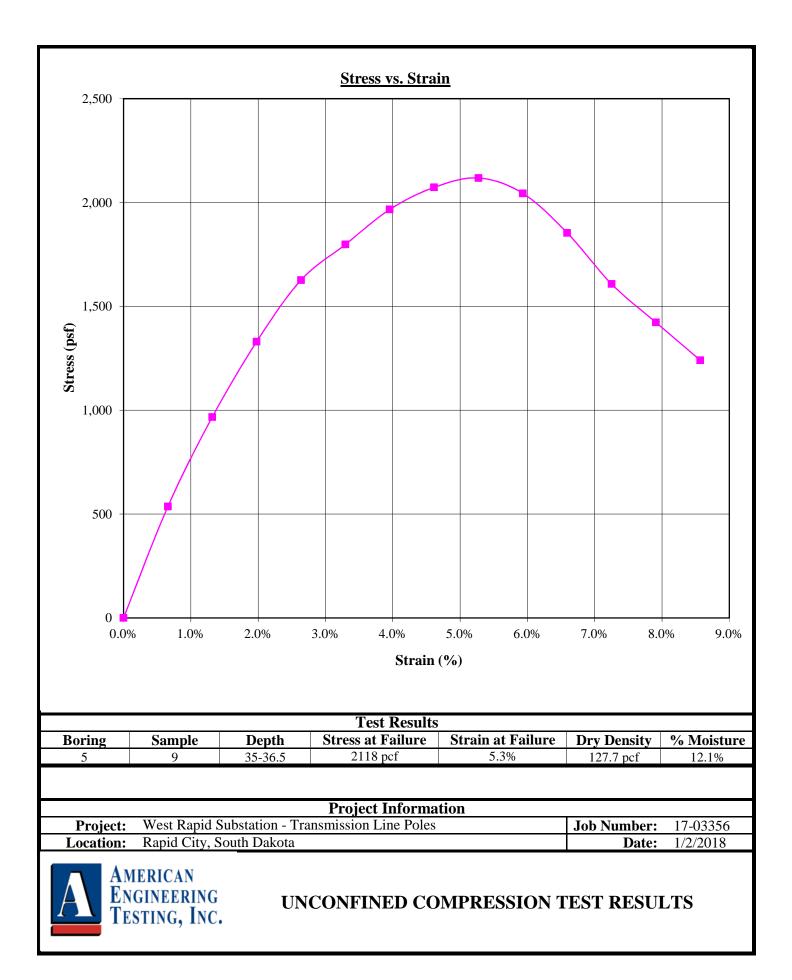
# SUBSURFACE BORING LOG

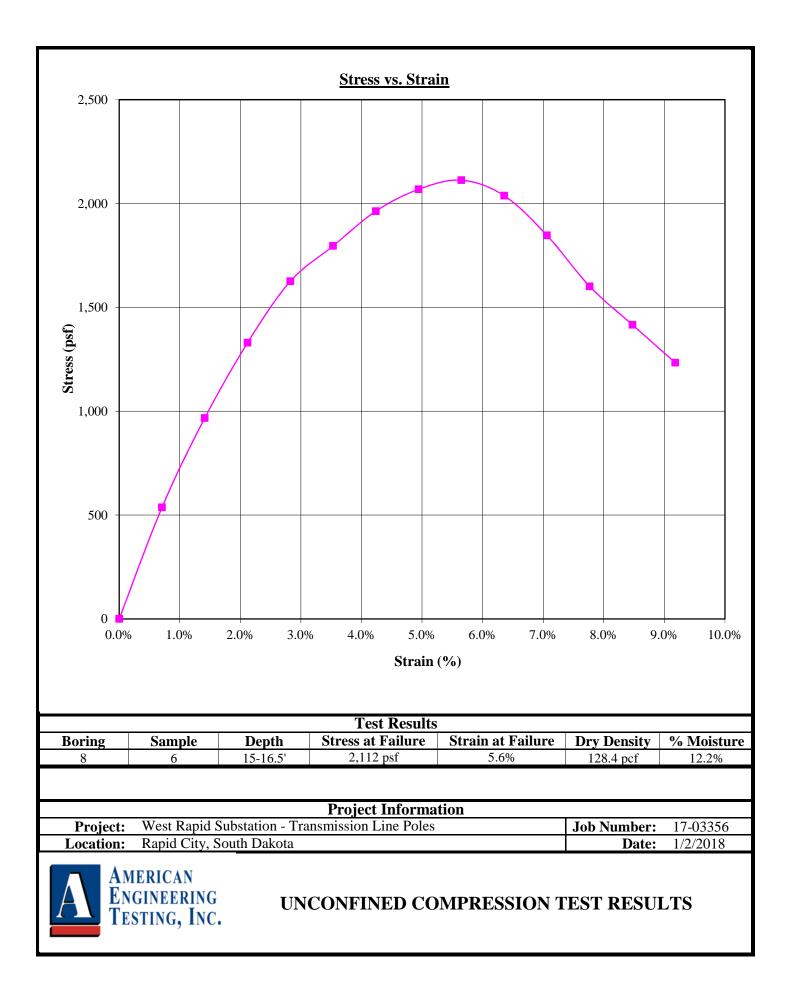
| AET JO                    | DB NO: <b>17-03356</b>       |                          |            |                  |                   | LO         | G OF         | BO              | RING N            | NO        | B            | - 5      | (p. 1          | of 1          | )            |  |
|---------------------------|------------------------------|--------------------------|------------|------------------|-------------------|------------|--------------|-----------------|-------------------|-----------|--------------|----------|----------------|---------------|--------------|--|
| PROJE                     | CT: West Rapid Su            | bstation -               | · Transm   | ission I         | ine Poles         | s; Ra      | pid          | Cit             | y, So             | uth I     | Dako         | ta       |                |               |              |  |
| DEPTH<br>IN               | SURFACE ELEVATION:           |                          |            | GEOLOGY          |                   | N MC       |              | SAMPLE          |                   | REC       | FIELI        | ) & L    | & LABORATORY T |               |              |  |
| FEET                      | MATERIAL                     | DESCRIPTI                | ON         |                  |                   | N          | MC           | SAMPLE<br>TYPE  |                   | IN.       | WC           | DEN      | LL             | PL            | <b>%-</b> #2 |  |
| 1 -                       | CRUSHED LIMESTON             | E AGGR                   | EGATE, 7   |                  | OAD<br>URFACING   |            |              | ł               |                   |           |              |          |                |               |              |  |
| 2 - 3 - 3 - 3             | FILL, Lean Clay, black, a    | ash/slag pro             | esent (CL) |                  | LL                | 10         | М            | Ľ               | MC                | 18        |              |          |                |               |              |  |
| 4 —<br>5 —                |                              | 01                       |            |                  |                   | 10         | 141          | R               | wie               | 10        |              |          |                |               |              |  |
| 6 —                       | gravel present               |                          |            |                  |                   | 13         | M            |                 | MC                | 18        |              |          |                |               |              |  |
| 7 - 8 - 8                 | FILL, Fat Clay, brown-g      | ray (CH)                 |            |                  |                   | 6          | +            | 5               | MC                | 18        |              |          |                |               |              |  |
| 9 —<br>10 —               |                              |                          |            |                  |                   |            |              | ł               |                   |           |              |          |                |               |              |  |
| 11 —<br>12 —              |                              |                          |            |                  |                   | 2          | W            | И               | MC                | 18        |              |          |                |               |              |  |
| 13 —<br>14 —              |                              |                          |            |                  |                   | 3          | W            |                 | MC                | 18        |              |          |                |               |              |  |
| 15 —                      | SANDY LEAN CLAY, r           | ed-brown,                | firm,      | A                | LLUVIUM           | 6          | w            | ł               | MC                | 18        |              |          |                |               |              |  |
| 16 —<br>17 —              | gravel present (CL)          |                          |            |                  |                   |            | vv           | Ł               | IVIC              | 10        |              |          |                |               |              |  |
| 18 —<br>19 —              | WEATHERED SHALE              | Silty Lean               | Clay, red, | <u>SI</u>        | PEARFISH          | T          |              | ¥.              |                   |           |              |          |                |               |              |  |
| 20 - 21 - 21              | hard (CL)                    |                          |            |                  | ORMATION          | 43         | М            | И               | MC                | 18        |              |          |                |               |              |  |
| 22 —                      |                              |                          |            |                  |                   |            |              | Ł               |                   | -         |              |          |                |               |              |  |
| 23 —<br>24 —              | SHALE, Silty Lean Clay,      | , red, hard (            | (CL)       |                  |                   |            |              | ł               |                   |           |              |          |                |               |              |  |
| 25 - 26 -                 |                              |                          |            |                  |                   | 50/.4      | М            | И               | MC                | 5         |              |          |                |               |              |  |
