Docket No. EL12-___ Exhibit____(MAP-1), Schedule 2 Page 1 of 12

Guide to the <u>Class</u> Cost of Service Study (CCOSS) Northern States Power Co Electric

I. Overview

Simply stated, the purpose of the Northern States Power Company (NSP) electric Class Cost of Service (CCOSS) is to allocate *joint* (e.g.) and *common* costs to the designated "classes" of service such as Residential, Non-Demand C&I and Demand C&I. For example, generation capacity costs are "joint" between time periods and overhead costs such as management, are "common" to multiple functions, such as distribution, transmission and generation. The CCOSS also assigns *direct* costs (e.g. a dedicated service extensions or dedicated substations), that may be associated with providing service to a particular customer from a specific class of service. The objective of the CCOSS is to make these cost *allocations* and *assignments* based on identifiable service requirements (e.g. kWh energy requirements and kW capacity requirements), which are the drivers of the costs.

The two basic types of costs are; (1) capital costs associated with investment in generation, transmission and distribution facilities and (2) on-going expenses such as fuel used to produce the energy, labor costs and numerous other operating expenses. The end result is an allocation of the total utility costs (i.e. the revenue requirements) to customer classes according to each class' share of the capacity, energy and customer service requirements.

II. Major Steps of the Class Cost of Service Study

A class cost of service study begins with a detailed documentation of the numerous budgetary elements of the total revenue requirement for the jurisdiction in question. The detailed jurisdictional revenue requirements are the data inputs to the CCOSS. At a high level, the CCOSS process consists of the following three (3) basic steps:

- 1. <u>Functionalization</u> The identification of each cost element as one of the basic utility service "functions" (e.g. generation, transmission, distribution and customer).
- 2. <u>Classification</u> The classification of the functionalized costs based on the billing component/determinant that each is associated with (e.g. kWs of capacity, kWhs of energy or number of customers).
- 3. <u>Allocation</u> The allocation of the functionalized and classified costs to customer classes, based on each class' respective service requirements (e.g. kWs of capacity, kWhs of energy and the number of customers, expressed in terms of a percentage of the total jurisdiction requirement).

III. Step 1: Functionalization

Functionalization is the process of associating each of the numerous detailed elements of the total revenue requirement with functions (and sometimes sub-functions) of the electric utility system. Costs must be first functionalized because each class' service requirement tends to have different relative impacts on each service function. As such, it is necessary to develop separate sub-parts of the total revenue requirement for each function (and sometimes sub-function). The 4 basic functions and the associated sub-functions are shown in the table below:

Docket No. EL12-___ Exhibit___(MAP-1), Schedule 2 Page 3 of 12

Function	FERC	Sub-Function	Description
	Accounts		-
Generation	120, 310-346, 500-557	"Energy-related"	Includes the fixed costs of generation plant investment and purchase capacity costs, which have been stratified as "energy- related."
		Summer "capacity- related."	Includes the fixed costs of generation plant investment and purchase capacity costs stratified as "capacity-related" and which are associated with the system summer peak load requirements.
		Winter "capacity- related."	Includes the fixed costs of generation plant investment and purchase capacity costs stratified as "capacity-related" and which are associated with the system winter peak load requirements.
		On-Peak Energy	Includes costs for fuel and purchases of energy for on-peak hours.
		Off-Peak Energy	Includes costs for the fuel and purchases of energy for off-peak hours.
Transmission	350-359, 560- 579	None	Includes costs of transmission lines and associated substation facilities used to transport power from its origin generation stations or delivery points to the high voltage side of the distribution substations.
Distribution	360-368, 580- 598	Distribution Substations	Includes costs of the facilities (e.g. transformers and switch gear) between the transmission and distribution systems.
		Primary Distribution System "Capacity."	Includes costs of the "capacity" portion (as distinguished from the "customer" portion) of primary voltage conductors, transformers and related facilities.
		Secondary Distribution System "Capacity."	Includes costs of the "capacity" portion (as distinguished from the "customer" portion) of secondary voltage conductors, transformers, customer services and related facilities.

Function	FERC Accounts	Sub-Function	Description
Customer	360-369, 580-598,	"Customer"	Includes costs for the "customer"
	901-916	portion of the	portion of primary and secondary
		Primary and	conductors, transformers,
		Secondary Systems	customer service drops, related
			facilities and the costs of metering.
		Energy Services	Includes costs for meter reading,
			billing, customer service and
			information, and back office
			support.

