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1. Introduction 

Society is highly dependent on high polluting and nonrenewable 
fossil fuels that constitute roughly 80% of our energy supplies. There is 
increasing recognition that we need to develop new low polluting 
renewable energy sources, and wind power is among the most promis­
ing technologies. As of December 2012, there are over 200,000 wind 
towers around the world with combined nameplate capacity of nearly 
300 GW, and wind energy is among the fastest growing energy sources 
(Global Wind Energy Council, 2013). 

Public opinion polls commonly find a strong majority of respondents 
indicating suppott for wind power in genera[. with up to 90% of respon­
dents voicing support for wind energy ( e.g., Firestone and Kempton, 
2007; Mulvaney et al., 2013). Despite the stated preference for wind 
energy in the abstract, proposed wind energy projects frequently meet 
with fervent opposition by the local community. Numerous reasons 
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have been given for opposition to wind turbines, ranging from adverse ef­
fects on birds, bats and other wildlife, esthetic effects by compromising 
views, annoyance and potentially even health problems related to noise 
and shadow flicker, and a general industrialization of the landscape. 
One of the most common concerns voiced by nearby residents is the 
potential impact of wind towers on prope1ty values (Hoen et al., 201 ·1 ), 

Property values are an important issue in and of themselves, but also 
reflect an accumulation of preferences for the suite of impacts caused by 
turbines. For example, if wind turbines created adverse effects due to 
noise, visual disamenities or other nuisance effects, nearby property 
values would likely reflect these effects. Further, hedonic valuation 
theoiy (reviewed in Section 2) suggests that property values should de­
crease enough such that homeowners are indifferent between living 
near a turbine or paying more to live far away. Importantly, this dispar­
ity in house values can quantify the cost to nearby residents, which is ar­
guably the sum of negative externalities ( perhaps excluding wildllfe 
impacts), to be used in cost-benefit analysis of wind energy expansion. 

This paper examines the effect of wind turbines on property values in 
Rhode Island. While Rhode Island is the smallest state in the U.S., it is the 
second most densely populated. Given this and the fact that 12 turbines 
have been erected at 1 O sites in the past seven years, Rhode Island offers 
an excellent setting to examine homeowner preferences for wind tur­
bines because there are so many observations. We constmct a data set 
( detailed in Section 3) of 48,554 single-family, owner-occupied transac­
tions within five miles of a turbine site over the time range January 
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2000 to February 2013. Further, 3254 of these transactions occur within 
one mile, and it is these observations that are critical for understanding 
the impacts. 

Beyond sample size, Rhode Island is an excellent case study because 
turbine development is plausibly exogenous to changes in house prices, 
unlike many other settings. In Rhode Island, the wind turbines have 
been sited and built by the state government or private parties, often 
with opposition from nearby homeowners (Faulkner, 2013). Thus, the 
possibility that a community collectively decides to build a turbine 
and such a community may have different house price dynamics is 
not an issue here. In addition, these are not large-scale wind farm 
developments and there is no wind industry so-to-speak, so there is 
essentially no local economic impact through job creation or lease pay­
ments to property owners as is the case in Iowa and Texas (Brown et al., 
2012; Slattery et al., 2011 ). 1 Thus, Rhode Island sales prices should offer 
an unadulterated reflection of homeowner preferences. 

Within a hedonic valuation framework, we estimate a difference-in­
differences (DD) model. In the most basic model, the treatment group is 
defined by proximity; we create concentric rings around turbines and re­
gard the set of houses in each distance band as a separate treatment 
group. We define two distinct treatments. The first is when it is publicly 
announced that a wind turbine will be built at a specific location; 
this aspect of the model determines if homeowner's expectations of 
disamenities affect property values. The second is when the construction 
of the turbine is completed and measures if the realized disamenity has an 
effect on property values. 

Proximity is a crude measure of the potential impacts of a wind 
turbine, and we took several additional steps to model likely impacts. 
We delve into heterogeneous impacts by the size of the turbine and 
the setting (i.e., industrial or residential area). In addition, we account 
for the fact that other obstructions such as large buildings or trees 
might mitigate the effects of a nearby wind tower on particular proper­
ties. To do so we physically visited 1354 properties that transacted after 
construction and are within two miles of a turbine to assess the extent 
of view of the turbine.2 

Across a wide variety of cross sectional and repeat sales specifica­
tions, the results (discussed in Section 4) suggest that wind turbines 
have no statistically significant negative impacts on house prices, in ei­
ther the post public announcement phase or post construction phase. 
The DD models indicate that turbines are built in less desirable areas 
to begin with, which is consistent with intuition because several tur­
bines are built near highways or industrial areas. However, even when 
we isolate residential areas where turbines are likely to contrast most 
with surroundings, our results still indicate no statistically significant 
negative price impacts. Further, our results suggest no statistically sig­
nificant negative impacts to houses with substantial views of a turbine. 

Our preferred model indicates that for houses within a half mile of a 
turbine, the point estimate of price change relative to houses 3-5 miles 
away is -0.4%. While the standard error of the point estimate is not 
small (3.8%), we can rule out negative impacts greater than 5.2% with 
90% confidence. Further, in Section 5, we quantify the external benefits 
of wind generation in Rhode Island due to CO2 mitigation and find that 
in order to offset the benefits, the price change would need to be greater 
than 5.8% if considering all turbines, and greater than 12.3% if only con­
sidering the industrial sized turbines. Thus, our results indicate that not 
only do negative externalities appear to be small and insignificant, but 
even the lower bound of statistically possible impacts is still outweighed 
by the positive externalities generated from CO2 mitigation. 

1 Two exceptions exist. The owner of the North Kingstown Green Turbine pays 
$150/yecH to the dozen or so residents in the same development as the turbine and 
the Tiverton turbine offsets electricity expenditure to residents of the Sandy Woods 
Farm community. Only a single transaction in our data set occurred after turbine 
construction for these houses affected by pJyments, thus we feel co11fident that our 
results are unaffected by payments. 

2 In the appendix, we also examine the property value impacts of shadow flicker, 
though there are very few observations affected. 