| 27 —<br>28 —              |                              |                          |            |                  |                   |            |              | B               |                   |           |              |          |                |               |              |  |
| $\frac{20}{29} - 30 - 30$ |                              |                          |            |                  |                   |            |              | ł               |                   |           |              |          |                |               |              |  |
| 31 —                      |                              |                          |            |                  |                   |            |              | ł               |                   |           |              |          |                |               |              |  |
| 32 —<br>33 —              |                              |                          |            |                  |                   |            |              | ł               |                   |           |              |          |                |               |              |  |
| 34 —<br>35 —              |                              |                          |            |                  |                   |            |              | Į               |                   |           |              |          |                |               |              |  |
| 36 - 37 - 37              |                              |                          |            |                  |                   | 50/.4      | М            |                 | MC                | 5         | 12           | 128      |                |               |              |  |
| 38 -                      |                              |                          |            |                  |                   |            |              | Ŧ               |                   |           |              |          |                |               |              |  |
| 39 —<br>40 —              |                              |                          |            |                  |                   |            |              | Ħ               |                   |           |              |          |                |               |              |  |
| 41 —<br>42 —              |                              |                          |            |                  |                   |            |              | Ħ               |                   |           |              |          |                |               |              |  |
| 43 —<br>44 —              |                              |                          |            |                  |                   |            |              |                 |                   |           |              |          |                |               |              |  |
| 45 —                      |                              |                          |            |                  |                   | 50/.4      | М            | R               | MC                | 5         |              |          |                |               |              |  |
| 46 —<br>47 —              |                              |                          |            |                  |                   |            | 141          | Ł               | 1110              |           |              |          |                |               |              |  |
| 48 —<br>49 —              | •                            |                          |            |                  |                   |            |              |                 |                   |           |              |          |                |               |              |  |
| 50 —                      | Bottom of                    | Boring                   |            |                  |                   | 50/.4      | M            |                 | MC                | _5_       |              |          |                |               |              |  |
|                           |                              |                          |            |                  |                   |            |              |                 |                   |           |              |          |                |               |              |  |
| DEP                       | TH: DRILLING METHOD          |                          |            | WATER            | LEVEL ME          | -          |              |                 |                   |           |              |          | NOTE:          | REF           | ER TO        |  |
| 5                         | 50.0 3.25" HSA               | DATE                     | TIME       | SAMPLEI<br>DEPTH | D CASING<br>DEPTH | CAV<br>DEI | 'E-IN<br>PTH | FL <sup>1</sup> | ORILLII<br>UID LE | NG<br>VEL | WATH<br>LEVE | ER<br>EL | THE ATTACHED   |               |              |  |
|                           |                              | 3.25" HSA 12/19/18 14:40 |            |                  |                   |            |              | -               |                   |           |              | 8.0      |                | SHEETS FOR AN |              |  |
|                           |                              |                          |            |                  |                   |            |              |                 |                   |           |              | 1        | EXPLA          | NATI          | ON C         |  |
| BORIN<br>COMP             | NG<br>LETED: <b>12/19/18</b> |                          |            |                  |                   |            |              |                 |                   |           |              | Г        | ERMI           |               | GY C         |  |
|                           |                              |                          |            |                  |                   |            | -            | 1               |                   |           |              |          |                | IIS LO        |              |  |