A. Generation Cost Stratification

Stratification is the term used to identify the part of the CCOSS process used to separate or "stratify" fixed generation costs into the necessary "capacity-related" and "energyrelated" sub-functions. The "capacity-related" portion of the fixed costs of owned generation (and also of the purchased power contract costs) is based on the percent of total fixed costs of each generation type that is equivalent to the cost of a comparable peaking plant (the generation source with the lowest capital cost). The percent of total generation costs that exceeds the cost of a comparable peaking plant are subfunctionalized as "energy-related." This second portion of the fixed generation costs is "energy-related" because these costs are in excess of the "capacity-related" portion and as such were not incurred to obtain capacity but rather were incurred to obtain the lower cost energy that such plants can produce.

For example, the plant stratification analysis used in the current rate case is shown in the table below. It compares the then current-dollar replacement costs of each plant type, to develop stratification percentages.

Plant Type	\$/kW	Capacity Ratio	Capacity %	Energy %
Peaking	\$689	\$689 / \$689	100%	0%
Nuclear	\$3,678	\$689 / \$3,678	18.7%	81.3%
Fossil	\$1,912	\$689 / \$1,912	36.0%	64.0%
Combined Cycle	\$997	\$689 / \$997	69.1%	30.9%
Hydro	\$4,474	\$689 / \$4,474	15.4%	84.6%
Wind	\$16,989	\$689 / \$16,989	4.1%	95.9%

This process of "stratifying" the revenue requirements of the generation plant is accomplished by applying these stratification percents to each component of the revenue requirements (e.g. book investment, accumulated depreciation, net plant, cost of capital, income taxes, etc.), for each generation plant type.

B. Summer/Winter Split of Generation Capacity-Related Costs

Once the "capacity-related" portion of generation plant costs have been quantified, they are further separated into summer and winter sub-functions. The seasonal sub-function portions are determined as follows.

Docket No. EL12-___ Exhibit___(MAP-1), Schedule 2 Page 5 of 12

First, the 12 monthly System peak loads are grouped into a 4-month summer (June, July, August and September) and an 8-month winter seasons. Second, the average hourly load for the year is subtracted from each monthly peak. Third, the remaining monthly excess loads are averaged for each season and the ratio of these two average seasonal "excess" loads is used to assign the "capacity- related" portion of fixed generation costs to the seasons. This calculation for the current rate case is shown below.

(1)	(2)	(3)	(4) = (3) minus 5,411
		Monthly NSP	Monthly Peak in
		System Peak	Excess of Average
Month	Season	Load	Hourly Load
Jan	Winter	6,690	1,455
Feb	Winter	6,561	1,325
Mar	Winter	6,158	922
Apr	Winter	5,768	532
May	Winter	6,965	1,730
Jun	Summer	8,305	3,070
Jul	Summer	9,368	4,132
Aug	Summer	8,707	3,471
Sep	Summer	7,778	2,542
Oct	Winter	6,126	891
Nov	Winter	6,296	1,060
Dec	Winter	6,590	1,355
Average A	nnual Load		5,236
Average Monthl	y Excess		
Average of Summ	ner Months		3,304
Average of Winter Months			1,159
Total			4,463
Summer Percent			74.04% = 3,304/4,463
Winter Percent		25.96% = 1,159 / 4,463.	

As shown above 74.04% of generation capacity costs were assigned to the summer season while 25.96% were assigned to winter, thereby separating total generation capacity-related costs into summer and winter seasons.

IV. Step 2: Cost Classification

The second step in the CCOSS process is to <u>classify</u> the functionalized costs as being associated with a measurable customer service requirement which gives rise to the costs. The 3 principle service requirements or billing components are:

- 1. Demand Costs that are driven by the customer's maximum kilowatt ("kW") demand.
- 2. Energy Costs that are driven by the customer's energy or kilowatt-hours ("kWh") requirements.
- 3. Customer Costs that are related to the number of customers served.

Function/Sub-Function Cost Classification Demand Energy Customer Summer Capacity-Related Χ Fixed Generation Winter Capacity-Related Х Fixed Generation Energy-Related Fixed Х Generation Off-Peak Energy (Fuel and Χ Purchased Energy) On-Peak Energy (Fuel and Х Purchased Energy) Transmission Х Distribution Substations Х Primary Lines Х Х Primary Transformers Х Secondary Lines Х Х Secondary Transformers Х Х Service Drops Х Х Metering Х Customer? Services Х

The table below shows how each of the functional and sub-functional costs was classified:

As shown in the table above, primary lines, primary transformers too; why won't they be?, secondary lines, secondary transformers and service drops are classified as both "demand" and "customer" related costs. Costs of these sub-functions are driven by **both** the number of customers on the distribution system and the capacity requirements they place on the system. The analysis used to separate these costs into demand and customer components is called the Minimum Distribution System (MDS) method.

The Minimum Distribution System method involves comparing the cost of the minimum size of each type of facility used, to the cost of the actual sized facilities installed. The cost of the minimum size facilities determines the "customer" component of total costs and the "capacity" cost component is the difference between total installed cost and the minimum sized cost.