The literature examining the impacts of wind turbines on property 
values is still in its infancy. To date, hedonic studies have focused on 
large scale wind farms comprised of as many as 150 turbines, as district 
from our study that examines the case of individual wind turbines, so 
the disamenities present and resulting valuation may be different. There 
are several studies that suffer from small sample sizes or unsound econo­
metric modeling. Sims and Dent (2007) used only post construction ob­
servations, and Sims et al. (2008) only had 199 observations - all 
within a half mile of a single wind farm. Neither of these studies use the 
DD framework, which is essential for controlling for confounding 
factors, eitl1er that exist prior to wind energy development or that affect 
all houses regardless of turbine construction. This is most evident for 
Sims and Dent (2007), who show an aerial picture of one of their study 
wind farms, and between it and the housing development is an already 
existent, enormous, open pit quarry, which surely could have affected 
housing prices prior to the wind farm. More recently, Sunak and 
Madlener (2012) collect 1202 observed transactions, both before and 
after construction, but the models they estimate constrain either the ef­
fect of construction to be constant across distance or the effect of distance 
to be constant across time. 

More complete studies have been carried out recently. Heintzelman 
and Tuttle (2012) examine impacts of wind farms in three counties of Up­
state New York using over 11,000 transactions and a specification that 
treats distance as a single continuous variable. They do find some signifi­
cant price effects from proximity, though they are not consistent across 
counties. Their results imply that a newly built wind farm within a half 
mile of a property can decrease value by 8-35%. It is important to note, 
however, that the average distance to a turbine of a transaction in their 
data is over 10 miles, and they interpolate effects to close proximity. 
The strongest research to date is a recent report from Hoen et al. 
(2013), which updates Hoen et al. (2011 ), They collect over 50,000 trans­
actions within 10 miles of wind farms spanning 27 counties in nine states. 
They utilize a DD methodology similar to ours with distance bands 
around the wind farms and both a post announcement and post construc­
tion treatment. Similar to our results, Hoen et al. (2013) find no statistical 
effect of wind turbines on property values. It is important to note that 
both the Hoen et al. (2013) and Heintzelman and Tuttle (2012) results 
are for large scale wind farms with as many as 194 turbines, as distinct 
from our study that examines the case of individual wind turbines. 

This paper contributes to the understanding of property value im­
pacts of turbines by providing an econometrically sound analysis with 
far more observations than all but one existing analysis. Further, we 
go beyond proximity and offer the most thorough to-date analysis of 
how impacts may be heterogeneous clue to viewshed of a property 
and size and setting of a turbine. Lastly, because we are working in a sin­
gle state, we have been able to take part in multiple stakeholder meet­
ings related to wind energy development and gain an understanding 
of the local perceptions, sentiments, and institutions, which have all in­
formed our analysis. For instance, homeowners feel certain turbines are 
more odious than others, which suggested we should look for heteroge­
neous property value effects. 

2. Methodology 

In the absence of explicit markets, there are generally two ap­
proaches that economists use to determine the value of environmental 
amenities and disamenities: revealed and stated preference methods 
( e.g .. Freeman, 2003 ). Revealed preference methods use actual choices 
made by people to infer the value they place on an amenity. Stated pref­
erence methods infer values using responses of what individuals would 
do in a given situation, such as what is the most the individual would 
pay to participate in an activity rather than go without. 

The Hedonic Price Method ( HPM) is among the most popular revealed 
preference methods for determining values of non-market environmental 
amenities. The Hedonic method is based on the concept that many market 
commodities are comprised of several bundled attributes, and the market 
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prices are determined by their attributes. Applied to residential properties, 
the price of a property is affected by attributes such as the size of the 
house, the size of the lot, the number of bathrooms, and bedrooms; the 
neighborhood attributes such as the condition of nearby homes, the 
crime rate, and quality of schools; and environmental attributes such as 
air quality, adjacent open space, and ocean views. The basic idea is that 
houses with desirable attributes ( e.g., an ocean view) will be bid up by po­
tential buyers, and the extent to which prices are bid up depends upon 
how much buyers value the attribute. If one can estimate the price premi­
um associated with an attribute, one can gain insights into the extent to 
which potential buyers value an environmental amenity. HPM models 
have been applied to estimate implicit values associated with a wide 
range of amenities and disamenities: airport noise (Pope, 2008), crime 
(Bishop and Murphy, 2011), power plants (Davis, 2011), air quality 
(Bento et al., 2013), and school quality (Cellini et al., 2010). 

This paper applies HPM to the impacts of wind turbines on property 
values. Within the HPM framework, we estimated a DD model. DD 
models L-ypically compare treated units to untreated units, both before 
and after treatments have occurred. There are two modifications to the 
basic framework for our application. First, treatment is defined by dis­
tance and is thus continuous. In order to avoid parametric assumptions, 
we group houses into D discrete bands of concentric circles surrounding 
the location of a turbine. The furthest distance band is chosen such that 
no effect of the wind turbine is expected and serves as the control 
group. Second, instead of two time periods, we have three: 1) pre­
announcement (PA), in which no one knows that a wind turbine will be 
built nearby, 2) post-announcement pre-construction (PAPC), which is 
after the public has been made aware that a turbine will be built, but 
prior to the construction, and 3) post construction (PC). PA is the before 
treatment time period, and we allow the two treatment periods, PAPC 
and PC, to have differential impacts on property values, the first based 
on expectations and the second based on the realized (dis)amcnity. The 
specification is: 

kr::2 
yp yp 

J l:1kdistk;PAPCi ~ J2kdistklCi :1 C 

U2 k_:2 

IX)_ J I/ 

where Pi is the sales price of transaction i, dist1a is a dummy variable equal 
to one if transaction i is withfo the kth distance band, and PAPCi and PCi are 
dummy variables equal to one if transaction i occurs PAPC or PC, respec­
tively. X1 is a set of housing, location, and temporal controls. Xi also in­
cludes a constant to capture the omitted group of the 1st distance band 
in time period PA Finally, -f is the error term. 