01-DHR-060



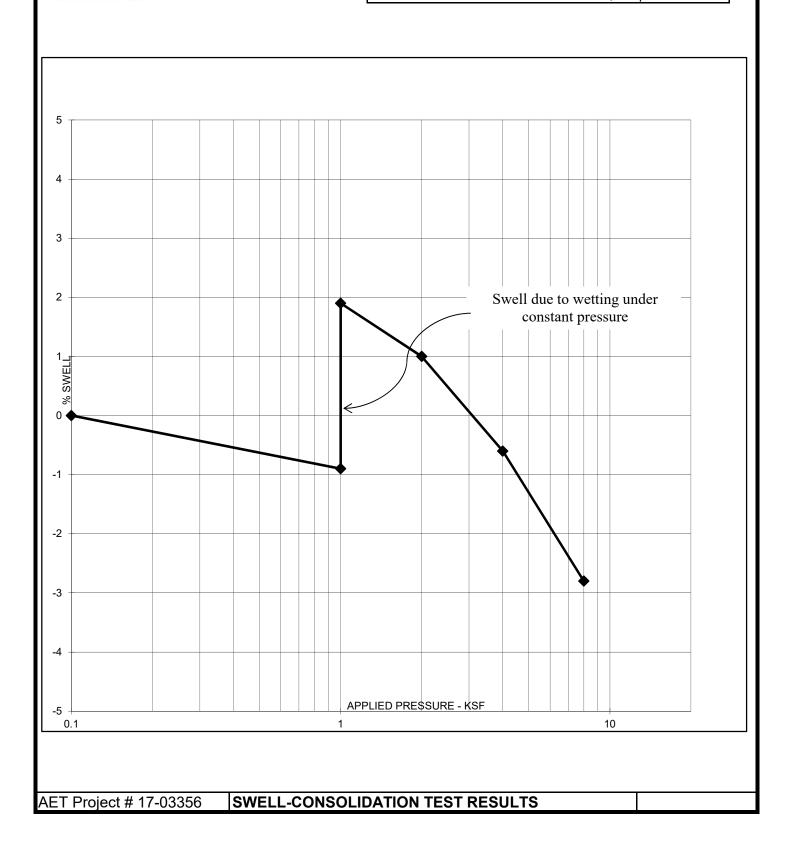

| AET JO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | DB NO: <b>17-03356</b>                                                |                                        |            |               |                        | LC    | OG OF        | BO    | RING N            | NO            | B            | -6(      | <b>p.</b> 1                    | of 1         | )     |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------|------------|---------------|------------------------|-------|--------------|-------|-------------------|---------------|--------------|----------|--------------------------------|--------------|-------|--|
| PROJE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CT: West Rapid Sul                                                    | ostation -                             | Transmi    | ssior         | Line Pole              | s; Ra | pid          | Cit   | ty, So            | uth l         | Dako         | ta       |                                |              |       |  |
| DEPTH<br>IN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SURFACE ELEVATION:                                                    | RFACE ELEVATION: <u>3292.0</u> GEOLOGY | N          | MC            | SA                     | MPLE  | REC          | FIELI | ) & LA            | LABORATORY TE |              |          |                                |              |       |  |
| FEET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | MATERIAL                                                              |                                        |            |               |                        | IN    | MC           | TYPE  |                   | IN.           | WC           | DEN      | LL                             | PL           | %-#2  |  |
| 1 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>FILL</b> , Lean Clay with gra<br><b>FILL</b> , Silty Lean Clay, re | / 🗱                                    | FILL       |               |                        | Ħ     |              |       |                   |               |              |          |                                |              |       |  |
| 2 - 3 - 3 - 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (CL)                                                                  | u, organics                            | s present  |               |                        | 22    | М            |       | MC                | 18            | 17           |          |                                |              |       |  |
| 4<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                       |                                        |            |               |                        |       |              | Ł     |                   |               |              |          |                                |              |       |  |
| 6 —<br>7 —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | gypsum present                                                        |                                        |            |               |                        | 13    | M            | Р     | MC                | 18            | 19           |          |                                |              |       |  |
| 8 —<br>9 —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                       |                                        |            |               |                        | 8     | М            |       | MC                | 18            | 27           |          |                                |              |       |  |
| 10 —<br>11 —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | LEAN CLAY, brown-gra<br>organics present (CL)                         | y, firm to s                           | soft,      |               | ALLUVIUM               | 6     | $\mathbf{W}$ | 4     | MC                | 18            |              |          |                                |              |       |  |
| 12 - 13 - 13 - 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | organics present (CL)                                                 |                                        |            |               |                        |       |              | Ł     |                   |               |              |          |                                |              |       |  |
| 14 —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                       |                                        |            |               |                        | 3     | W            | R     | MC                | 18            |              |          |                                |              |       |  |
| 15 —<br>16 —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                       |                                        |            |               |                        | 4     | W            |       | MC                | 18            |              |          |                                |              |       |  |
| 17 —<br>18 —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SILTY LEAN CLAY, red                                                  | d-brown fi                             | rm (CL)    |               |                        |       |              | ł     |                   |               |              |          |                                |              |       |  |
| 19 —<br>20 —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SILT I LEAN CLAI, IN                                                  |                                        |            |               |                        | 1     |              | 10    |                   |               |              |          |                                |              |       |  |
| 21 -<br>22 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                       |                                        |            |               |                        | 6     | W            | R     | MC                | 18            |              |          |                                |              |       |  |
| 23 —<br>24 —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | WEATHERED SHALE,                                                      | Silty Lean                             | Clay, red, |               | SPEARFISH              | _     |              | Ħ     |                   |               |              |          |                                |              |       |  |
| $\frac{25}{26} - \frac{25}{26} - 25$ | stiff to very stiff (CL)                                              |                                        |            | Ħ             | FORMATION              | 16    | М            | Ц     | MC                | 18            |              |          |                                |              |       |  |