The table also shows the percent of each cost element that was classified as "customer" related based on the most recent Minimum System study.

Equipment Type	% Classified as "Customer" Related
Overhead Lines Primary	42.2%
Primary Transformers	0%
Overhead Lines Secondary	54.9%
Underground Lines Primary	85.9%
Underground Lines Secondary	54.3%
Line Transformers Secondary	48.8%
Services	72.7%

Docket No. EL12-___ Exhibit___(MAP-1), Schedule 2 Page 7 of 12

V. Step 3: Cost Allocation to Customer Class (Assignment of Costs to Customer Classes)

The third step in the CCOSS process is allocation, which is the process of assigning (allocating or directly assigning) functionalized and classified costs to customer classes. Generally, cost assignment occurs in one of 2 ways:

- Direct Assignment A small but sometimes important portion of costs can be directly assigned to a specific customer of a particular customer class, because these costs can be exclusively identified as providing service to a particular customer. Examples of costs that are directly assigned include:
 - Customer-dedicated transmission radial lines or dedicated distribution substations
 - Street lighting facility costs
- Allocation Most electric utility costs are incurred in common or jointly in providing service to all or most customers and classes. Therefore, allocation methods have to be developed for each functionalized and classified cost component. The allocation method is based on the particular measures of service that is indicative of what drives the costs.
 - Class allocators (sometimes called allocation strings) are simply a "string" of class percentages that sum to 100%.
 - ➤ There are 2 types of allocators:
 - External Allocators These are the more interesting allocators that are based on data from outside the CCOSS model (e.g. load research data, metering and customer service-related cost ratios). In general, there are 3 types of external allocators:
 - Capacity –related (sometimes referred to as Demand) allocators such as:
 - System coincident peak (CP) responsibility or class contribution to system peak (1CP, 4CP or 12CP)
 - o Class peak or non-coincident peak
 - o Individual customer maximum demands
 - Energy-related allocators such as:
 - o kWh at the customer (kWh sales)
 - o kWh at the generator (kWh sales plus loses)
 - o kWh energy, weighted by the variable cost of the energy
 - □ Customer-related allocators
 - o Number of customers
 - Weighted number of customers, where the weights are based on cost of meters, billing, meter-reading, etc.

Details on the external allocators used in the CCOSS model are shown in Appendix 1.

- Internal Allocators These are allocators based on combinations of costs already allocated to the classes using external allocators. These internal allocators are used to assign certain costs, which are most appropriately associated with and assigned to classes by some combination of other primary service requirements, such as kWs demand, kWhs of energy or the number of customers. Examples of internal allocators include:
 - □ PTD Production, transmission and distribution plant investment.

- Docket No. EL12-___ Exhibit___(MAP-1), Schedule 2 Page 8 of 12
- OXDTS Distribution O&M expenses without supervision and miscellaneous expenses.

Details on the development of the internal allocators used in the CCOSS model are shown in Appendix 2.

VI. Customer Class Definitions

Ideally, there would be no customer class groupings and cost allocation would reflect the unique costs of each individual customer. Because this is not possible, it is necessary to develop a cost study process that identifies costs of service for groups of customers ("classes") where the customers of the class have similar cost/service characteristics. The basic classes of service employed in the Company's CCOSS are the following:

- 1. Residential
- 2. Non Demand Metered Commercial
- 3. Demand Metered Commercial & Industrial and
- 4. Street & Outdoor Lighting

Also, because of the significantly different distribution-functional requirements of customers within the Demand Metered C&I class, the Company's CCOSS also identifies the cost differences associated with the following distribution-function requirements within this class:

- 1. Secondary
- 2. Primary
- 3. Transmission Transformed
- 4. Transmission

More detail on customer class definitions is shown in Appendix 3.

VII. CCOSS Data Inputs

As noted earlier, there are a large number of inputs to the CCOSS model including detailed rate base and expense items from the Jurisdictional Cost of Service Study (JCOSS) as well as numerous inputs from other sources used to develop external allocators. A complete list of inputs to the CCOSS model is shown in Appendix 4

VIII. Organization of the CCOSS Model

The CCOSS model consists of numerous worksheets which show costs by customer class in Total (as shown on the worksheet tab labeled "TOT") and at the following more detailed levels including Billing Unit, Function and Sub-function as shown below:

- 1. Billing Unit:
 - a. Customer (Cus)
 - b. Demand (Dmd)
 - c. Energy (Ene)
- 2. Function and Associated Sub-Function:
 - a. Energy (Ene)

Docket No. EL12-___ Exhibit___(MAP-1), Schedule 2 Page 9 of 12

- a) On-Peak Energy (On)
- b) Off-Peak Energy (Off)
- b. Generation (Gen_Dmd): Sub-functions include:
 - a) Summer Capacity-Related Plant (Summ)
 - b) Winter Capacity-Related Plant (Wint)
 - c) Energy-Related Plant (Base)
- c. Transmission (Transco)
- d. Distribution (Disco): Sub-functions include:
 - a) Distribution Substations (Psub)
 - b) Primary Voltage? (Prim)
 - c) Secondary Voltage? (Sec)
- e. Customer (Cus): Sub-functions include:
 - a) Service Drops (Svc_Drop)
 - b) Energy Services (En_Svc)

In the CCOSS spreadsheet there is a separate worksheet tab for each of the above billing units, functions and sub-functions. The label for each worksheet tab is show in parentheses above. This multi-level breakdown of costs is useful for designing rates as well as for determining class revenue responsibilities.