The coefficients are interpreted as follows. __ :k measures the PA (i.e., 
pre-treatment) difference in housing prices for distance band k relative 
to distance ring 1. :..:1 and _:2 measure the change in housing prices for 
distance band 1 (the control group) in the PAPC and PC time periods, 
respectively. ::::1k and ~2k are the coefficients of interest and measure, 
for PAPC and PC, respectively, the differential change in property values 
from the pre-announcement time period for distance band k relative to 
the change in property values of distance band 1. 

The tinting of our data, 2000-2013, corresponds to the housing boom 
and bust. Ftuther, as detailed in the next section, the PAPC and PC periods 
almost always occur during bust years. Relative to a simple before-after 
estimate of the impacts of wind turbines on property values using only 
houses in close proximity, the DD model goes a long way to mitigate spu­
rious correlation creeping into the treatment effect coefficients. To further 
guard against spurious correlation, we follow the advice of Boyle et al. 
(2012) and include city by year-quarter fixed effects and an interaction 
of lot size and its square with city fixed effects and year fixed effects. 
The city by year-quarter fixed effects flexibly control for the boom and 
bust in prices for each city separately. The lot size interactions not only 

allow the value of land to be different in each city, but allow the value 
to evolve over time with the boom and bust. For more standard reasons, 
we also include census tract fixed effects and we interact distance from 
the coast with city. Tract fixed effects capture time invariant locational 
heterogeneity.3 Interactions of coast and city allow the value of coastal liv­
ing to change in different parts of Rhode Island. As with other DD estima­
tors, identification of the treatment effects relies on the assumption that 
house prices would have changed identically across distance bands in 
the absence of turbines being built. See Figure A1 in the appendix for sug­
gestive evidence that this assumption is reasonable. 

Within the framework ofEq. (1), we additionally estimate models 
that examine impacts that vary due to type of turbine, turbine sur­
roundings, and viewshed (and shadow flicker, in the appendix). 

Finally, we analyze property value impacts of turbines in a repeat 
sales model. There are many idiosyncratic features of a property that 
are unobserved by the researcher, and these may lead to omitted 
variables bias. A repeat sales model that includes property [eve! fixed 
effects will account for all unobserved property attributes as long as 
they are time invariant. We estimate the following model: 

ln::P1t:=r:::: ;:::i c J1PAPCit J =2PCir 
yp yp 

C J11,dist,11PAPCit L L.]z11distklC1t· 
kc2 kLJ2 

C X~.[L [)1 

where Pit is the sales price of unit i at time t, and =Ji is a unit-level fixed 
effect. dist1,i, PAPC;t and PCit are as defined in Eq. (1). Due to their time­
invariant nature, property characteristics drop out of Xit· However, we 
still can include lot size and its square interacted with year fixed effects 
to allow for changes in the value of land through the boom and bust. Xie 

also includes city by year-quatter fixed effects. Identification of ·;111 and 
1_:2k (the coefficients of interest) comes from properties that transact in 
more than one of the three periods (PA, PAPC, PC). 

3. Data 

3.1. Wind turbines 

Table 1 provides information on the 10 sites in Rhode Island that cur­
rently have turbines of 100 kW or above. All of these are single turbine 
sites, with the exception of Providence Narragansett Bay Commission, 
which has three. There is a wide range in the nameplate generation 
capacity; four turbines are 100 kW, one at 250 kW, one at 275 kW, 
one at 660 kW, and five at 1.5 mW. Table 1 also lists the date of public 
announcement that the wind turbine will be built and the date that con­
struction was complete. The date of public announcement is marked by 
either an abutter notice or a public forum. The first turbine was built in 
2006 and the second not until 2009; the remainders were built in 2011 
and 2012. Time period PA is defined as before the announcement date, 
PAPC defined as between the announcement date and construction 
completed date, and PC is defined as after the construction completed 
date.4 The last column of Table 1 describes the location and 

3 In the spirit of Abbott and Klaiber (2010), one may be concerned that the tract fixed 
effects and city by year-qua1ter fixed effects will capture all relevant variation needed 
for the identification of wind turbines on property values. The spatial scale of influence 
could reasonably be at the tract level, however, because the tract fixed effects do not vary 
over time, within tract temporal variation will identify the effect of turbines if there is one. 
Our intuition is that effects of turbines are much smaller than the scale of a city. Thus, even 
with the inclusio11 of city by year-qua1ter fixed effects will, there will still be within-city 
variation to identify property value impacts. Further, the five mile radius around each tur­
bine includes 4. l cities. on average. 

4 Several turbines in our sample were built quite recently, wl1ich makes the length of 
the PC period relatively short in our sample. This could cause problems for estimating true 
treatment effects if prices are slow to respond to changes in amenities. However, Lang 
(2012) examines the dynamic path that house prices take responding to changes in air 
quality (an amenity more difficult to observe), and finds that owner-occupied house 
prices capitalize changes immediately. 
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Table 1 
Wind turbine characteristics for Rhode Island sample. 

Name Abbreviation Nameplate Height Announcement Construction Comments 
(match with Fig. 1) capacity (feet) completed 

Portsmouth Abbey PAB 660 kW 240 12115/2004* 3/27/2006 On grounds of a school/monastery; primarily residential 
surroundings 

Portsmouth High School PHS 1.5 mW 336 4/'.5/2006· 3/1/2009 On grmmds of a public school; primarily residential 
surroundings 

Tiverton Sandywoods Fann TVf 275 kW 231 7(.8/2006 3/23/2012 On grounds of communal residential development; 
primarily residential surroundings 

Providence Narragansett Bay PVD 1.5 mW each 360 9/26/2007 1/23/2012 On grounds of water treatment facility: mixed industrial/ 
Commission (3 identical turbines) residential surroundings 

Wa1wick New England Tech NET 100 kW 157 10,19/2008 8/6/2009 On grounds of technical college, next to highway 
Middletown Aquidneck MDT 100 kW 157 4/13/2009 10/9/2009 Mixed residential/commercial surroundings 

Corporate Pilrk 
Narragansett Fishermen's NRG 100 kW 157 7/7/2009 9/19/2011 On grounds of state campground: primarily residential 