| 27 –<br>28 –                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                       |                                        |            | Ħ             |                        |       |              | Ł     |                   |               |              |          |                                |              |       |  |
| 29 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                       |                                        |            |               |                        |       |              | ł     |                   |               |              |          |                                |              |       |  |
| 30 - 31 - 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                       |                                        |            | Ħ             |                        | 27    | М            |       | MC                | 18            |              |          |                                |              |       |  |
| 32 - 33 - 33 - 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                       |                                        |            |               |                        |       |              | Ħ     |                   |               |              |          |                                |              |       |  |
| 34 - 35 - 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                       |                                        |            | Ħ             |                        |       |              | 1     |                   | 10            |              |          |                                |              |       |  |
| 36 -<br>37 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                       |                                        |            |               |                        | 26    | M            | R     | MC                | 18            |              |          |                                |              |       |  |
| $\frac{38}{39} - \frac{38}{39} - 38$ | SHALE, Silty Lean Clay,                                               | red, hard (                            | (CL)       |               |                        |       |              | ł     |                   |               |              |          |                                |              |       |  |
| 40 -<br>41 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                       |                                        |            |               |                        | 50/.3 | М            | Þ     | MC                | 4             |              |          |                                |              |       |  |
| 42 - 43 - 43 - 43 - 43 - 43 - 43 - 43 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                       |                                        |            |               |                        |       |              | ł     |                   |               |              |          |                                |              |       |  |
| 44 —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                       |                                        |            |               |                        |       |              | ł     |                   |               |              |          |                                |              |       |  |
| 45 - 46 - 47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                       |                                        |            |               |                        |       |              | ł     |                   |               |              |          |                                |              |       |  |
| 47 —<br>48 —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                       |                                        |            |               |                        |       |              | ł     |                   |               |              |          |                                |              |       |  |
| 49 —<br>50 —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                                     |                                        |            |               |                        | 50/.3 | M            | ¥     | MC_               | 4             |              |          |                                |              |       |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Bottom of                                                             | Boring                                 |            |               |                        |       |              |       |                   |               |              |          |                                |              |       |  |
| DEP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | TH: DRILLING METHOD                                                   |                                        |            | WAT           | ER LEVEL ME.           | ASUR  | EMEN         | VTS   |                   |               | 1            | א  <br>א | I<br>IOTE:                     | REFF         | ER TC |  |
| E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                       |                                        |            | SAMPI<br>DEPT | LED CASING<br>TH DEPTH | CAV   | 'E-IN<br>PTH | FI    | ORILLII<br>UID LE | NG            | WATI<br>LEVE |          | NOTE: REFER TO<br>THE ATTACHED |              |       |  |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 30.0 3.25" HSA                                                        | 12/19/18                               | 10:30      | 50.3          |                        |       | DEPTH        |       | FLUID LEVEL       |               |              |          | SHEETS FOR AN                  |              |       |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                       |                                        |            |               |                        |       |              |       |                   |               |              |          | XPLA                           | NATIO        | ON OI |  |
| BORIN<br>COMP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | G<br>LETED: <b>12/19/18</b>                                           |                                        |            |               |                        |       |              |       |                   |               |              |          | ERMIN                          |              |       |  |
| DR: <b>E</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                       |                                        |            |               |                        |       |              |       |                   |               |              |          |                                | IS LO $01-D$ |       |  |





| AET JO                                                                                                                            | DB NO: <b>17-03356</b>                                               |                            |            |               |                                     | LC    | G OF                   | F BO | RING N          | NO    | B            | -7 (   | ( <b>p.</b> 1  | of 1  | )            |  |
|-----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------|------------|---------------|-------------------------------------|-------|------------------------|------|-----------------|-------|--------------|--------|----------------|-------|--------------|--|
| PROJE                                                                                                                             | CT: West Rapid Sul                                                   | bstation -                 | Transm     | ission        | Line Poles                          | s; Ra | pid                    | Cit  | y, So           | uth l | Dako         | ta     |                |       |              |  |
| DEPTH<br>IN                                                                                                                       | SURFACE ELEVATION:                                                   | E ELEVATION: GEOLOGY       |            |               |                                     | N     | MC                     | SA   | MPLE            | REC   | FIELI        | ) & LA | LABORATORY TE  |       |              |  |
| EET                                                                                                                               | MATERIAL                                                             | DESCRIPTI                  | ON         |               |                                     | N     | MC                     | T    | MPLE<br>YPE     | IN.   | WC           | DEN    | LL             | PL    | <b>%-</b> #2 |  |
| 1 - 2 - 3 - 4 - 4                                                                                                                 | CRUSHED LIMESTON<br>inches<br>WEATHERED SHALE,<br>stiff to hard (CL) |                            |            |               | SURFACING<br>SPEARFISH<br>FORMATION |       | М                      | 777  | МС              | 18    |              |        |                |       |              |  |
| 5 -<br>6 -                                                                                                                        |                                                                      |                            |            | Ħ             |                                     | 22    | М                      | Ł    | MC              | 18    | 16           |        |                |       |              |  |
| 7 —<br>8 —<br>9 —                                                                                                                 |                                                                      |                            |            |               |                                     | 11    | М                      | R    | MC              | 18    | 22           |        |                |       |              |  |
| 10 -<br>11 -<br>12 -                                                                                                              |                                                                      |                            |            |               |                                     | 19    | М                      | R    | MC              | 18    | 21           | 115    |                |       |              |  |
| 13 —<br>14 —<br>15 —                                                                                                              | with gypsum                                                          |                            |            |               |                                     | 46    | М                      | R    | MC              | 18    |              |        |                |       |              |  |
| 16 - 17 - 18 - 18 - 18                                                                                                            |                                                                      |                            |            |               |                                     | 32    | М                      | ł    | MC              | 18    |              |        |                |       |              |  |
| 19 - 20 - 21 - 22 - 23 - 24 - 24 - 24 - 24 - 25 - 25 - 25 - 25                                                                    | SHALE, Silty Lean Clay, interbedded siltstone and                    | , red, hard,<br>gypsum pro | esent (CL) |               |                                     | 73/.8 | $\frac{\sum}{\bar{M}}$ | 111  | MC              | 16    | 14           |        |                |       |              |  |
| 25                                                                                                                                | GYPSUM, white, hard                                                  | und haud                   |            |               |                                     | 50/.4 | М                      |      | MC              | 5     |              |        |                |       |              |  |
| $\begin{array}{r} 36 - \\ 37 - \\ 38 - \\ 39 - \\ 40 - \\ 41 - \\ 42 - \\ 43 - \\ 44 - \\ 45 - \\ 46 - \\ 47 - \\ 48 \end{array}$ | SHALE, Silty Lean Clay,<br>interbedded siltstone and                 | gypsum pro                 | esent (CL) |               |                                     | 50/.4 | М                      |      | MC              | 5     |              |        |                |       |              |  |
| 48 —<br>49 —<br>50 —                                                                                                              | Bottom of                                                            | Boring                     |            |               |                                     | 50/.3 | M                      | ł    | MC              | 4     |              |        |                |       |              |  |
| DEP'                                                                                                                              | TH: DRILLING METHOD                                                  |                            |            | W/ATT         | R LEVEL ME                          |       |                        |      |                 |       |              |        |                |       |              |  |
|                                                                                                                                   |                                                                      | DATE                       | TIME       | SAMPL<br>DEPT |                                     | -     | EMEr<br>Æ-IN<br>PTH    | -    | RILLI<br>UID LE | NG    | WATI<br>LEVE |        | NOTE: REFER TO |       |              |  |
| 5                                                                                                                                 | 0.0 3.25" HSA                                                        |                            |            |               |                                     | DE    | PTH                    | FL   |                 | VEL   |              |        | THE A          |       |              |  |
|                                                                                                                                   |                                                                      | 12/20/18                   | 10:15      | 50.3          |                                     | -     | -                      |      |                 |       | 20.0         | ,      | XPLA           |       |              |  |
| BORIN                                                                                                                             | G                                                                    |                            |            |               |                                     |       |                        |      |                 |       |              |        | ERMIN          |       |              |  |
|                                                                                                                                   | G<br>LETED: <b>12/20/18</b>                                          |                            |            |               |                                     |       |                        |      |                 |       |              |        |                | IS LO |              |  |
| DR: <b>E</b> S<br>2011                                                                                                            | <b>S</b> LG: <b>BB</b> Rig: <b>RC-2</b>                              |                            |            |               |                                     |       |                        |      |                 |       |              |        |                | 01-D  |              |  |