Memorial State Park surroundings 
Portsmouth Hodges Badge PHB 250 kW 197 5/14(.2009 1/4/2012 Mixed residential/commercial/agricultural surroundings 
Warwick Shalom Housing SHA 100 kW 157 8/6/2009 2/2/2011 On grounds of apartment complex, next to highway 
North Kingstown Green NKG 1.5 mW 402 9/15/2009 10/18/2012 Primarily residential surroundings 

Notes: Height is hub height plus blade length, Dates of announcement and construction completed were gathered from personal requests for information and newspaper/online sources. 
Dates marked with~ are approximate, sources could only identify a month and year that the announcement was made, and we chose to use the midpoint of the month. 

surroundings of each turbine. Of note is that several are in primarily 
residential areas. Others are in mixed use areas with either industrial 
or commercial activity, and sometimes coupled with an existing 
disamenity such as proximity to a highway or water treatment plant. 
Fig. 1 shows the location of the turbine sites around the state. 

One threat to identification could be that turbines are sited in neigh­
borhoods that are strongly in favor of wind energy and that the treat­
ment effect on the treated is substantially different than the average 
treatment effect (or what the price effect would be if the turbines 
were randomly placed). With the exception of Tiverton Sandywoods 
Farm, the turbines have been sited by private or government parties 
with little to no backing from surrounding neighbors. In fact, several 
turbines have been sited and erected despite substantial Community 
prdtest. Given this history, we are not concerned about endogenous 
placement of turbines threatening identification. 

3.2. Housing data 

Our housing data include nearly all Rhode Island transactions 
between January 2000 and February 2013. Fig. 1 displays the location 
of all transactions in our data in relation to the turbines. The data offer 
information on sales price, date of transaction, street address, living 
square feet, lot size, year of construction, number of bedrooms, fell 
and half bathrooms, and whether or not the unit has a pool, fireplace, 
air conditioning or view of the water. To get latitude and longitude, 
we geocoded all addresses to coordinates using the Rl10de Island GIS 
E-911 geolocater.5 Using GIS, we calculated the Euclidian distance to 
the nearest eventual turbine site, as well as the distance to the coast.6 

We limit the sample to arm's length transactions of single family 
homes within 5 miles of an eventual wind turbine site and with a 
sales price of at least $10,000. This yields 66,487 observations. From 
that, we drop 385 observations for incomplete data. 

One downside to the housing data is that characteristics of the house 
(bedrooms, bathrooms, square feet, etc.) come from assessor's data and 
only reflect the current characteristics of the house. If a house was 
remodeled or a property was split into two or more properties, the 
data do not capture the characteristics of the property or house before 
the change. One concern is that "flipped" properties could bias our 
estimates. To deal with this potential problem, we search the data for 
properties with multiple sales occurring less than six months apart 

5 Available Jt http://www.ectc.uri.edu/rigis/. 
G A house [orated within 5 miles of two eventual turbine sites is matched only to the 

nearest turbine site to ensure that a house treated as a control for one turbine is not a treat­
ed unit for another turbine. 

and drop any sale that occurred prior to the last sale in the set of 
rapid sales. For example, ifwe observe a property transact 1/1/2000, 
1/1/2005, 2/1/2005, and 1/1/2010, we would drop the 1/1/2000 and 
1/1/2005 transactions because the characteristics of the property may 
be dramatically different for those transactions than what is current. 
This drops 26.5% of observations, leaving us with a sample of 48,554. 

We define five distance bands surrounding turbines needed to 
estimate Eq, (1): 0-0.5 miles, 0.5-1 miles, 1-2 miles, 2-3 miles, and 
3-5 miles. Table 2 presents the distribution of transactions across the 
bands for the three time periods. For identifying the effect of proximity 
on prices, we need a substantial number of observations in close range. 
There are 584 transactions within half a mile, with 75 occurring PAPC 
and 74 occurring PC, which should be sufficient for Identifying an effect 
if it is there. This table makes clear the benefits of examining wind tur­
bine valuation in a population dense state. In addition, Table 2 gives the 
proportion of transactions occurring in each distance band for each time 
period, which can give a sense of whether transaction volume is sub­
stantially different for nearby distance intervals in either PAPC or PC. 
The proportions appear roughly constant across time suggesting neither 
announcement nor construction affects transaction volume. 

Table 3 presents summaiy statistics for our sample prope1iies. Prices 
are adjusted for inflation and brought to Februa1y 2013 levels using the 
monthly CPI. The average price in our sample is $305,800. The average 
lot size is 0.34 acres and the average living area is 1559 square feet. 
The average distance from the coast is only 1.59 miles (Rhode Island de­
serves its nickname "The Ocean State"!). Additionally, Table 3 compares 
houses in the 0-1 mile band to the 3-5 mile band PA to examine differ­
ences between the treatment and control group prior to treatment. The 
last column gives the difference in means divided by the combined stan­
dard deviation, which is the best statistic for assessing covariate balance 
(Imbens and Wooldridge, 2009).7 Sales price seems well balanced, as do 
most of the covariates with the exception of Fireplace and Distance from 
the coast, both of which exceed 0.25, which is considered to be a limit 
for covariate balance.8 If the impHcit values of these characteristics are 
different across space or change over time, then the differences in 
means could be a threat to identification. However, comparing the 0-1 
mile band to the 2-3 mile band (not shown), distance to the coast has 
much better overlap, and both variables have strong overlap comparing 

7 The pi'Oblem with the frequently used t-statistic is that, as sample size grows, equiva­
lent means can be rejected even when a covariate is well balanced. 

8 Using voter registration data, we were also able to show that partisanship is simikir 
between the 0-1 mile band and the 3-5 mile band. This further supports the idea that 
the areas where turbines were sited were not meaningfully different than other areas 
and the valuation estimates should not be impacted by selection issues. 
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Ras!tlenUal Properties 

Wind Tuttiines 

Fig. 1. Spatial distribution of sales and turbines. 

the 0-1 mile band to the 1-2 mile band, Thus, the treated units have 
common support with the spectrum of control units. Further, as ex­
plained in Section 2 (following the advice of Boyle et al., 2012), to 
guard against changing implicit prices affecting the estimated valuation 
of turbines, we allow the implicit value of lot size and distance from the 
coast to vary between cities and for lot size to vary over time too. 