| AET JC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | DB NO: <b>17-03356</b>                              |               |                        |               |             | LC        | G OF         | BO         | RING N            | NO     | B           | - 8 (                           | ( <b>p.</b> 1  | of 1  | )            |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|---------------|------------------------|---------------|-------------|-----------|--------------|------------|-------------------|--------|-------------|---------------------------------|----------------|-------|--------------|--|--|
| PROJE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CT: West Rapid Sul                                  | bstation -    | Transm                 | issior        | Line Pole   | s; Ra     | pid          | Cit        | ty, So            | uth ]  | Dako        | ta                              |                |       |              |  |  |
| DEPTH<br>IN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | SURFACE ELEVATION:                                  |               | GEOLOGY                |               |             | 51        | MPLE         | REC        | FIEL              | D & LA | BORA        | TORY                            | TES            |       |              |  |  |
| IN<br>FEET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                     | DESCRIPTIO    | 3310.1 DESCRIPTION     |               | GLOLOGI     | N         | MC           |            | YPE               | IN.    | WC          | DEN                             | LL             | PL    | <b>%-</b> #2 |  |  |
| 1 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CRUSHED LIMESTON                                    | E AGGRI       | EGATĘ 6                | / 🗱           | SURFACING   |           |              | Ł          |                   |        |             |                                 |                |       |              |  |  |
| 2 - 3 - 3 - 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | inches<br>FILL, Silty Lean Clay, re                 | A(CL)         |                        | ] 🎆           | FILL        |           |              | 5          |                   | 10     |             |                                 |                |       |              |  |  |
| 4 —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <b>FILL</b> , Sitty Lean Clay, le                   | u (CL)        |                        |               |             | 21        | М            | И          | MC                | 18     |             |                                 |                |       |              |  |  |
| 5 —<br>6 —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | FAT CLAY, gray-red, ve                              | ry stiff (CH  | I)                     | Ĩ             | ALLUVIUM    | 17        | М            | S I        | MC                | 18     | 20          |                                 |                |       |              |  |  |
| 7 —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                     |               |                        |               |             |           |              | R          |                   |        |             |                                 |                |       |              |  |  |
| 8 —<br>9 —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                     |               |                        |               |             | 20        | Μ            | И          | MC                | 18     | 23          | 110                             |                |       |              |  |  |
| 10 - 11 - 11 - 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | LEAN CLAY, red, very s<br>(CL)                      | stiff, gypsu  | m present              |               |             | 25        | М            | <u>s</u>   | MC                | 18     | 21          | 114                             |                |       |              |  |  |
| 12 - 13 - 13 - 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SILTY LEAN CLAY, red                                | d, very stift | f,                     |               |             |           |              | Ł          |                   | 10     | 1.5         |                                 |                |       |              |  |  |
| 14 —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | hydrocarbon odor noted (                            | CL)           | -                      |               |             | 24        | Μ            | И          | MC                | 18     | 17          |                                 |                |       |              |  |  |
| 15 —<br>16 —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | WEATHERED SHALE,<br>hard, siltstone lenses pres     | Ħ             | SPEARFISH<br>FORMATION | 50            | М           |           | MC           | 18         | 12                | 128    |             |                                 |                |       |              |  |  |
| 17 - 18 - 18 - 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | _                                                   |               |                        | Ħ             |             |           |              | Ł          |                   |        |             |                                 |                |       |              |  |  |
| 19 —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>SHALE</b> , Silty Lean Clay, lenses present (CL) | red, hard,    | siltstone              |               |             |           |              | ł          |                   |        |             |                                 |                |       |              |  |  |
| 20 - 21 - 21 - 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | lenses present (CL)                                 |               |                        | 50/.1         | М           | И         | MC           | 8          |                   |        |             |                                 |                |       |              |  |  |
| 22 —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                     |               |                        |               |             |           |              | Ł          |                   |        |             |                                 |                |       |              |  |  |
| 23 - 24 - 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                     |               |                        |               |             |           |              | F          |                   |        |             |                                 |                |       |              |  |  |
| 25 —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                     |               |                        |               |             |           |              | Ľ          |                   |        |             |                                 |                |       |              |  |  |
| 26 - 27 - 27 - 27 - 27 - 27 - 27 - 27 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                     |               |                        |               |             |           |              | X          |                   |        |             |                                 |                |       |              |  |  |
| 28 - 29 - 29 - 29 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 20 |                                                     |               |                        |               |             |           |              | 1          |                   |        |             |                                 |                |       |              |  |  |
| 30 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                     |               |                        |               |             |           |              | Ł          | 1.6               |        |             |                                 |                |       |              |  |  |
| 31 - 32 - 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                     |               |                        |               |             | 50/.3     | Μ            | D          | MC                | 4      | 9           |                                 |                |       |              |  |  |
| 33 —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                     |               |                        |               |             |           |              | H          |                   |        |             |                                 |                |       |              |  |  |
| 34 —<br>35 —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                     |               |                        |               |             |           |              | I          |                   |        |             |                                 |                |       |              |  |  |
| 36 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                     |               |                        |               |             |           |              | ł          |                   |        |             |                                 |                |       |              |  |  |
| 37 - 38 - 38 - 38 - 38 - 38 - 38 - 38 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                     |               |                        |               |             |           |              | 1          |                   |        |             |                                 |                |       |              |  |  |
| 39 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                     |               |                        |               |             |           |              | Ħ          |                   |        |             |                                 |                |       |              |  |  |
| 40 - 41 - 41 - 41 - 40 - 41 - 40 - 41 - 40 - 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | gypsum present                                      |               |                        |               |             | 50/.3     | М            | 5          | MC                | 4      |             |                                 |                |       |              |  |  |
| 42 —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                     |               |                        |               |             |           |              | Ł          |                   |        |             |                                 |                |       |              |  |  |
| 43 —<br>44 —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                     |               |                        |               |             |           |              | Ħ          |                   |        |             |                                 |                |       |              |  |  |
| 45 —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                     |               |                        |               |             |           |              | ł          |                   |        |             |                                 |                |       |              |  |  |
| 46<br>47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                     |               |                        |               |             |           |              | H          |                   |        |             |                                 |                |       |              |  |  |
| 48 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                     |               |                        |               |             |           |              | I          |                   |        |             |                                 |                |       |              |  |  |
| 49 —<br>50 —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                     |               |                        |               |             | 50/.3     | M            | Ł          | MC                | 4      |             |                                 |                |       |              |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Bottom of                                           | Boring        |                        |               |             |           |              |            |                   |        |             |                                 |                |       |              |  |  |
| DEP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | TH: DRILLING METHOD                                 |               |                        | WAT           | ER LEVEL ME | <br>ASURI | L<br>EMEN    | III<br>NTS |                   |        |             |                                 |                |       |              |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                     | DATE          | TIME                   | SAMPI<br>DEP1 |             |           | 'E-IN<br>PTH |            | DRILLII<br>UID LE | NG     | WAT<br>LEVE |                                 | NOTE: REFER TO |       |              |  |  |
| 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0 3.25" HSA                                       |               |                        |               |             | DE        | PTH          | FL         | UID LE            | VEL    |             |                                 |                |       |              |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                     | 12/19/18      | 17:00                  | 50.3          | 3           |           |              |            |                   | Non    | C           | SHEETS FOR AN<br>EXPLANATION OF |                |       |              |  |  |
| יאותסם                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                     |               |                        | <u> </u>      |             | _         |              |            |                   |        |             |                                 |                |       |              |  |  |
| COMPI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | BORING<br>COMPLETED: 12/19/18                       |               |                        |               |             |           |              |            |                   |        |             |                                 | ERMIN          |       |              |  |  |
| DR: E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | S LG: BB Rig: RC-2                                  |               |                        |               |             |           |              | 1          |                   |        |             |                                 | TH             | IS LO | G            |  |  |