33. Viewshed 

Eq. (1) examines how house prices change with proximity to a tur­
bine, but proximity is a crude measure for some of the impacts of living 
near a turbine. One source of l1eterogeneity in impacts by proximity 
could come from whether or not residents can actually see the turbine 
from their property. Unfortunately, we are unable to capture this varia­
tion with GIS due to the presence of obstructions such as trees and 
buildings that might mitigate the impacts of a nearby wind turbine. To 
overcome this limitation, we completed site visits to all 1354 properties 
that transacted PC and are within two miles of a turbine. Based on what 
we could see from the street in front of a given house, plus a bit of walk­
ing in both directions (to account for the possibility that a turbine may 
only be visible from certain parts of the house or backyard), the view 
was rated into one of five categories based on the proportion of the 
blade spinning diameter visible and the degree of dominance it had on 
the landscape: no view (0%), minor ( 1-30%), moderate (31-60%), 
high (61-90%), and extreme (91-100%). A view is coded extreme only 
if the turbine is both nearby and unobstructed. As a consequence, two 
houses with an unobstructed view of a turbine will be coded differently 

if the turbine takes up a different amount of view in the horizon, either 
clue to proximity or height of the turbine. While the classification was 
subjective, a single person did all of the ratings and went to great length 
to be consistent. 

The reSults of the site visits confirmed substantial heterogeneity in 
views. Despite Rhode Island's minima! topography, only 0.4% of proper­
ties in the 1-2 mile band had any view of the turbine (see Table A 1 in 
the Appendix). Within half a mile, 24.3% have a full view, 13.5% have a 
pa1tial view, and 63.2% have no view. Fig. 2 illustrates the heterogeneity 
in viewshed for PC transactions surrounding the Portsmouth High 
School turbine. While viewshed and proximity are certainly correlated, 
it is far from a perfect correlation and there are several instances of 
properties with similar location and different views. 

4. Results 

Table 4 presents the main DD results on the full sample of transac­
tions. There are three columns that represent three different models 
that each add additional variables described at the bottom of the table. 
All three models include housing characteristic controls, detailed 
fmther in the notes of the table, and tract fixed effects. The first set of 
coefficients, corresponding to the ~1< in Eq. (1), measure the difference 
in housing values among the various distance bands relative to the 
3-5 mile band. All models suggest that there is a negative premium 
for living near the eventual site of a wind turbine, prior to an announce­
ment that a wind a turbine will be built. For instance, Model 1 indicates 
that houses located within half a mile of a future turbine site are worth 
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Table 2 Table 3 
Transaction counts and proportions by distance and time period. Housing summary statistics. 

Distance interval (miles) PA PAPC PC Total 

0-0.5 435 75 74 584 
1.2% 1.0% 1.4% 1.2% 

0.5-1 1979 353 338 2670 
5.5% 4,9% 6.4% 5.5% 

1-2 6120 1180 942 8242 
17.0% 16.3% 17.8% 17.0% 

2-3 10,116 1877 1599 13,592 
28.1% 25.9% 30.3% 28.0% 

3-5 17,375 3765 2326 23,466 
48.2% 51.9% 44.1% 48.3% 

Total 36,025 7250 5279 48,554 
100% 100% 100% 100% 

Notes: 'PA' stands for pre-announcement, 'PAPC' for post-announcement/pre-construe-
tion, and 'PC' for post-construction. The percentages are the proportion of a!l transactions 
for a given time period occurring in that distance band. 

9.0% less than those houses 3-5 miles away from the future site.9 This 
finding implies that turbines are being sited in areas that have lower 
house prices conditional on property and locational characteristics. 
This makes sense since several of the turbines are located in less desir­
able areas, i.e., near the highway or on the grounds of a wastewater 
treatment facility, The second set of coefficients, which correspond 
to ~1 and LQ in Eq. (1), measure the change in housing prices for the 
3-5 mile distance band in the PAPC and PC time periods, respectively. 
Across all models, the results suggest that these time periods are associ­
ated with lower sales ptices relative to PA ( due to the crash of the hol\S­
ing market), though given the inclusion of city by year-quarter fixed 
effects the magnitudes of c.1 and~ do not fully reflect the large drop 
in house prices during those periods. Taken together, the distance and 
timclinc results indicate that a purely cross-sectional or before-after 
research design would both provide negatively biased estimates of the 
effect of wind turbines on prope1ty values. The DD approach we apply 
controls for these potential problems. 

The third set of coefficients in Table 4 are the DD estimates, corre­
sponding to -11k and ·:.2k in Eq. (1), which are the estimated treatment ef­
fects of PAPC and PC for the various distance bands. The coefficients for 
the 2-3 mile band are small in magnitude and statistically insignificant. 
Intuition suggests that 2-3 miles away from a turbine is probably too far 
for an impact to occur, so observing that these prices closely track those 
3-5 miles away gives confidence in the assumption of common trends 
needed for the DD research design. Moving into closer distance bands, 
no coefficients are statistically significant and all are smal! in magnitude. 
For all models, the Akaike Information Criterion (AIC) is calculated and 
Mode! 3 minimizes this statistic, which is the objective, and so we deem 
Model 3 to be our preferred specification. The point estimates of the 
treatment effects for this model suggest that for houses within half a 
mile of a turbine, values decreased 0.4% PAPC and decreased 0.4% 
PC.10 The standard error on the PC estimate is 3.8%, which implies a 
one-sided hypothesis can rule out decreases in prices more than 5.1% 
with 90% confidence. This implies that the large negative impacts, 
such as -10% or more, that are routinely hypothesized by opponents 
of wind development can be ruled out as inconsistent with the data. 
While the coefficients are statistically insignificant, they are also consis­
tently negative across the three specifications, which warrant updating 
the models in two or so years when there are more PC transactions. 
Results are qualitatively similar using distance bands with increment 

9 l11ougb we are not concerned about endogeneity bias given the manner of turbine de­
velopment in Rhode Island, this spatial price gradient PA suggests that even if endogeneity 
was a problem, our results would likely be biased downwards making it more likely to find 
a neg.:itive effect. 

10 A parsimonious model including just housing characteristics and DD variables was al­
so estimated. Results suggested positive impacts of turbines, though we interpret this as a 
spurious col"l"elation. 

Variable Full sample Pre-announcement 

0-1 mile 3-5 miles Difference/std. 
dev. 

Price (OOOs) 305.8 330.8 323.4 0.03 
Lot size (acres) 0.34 0.35 0.41 -0.06 
Living area (square feet) 1559 1567 1600 -0.04 
Bedrooms 3.03 3.07 3.03 0.06 
Full bathrooms 1.49 1.55 1.51 0.06 
Half bathrooms 0.45 0.44 0.46 -0.03 
Fireplace (1 = yes) 0.31 0.13 0.38 -0.44 
Pool (1 = yes) 0.04 0.03 a.as -0.09 
Air conditioning (1 = yes) 0.30 0.25 0.31 -0.15 
Distance from coast (miles) 1.59 1.15 1.94 -0.49 
Age at time of sale (years) 52.5 46.0 47.3 -0.04 
Observations 48,554 17,375 2414 

Notes: Housing prices are brought to Februa1y 2013 levels using the monthly CPI. The final 
column equals the difference in means between the 0-1 mile set and the 3-5 mile set 
divided by their combined standard deviation. 

in thirds of a mile within 1 mile, but standard errors double, which 
leads to a larger range of possible impacts. 

4.1. Repeat sales analysis 

Table 5 presents results from a repeat sales analysis. Only properties 
that transact more than once are included in the sample, which 
decreases the sample by over half. The first column includes city by 
year-quarter fixed effects (akin to Column 1 in Table 4), and the second 
column additionally includes lot size-year interactions (akin to Column 
3 in Table 4). Model 2 minimizes AIC, but both are presented for com­
pleteness and robustness. 

Like Table 4, the results suggest that there is no significant difference 
in price changes between the 2-3 mile band and the 3-5 mile ( control) 
band. In the 0.5-1 mile band, both columns suggest that house prices 
decreased PAPC, by 5.7% (statistically significant at the 5% level) in 
Model 2. The point estimates indicate larger impacts PC (-8.1% for 
Model 2), but are statistically insignificant. In contrast, the 0-0.5 mile 
band shows statistically insignificant price increases PAPC (8.1% for 
Model 2). The PC results for the 0-0.5 mile band are nearly identical 
to Table 4, indicating a 0.0% change in prices with a standard error of 
3.7%. 

It is difficult to draw conclusions from the results. On the one hand, 
the 0.5-1 mile band results indicate that turbines could have a negative 
and large impact on property values. On the other l1and, the 0-0.5 mite 
band results, where the impacts should be strongest, are incongruent 
with the 0.5-1 mile results. It will be beneficial to update this analysis 
in two or so years with more PC transactions. 

4.2. Heterogeneity by type of turbine and setting 

As explained in Table 1, there is substantial heterogeneity among the 
Rhode Island turbines in terms of size and placement. The turbines 
range in size from 100 kW to 1.5 mW, and some are located near high­
ways or industrial areas. The estimates presented thus far group all 
turbines together, but it is possible the price effects are different based 
on size and surroundings. Intuition suggests that price impacts would 
be more pronounced for larger turbines and turbines in primarily resi­
dential areas where other disarnenities do not already exist. 

Table 6 presents DD estimates, returning to Eq. (1 ), for subsets of the 
data based on turbine characteristics. Columns 1 and 2 use only turbines 
with a capacity of 660 kW or more - these would be considered the in­
dustrial sized turbines. Columns 3 and 4 use only turbines in primarily 
residential areas. Similar to the repeat sales analysis, the large turbine 
analysis presents mixed evidence of price impacts. The results suggest 
negative price impacts of 3.6% PC in the 1-2 mile band and positive 
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Fig. 2. Proxirnily bands, viewshed, and shadow flicker, for post construction transactions around Portsmouth High School wind turbine. 

impacts of 8.4% PAPC in the 0-0.5 mile band. The point estimates for PC 
in the 0-0.5 mile band are 4.3%, but insignificant. For the primarily res­
idential locations analysis, al! coefficients are statistically insignificant. 

43. Viewshed 

Beyond the size and location of a turbine, another source of hetero­
geneity is whether or not a house can actually see the turbine, and to 
what extent. This source of heterogeneity can occur within a group of 
houses matched to a single turbine, in contrast to the heterogeneity 
explored in Table 6, which occurs between turbines. Table 7 presents 
the results of three models exploring the impact of viewshed on ptices. 
Models 1 and 2 match Columns 2 and 3 of Table 4, except additionally 
include indicator variables for each of the categories of view. Model 3 
omits the DD variables from the model, to check if multicollinearity 
between viewshed and proximity affects coefficients on the viewshed 
variables. To be clear, only PC sales can be scored higher than 'no 
view' and the viewshed variables enter as an additive treatment effect, 
not interactive. Across the three models, the results suggest that view 
of the turbine has no statistical impact on property values. Frnther, the 
point estimates have a non-monotonic relationship with the extent of 
view and range from - 5.2% to 7.9%. 

5. Policy perspective 

The purpose of this paper is to quantify the negative externalities as­
sociated with wind turbine development in a population dense area. 
While a full cost-benefit analysis of wind energy is well beyond the 
scope of this paper, it is useful to consider the positive externalities 

derived from wind generation - specifically, reductions in CO2 emis­
sions - and weigh these against the negative. The following back-of­
the-envelope calculations are not meant to be absolute, but to put per­
spective on the issue at hand and try to answer the question 'What loss 
in properly values would offset gains from reduced CO2?' 