MOISTURE CONTENT:22.8 percentDRY UNIT WEIGHT:96.57 pcfBORING/DEPTH:B-3 15'SOIL DESCRIPTION:Fat Clay, gray (CH)% Swell2.8Swell Pressure4,500 psf



# **Appendix B**

Geotechnical Report Limitations and Guidelines for Use

#### REFERENCE

This appendix provides information to help you manage your risks relating to subsurface problems which are caused by construction delays, cost overruns, claims, and disputes. This information was developed and provided by ASFE<sup>1</sup>, of which, we are a member firm.

#### **RISK MANAGEMENT INFORMATION**

#### Geotechnical Services are Performed for Specific Purposes, Persons, and Projects

Geotechnical engineers structure their services to meet the specific needs of their clients. A geotechnical engineering study conducted for a civil engineer may not fulfill the needs of a construction contractor or even another civil engineer. Because each geotechnical engineering study is unique, each geotechnical engineering report is unique, prepared solely for the client. No one except you should rely on your geotechnical engineering report without first conferring with the geotechnical engineer who prepared it. No one, not even you, should apply the report for any purpose or project except the one originally contemplated.

#### **Read the Full Report**

Serious problems have occurred because those relying on a geotechnical engineering report did not read it all. Do not rely on an executive summary. Do not read selected elements only.