The turbines that enter this study have a nameplate capacity of 
9.085 MW. Using a standard capacity factor of 0.25, we can expect 
these turbines to generate 19,896 MWh annually. The EPA estimates 
that each MWh produced in the US generate 0.706 tons of CO2, which 
implies that 14,046.7 tons of CO2 are mitigated annually due to these 
turbines.11 [fthe turbines last for 25 years, then a total 351,167 tons of 
CO2 will be mitigated over the turbines' lifetimes. The EPA also esti­
mates that the social cost of carbon (the marginal damage expected 
from each emitted ton of CO2 ) is currently $39. which yields a total 
monetary benefit of nearly $13.7 million.-i 2 ff we restrict attention to 
only the six industrial sized turbines, which have a combined nameplate 
capacity of 8.16, total moneta1y benefit is $12.3 million. 

Turning to the cost side, using the full data set there are 910 single 
family, owner-occupied housing units within half a mile of a turbine 
site ( over ten times what has transacted PC). The average selling price 
for these houses in 2012-2013 was $260,162, and so we estimate a 
total value of this housing stock to be $236.7 million. In order to offset 
the benefits, the !10using stock would need to decline 5.8% is value. If 
we again restrict attention to industrial turbine sites only, we find 306 
units worth an average of$327,570 for a total value of$100.2 million. 

11 http://www.epa.gov/cleanenergy /energy-resourres/calculator.htrnl. 
12 http://www.epa.gov/clirnatechange/EPAactivities/econornics/scc.htrnL 
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Table4 
Difference-in-differences estimates of the impact of wind turbine proximily on housing 
prices. 

Variables (1) (2) (3) 

Distance (relative to 3-5 miles) 
2-3 miles -0.008 -0.014 -0.014 

(0.023) (0.023) (0,023) 
1-2 miles -0.025 -0.030 -0.030 

(0.026) (0.026) (0.025) 
0.5-1 miles -0.048 -0.060 -0.059 

(0.022)** (0.020)*** (0.020)*** 
0-0.5 miles -0.090 -0.087 -0.087 

(0.033)** (0.032)** (0.032)** 

Tirneline (relative to PA) 
PAPC -0.033 -0.035 -0.038 

(0.014)*'~ {0.014)** (0.014)** 

PC -0.055 -0.060 -0.058 
(0,020)** (0.020)*** (0.019)*** 

Difference-in-differences 
2-3 miles PAPC -0.008 -0.009 -0.008 

(0.020) (0.020) (0.018) 
PC 0.007 0.008 0.006 

(0.014) (0.014) (0.015) 
1-2 miles PAPC -0.041 -0.040 -0.039 

(0.037) (0.036} (0.036) 

PC -0.002 -0.009 -0.010 
(0.017) (0.019) (0.018) 

0.5-1 miles PAPC -0.029 -0.032 -0.029 
(0.030) (0.028) (0.028) 

PC -0.001 0.003 0.002 
(0.033) (0.031) (0.030) 

0-0.5 miles PAPC -0.009 -0.001 -0.004 
(0.060) (0.053) (0.054) 

PC -0.004 -0.001 -0.004 
(0.042) (0.039) (0.038) 

Cily by year-quarter fixed effects y y y 
Property-city interactions N y y 
Property-year interactions N N y 

Observations 48,554 48,554 48,554 
R-squared 0.751 0.759 0.760 
Akaike Information Criterion 12,468.5 10,933.5 10,801.5 

Notes: 'PA' stands for pre-ilnnouncement, 'PAPC for post-announcement/pre-construction, 
and 'PC for post-construction. Included in al! regressions as control variables are !ot size, lot 
size squared, living area, living area squared, number of bedrooms, full bathrooms, half 
bathrooms, indicator variables for the presence of a fireplace, pool, air conditioning, view 
of the water, within 0.25 miles of the coast, and within one mile of the coast. a set of 
dummy variables for the age or the house at purchase, a set of dummy variables for the sub­
jective condition of the house, and tract fixed effects. Property-city interactions indicate 
that lot size. its square, and the two coast dummy variables are interacted with a full set 
of city dummies. Property-year interactions indicate that lot size and its square are 
interacted with year fixed effects. Standard errors are shown in parentheses and are esti­
mated using the Eicker-White formula to co1Tect for heteroskedastlcity and are clustered 
at the city level. 
* Indicates significance at 10%. 

** Indicates significance at 5%. 
*** Indicates significance at 1%. 

These houses would need to decline in value by 12.3% to offset CO2 

benefits. 
These calculations indicate two things, First, in Rhode Island, our 

results suggest that it is statistically improbable that the external 
benefits of wind generation are outweighed by the external costs to 
homeowners. Second, if we consider similar calculations for wind 
farms located in rural areas, it is impossible for prices to depreciate 
enough to overcon1e the benefits of CO2 mitigation.13 

6. Conclusion 

This paper offers an econometrically sound analysis of the effect of 
wind turbines on property values in Rhode Island. With a sample of 

13 For examµle, Hoen et al. (2013) report an average of 12.3 sales within half a mile of 
wind t'arm with average capacity of 79 MW. Houses would need to depreciate over 
1000% to outweigh the CO2 mitigation benefits, but this of course is impossible. 

Table 5 
Difference-in-differences estimates using repeat sales data. 

Variables (1) (2) 

2-3 miles PAPC 0.017 0.019 
(0.012) (0.014) 

PC 0,032 0.032 
(0.027) (0.027) 

1-2 miles PAPC -0.067 -0.068 
(0.056) (0.055) 

PC -0.023 -0.024 
(0.041) (0.041) 

0.5-1 miles PAPC -·0.058 -0.057 
(0.028)" (0.027)*'' 

PC -0.075 -0.081 
(0.054) (0.052) 

0-0.5 miles PAPC 0.079 0.081 
(0.068) (0.074) 

PC 0,006 -0.000 
(0.039) (0.037) 

City by year-quarter y y 
fixed effects 

Property-year intet·actions N y 

Observations 21,414 21,414 
Unique houses 9618 9618 
R-squared 0.897 0.898 
Akaike !nfmmation Criterion -12,939.7 -13,058.9 

Notes: Sample includes only properties that transact more than once during the sample 
timeframe. Standard errors are shown in parentheses and are estimated using the 
Eicl<er-White formula to correct for heteroskedasticity and are clustered at the city level. 

* Indicates significance at 10%. 
** Indicates significance at 5%. 
*"* Indicates significance at 1%. 

48,554 transactions, we estimate a suite of DD models that examine 
property impacts due to proximity, viewshed, and type and location of 
turbine. Because our sample time period includes the housing boom 

Table 6 
Heterogeneity of impacts by turbine size and Iociltion. 

Variables Capacity 2': 660 kW Primarily residential 

(I) (2) (JI (4) 

2-3 miles PAPC 0.003 0.002 -0.004 -0.011 
(0.0"16) (0.016) (0.075) (0.061) 

PC -0.011 -0.012 -0.045 -0.043 
(0.068) (0.069) (0.066) (0.061) 

1-2 miles P/\PC -0.056 -0.057 0.048 0,046 
(0.053) (0.052) (0.037) (0.031) 

PC -0.038 -0.036 -0.022 -0.014 
(0.022)' (0.019)' (0.068) (0.063) 

0.5-1 miles PAPC -0.042 -0.042 0.023 0.022 
{0.041) (0.038) (0.048) (0.036) 

PC -0.047 -0.047 0.028 0.030 
(0.041) (0.042) (0.073) (0.065) 

0-0.5 miles PAPC 0.084 0.084 -0.028 -0.034 
(0.044)* (0.044)" (0.124) (0.126) 

PC 0.039 0.043 0.073 0.078 
(0.098) (0,101) (0.110) (0.115) 

City by year-qua1ier y y y y 

fixed effects 
Property-city y y y y 

interactions 
Property-year N y N y 

interactions 
Observations 23,776 23,776 8206 8206 
R-squared 0.775 0.776 0.726 0.729 
Akaike Information 7107.2 7021.2 1929.2 1843.8 

Criterion 

Notes: See notes to Table 4. The model used in Columns (1) and (3) is identical to that of 
Column (4) in Table 4, and the model used in Columns (2) and (4) is identical to that of 
Column (5) in Table 4. Columns (1} and (2) include turbines PAB, PHS, PVD, NKG. Columns 
(3) and (4) include PAB, PHS, 1VT, NRG, NKG. 

• Indicates significance at 10% . 
. ,. Indicates significance at 5%. 
~~• Indicates significance at 1 %. 
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Table7 
The impact of vlewshed on property values. 

Variables 11 I 

0-0.5 miles PAPC -0.001 
(0.053) 

PC 0.007 
(0.061) 

View of turbine None (omitted} 

Minor 0.028 
(0.067) 

Moderate 0.079 
(0.125) 

High -0.052 
(0.177) 

Extreme -0.019 
(0.071) 

City by year~quarter fixed effects y 
Property-city interactions y 
Property-year interactions N 
R-squared 0.759 
Akaike Information Criterion 10,932.3 

(2) 

-0.004 
(0.054) 
0.003 
(0.059) 

0.021 
(0.072) 
0.080 
(0.125) 
-0.044 
(0.172) 
-0.016 
(0.069) 
y 
y 
y 
0.760 
10,800.4 

(3) 

0.020 
(0.066) 
0.082 
{0.124) 
-0.042 
(0.144) 
-0.012 
(0.050) 
y 
y 
y 
0.760 
10,814.3 

Notes: See notes to Table 4. The sample size in all columns is 48,554. The model used in 
Column ( 1) is identical to that of Column ( 4) in Table 4, and the mode! used in Column 
(2) is identical to that of Column (5) in Table 4. Column (3) includes all control 
variables that Column (5) in Table 4, but does not include the interaction terms 
between proximity bands and time periods {Le., the difference-in-differences terms). 
Columns ( 1) and (2) include all difference-in-difference variables shown in Table 4, 
though only the interaction between the O and 0.5 mile distance band and time period 
are displayed. 

and bust, we control for city-level price fluctuations and allow the im­
plicit value of housing characteristics to vary by year and city, following 
the advice ofBoyle et al. (2012). Broadly, the results suggest that there is 
no statistical evidence for negative property value impacts of wind tur­
bines. Both the whole sample analysis and the repeat sales analysis indi­
cate that l1ouses within half a mile had essentially no price change PC. 
These results are consistent with Hoen et al. (2013), who examine 
impacts of large wind farms in nine states. However, the results are 
not unequivocal. First, some models do suggest negative impacts; how­
ever, these are often incongruent with other coefficient estimates in the 
same model. Second, many important coefficient estimates have large 
standard errors. As time goes on and there are more PC transactions 
observed, we hope to update this analysis and improve accuracy and 
consistency of the estimates. 

In the past (and likely going forward), proposed wind energy 
projects have been fervently opposed by homeowners surrounding 
the turbine site. There are several possible reasons why these stated 
preferences may be different than preferences revealed through hous­
ing market choices, such as we found in this analysis. First, stated pref­
erence is completely in the abstract and losses and gains are never 
realized. Hence, people may behave strategically to try and influence 
outcomes even if they are not willing to pay for it. Lang (2014) finds a 
similar inconsistency with stated beliefs about climate change and 
what internet search records reveal about people's interests. Second, 
wind energy is still relatively new in the United States, especially 
farms and incliviclua[ turbines that are in close proximity to residential 
development. It could be that local opposition is driven by fear of the 
unknown, but that once reality sets in (i.e., the turbines are built) people 
care much less. Third, there could be a process of preference-based 
sorting occurring in the housing market in which people who dislike 
the turbines move away and those that are indifferent or even enjoy 
the turbines move near.14 Importantly, these location shifts of certain 
homeowners may not affect housing prices if there are enough potential 
buyers who are indifferent or prefer to live near turbines. 

14 See, for example, Banzhaf and Walsh (2008), who examine preterence-based s01ting 
in response to toxic emissions from factories. One anecdote in support of this idea is that 
we talked with one recent home buyer, an engineer, who ertjoyed watching a nearby tur­
bine spin. 

Appendix A. Supplementary data 

Supplementary data to this article can be found online at http://dx. 
doi.org/10.1016/j.eneco.2014.05.010. 
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