#### A Geotechnical Engineering Report is Based on A Unique Set of Project-Specific Factors

Geotechnical engineers consider a number of unique, project-specific factors when establishing the scope of a study. Typically factors include: the client's goals, objectives, and risk management preferences; the general nature of the structure involved, its size, and configuration; the location of the structure on the site; and other planned or existing site improvements, such as access roads, parking lots, and underground utilities. Unless the geotechnical engineer who conducted the study specifically indicates otherwise, do not rely on a geotechnical engineering report that was:

- not prepared for you,
- not prepared for your project,
- not prepared for the specific site explored, or
- completed before important project changes were made.

Typical changes that can erode the reliability of an existing geotechnical engineering report include those that affect:

- the function of the proposed structure, as when it's changed from a parking garage to an office building, or from a light industrial plant to a refrigerated warehouse,
- elevation, configuration, location, orientation, or weight of the proposed structure,
- composition of the design team, or
- project ownership.

As a general rule, always inform your geotechnical engineer of project changes, even minor ones, and request an assessment of their impact. Geotechnical engineers cannot accept responsibility or liability for problems that occur because their reports do not consider developments of which they were not informed.

#### Subsurface Conditions Can Change

A geotechnical engineering report is based on conditions that existed at the time the study was performed. Do not rely on a geotechnical engineering report whose adequacy may have been affected by: the passage of time; by man-made events, such as construction on or adjacent to the site; or by natural events, such as floods, earthquakes, or groundwater fluctuations. Always contact the geotechnical engineer before applying the report to determine if it is still reliable. A minor amount of additional testing or analysis could prevent major problems.

1 ASFE, 8811 Colesville Road/Suite G106, Silver Spring, MD 20910 Telephone: 301/565-2733 : <u>www.asfe.org</u>

#### Most Geotechnical Findings Are Professional Opinions

Site exploration identified subsurface conditions only at those points where subsurface tests are conducted or samples are taken. Geotechnical engineers review field and laboratory data and then apply their professional judgment to render an opinion about subsurface conditions throughout the site. Actual subsurface conditions may differ, sometimes significantly, from those indicated in your report. Retaining the geotechnical engineer who developed your report to provide construction observation is the most effective method of managing the risks associated with unanticipated conditions.

#### A Report's Recommendations Are Not Final

Do not over rely on the construction recommendations included in your report. Those recommendations are not final, because geotechnical engineers develop them principally from judgment and opinion. Geotechnical engineers can finalize their recommendations only by observing actual subsurface conditions revealed during construction. The geotechnical engineer who developed your report cannot assume responsibility or liability for the report's recommendations if that engineer does not perform construction observation.

#### A Geotechnical Engineering Report Is Subject to Misinterpretation

Other design team members' misinterpretation of geotechnical engineering reports has resulted in costly problems. Lower that risk by having your geotechnical engineer confer with appropriate members of the design team after submitting the report. Also retain your geotechnical engineer to review pertinent elements of the design team's plans and specifications. Contractors can also misinterpret a geotechnical engineering report. Reduce that risk by having your geotechnical engineer participate in prebid and preconstruction conferences, and by providing construction observation.

#### Do Not Redraw the Engineer's Logs

Geotechnical engineers prepare final boring and testing logs based upon their interpretation of field logs and laboratory data. To prevent errors or omissions, the logs included in a geotechnical engineering report should never be redrawn for inclusion in architectural or other design drawings. Only photographic or electronic reproduction is acceptable, but recognize that separating logs from the report can elevate risk.

#### **Give Contractors a Complete Report and Guidance**

Some owners and design professionals mistakenly believe they can make contractors liable for unanticipated subsurface conditions by limiting what they provide for bid preparation. To help prevent costly problems, give contractors the complete geotechnical engineering report, but preface it with a clearly written letter of transmittal. In the letter, advise contractors that the report was not prepared for purposes of bid development and that the report's accuracy is limited; encourage them to confer with the geotechnical engineer who prepared the report (a modest fee may be required) and/or to conduct additional study to obtain the specific types of information they need to prefer. A prebid conference can also be valuable. Be sure contractors have sufficient time to perform additional study. Only then might you be in a position to give contractors the best information available to you, while requiring them to at least share some of the financial responsibilities stemming from unanticipated conditions.

#### **Read Responsibility Provisions Closely**

Some clients, design professionals, and contractors do not recognize that geotechnical engineering is far less exact than other engineering disciplines. This lack of understanding has created unrealistic expectations that have led to disappointments, claims, and disputes. To help reduce the risk of such outcomes, geotechnical engineers commonly include a variety of explanatory provisions in their report. Sometimes labeled "limitations" many of these provisions indicate where geotechnical engineers' responsibilities begin and end, to help others recognize their own responsibilities and risks. Read these provisions closely. Ask questions. Your geotechnical engineer should respond fully and frankly.

#### **Geoenvironmental Concerns Are Not Covered**

The equipment, techniques, and personnel used to perform a geoenvironmental study differ significantly from those used to perform a geotechnical study. For that reason, a geotechnical engineering report does not usually relate any geoenvironmental findings, conclusions, or recommendations; e.g., about the likelihood of encountering underground storage tanks or regulated contaminants. Unanticipated environmental problems have led to numerous project failures. If you have not yet obtained your own geoenvironmental information, ask your geotechnical consultant for risk management guidance. Do not rely on an environmental report prepared for someone else.