IX. CCOSS Calculations

Listed below are important calculations that are part of the CCOSS model. These calculations occur at the "TOT" layer of the CCOSS as well as each of the "sub-layers" for each billing component, function and sub-function. Showing results at the more detailed billing component, function levels is important for rate design purposes, as well as other analyses such as the development of voltage discounts.

A. Rate Base Calculation

Rate Base = Original Plant in Service – Accum. Depr + CWIP + Other Additions

The above rate base calculation occurs on "TOT" layer as well as each function/subfunction layer.

B. Revenue Requirements Calculation (Class Cost Responsibility)

The Revenue Requirements Calculation (sometimes referred to as the "Backwards Revenue Requirement Calculation) is used to calculate "**cost**" responsibility for each customer class. This has to be done within the CCOSS model because the JCOSS model does it only at the total jurisdiction level, not by class. The class "**cost**" responsibility is based on the same return on rate base for each class that is equal to the overall proposed rate of return. In other words, class revenues requirements are calculated to provide the same return on rate base for each customer class. This calculation occurs on the "TOT" layer as well as for each function, sub-function and Page 10 of 12 billing component after all expenses and rate base items have been allocated. As such, class cost responsibility is available for each function, sub-function and billing component. This analysis serves a starting point for rate design. The formula is shown below:

Docket No. EL12-____ Exhibit___(MAP-1), Schedule 2

Retail Revenue Requirement = Expenses (including off-setting credits from Other Operating Revenues)

(Return on Equity x Rate Base) x 1 / (1-Tax Rate)

(Tax Additions – Tax Deductions) x Tax Rate / (1-Tax Rate) Mike what does this mean. Aren't income taxes already in the line above?

AFUDC

+

Where:

Expenses = O&M + Book Depreciation + Real Estate & Property Tax + Payroll Tax + Net Investment Tax Credit – Other Retail Revenue – Other Oper. Revenue

Tax Additions = Book Depreciation + Deferred Inc Tax + Net Inv Tax Credit + Other Misc Expenses .

Tax Deductions = Tax Depreciation + Interest Expense + Other Tax Timing Diff

C. Total Return and Return on Rate Base (Based on Class Revenue Responsibility)

After rates have been designed and each class' "**revenue**" responsibility has been determined, the model calculates total return and return on rate base using the following formulas. These calculations are performed at both present and proposed rate levels.

Total \$ Return = Revenue – O&M Expenses – Book Depr.

- Real Estate & Property Taxes- Provision for Deferred Inc Taxes - Inv. Tax Credits

- State & Federal Income Taxes + AFUDC

Percent Return on Rate Base = Total \$ Return / \$ Rate Base

After rates have been designed, the return on rate base is typically different for each customer class. In other words, the resulting class "**revenue**" responsibility differs from class "**cost**" responsibility.

XI. CCOSS Output

The filed output of the CCOSS model includes the "Tot" worksheet layer of the much larger model. The important output from the functional, sub-functional and billing component layers is presented on pages 2 and 3 of this "TOT" layer. The following table lists what is shown on each CCOSS page when printed.

Final CCOSS Printout "Tot" Worksheet			
CCOSS Section	Page Number	Results Detail	Line Numbers
	1	Rate Base Summary	1-23
	1	Income Statement Summary	24-34
Results	2	Proposed Cost Responsibility at <u>Equal ROR</u> (the cost of	1 51
Summary	2	service) compared to Present Rate Revenue Responsibility	1-51
	3	Proposed Cost Responsibility at <u>Equal ROR</u> (the cost of	1-55
	5	service) compared to Proposed Rate Revenue Responsibility	1 55
	4	Original Plant in Service	1-48
Rate Base	5	MINUS Accumulated Depreciation	1-27
Detail	5	MINUS Accumulated Deferred Income Tax	28-56
Detail	6	PLUS Construction Work in Progress & Other Additions	1-35
	v	EQUALS Total Rate Base	36
	7	Present and Proposed Revenues	1-26
	1	MINUS O&M Expenses part 1	27-41
	8	MINUS O&M Expenses part 2	1-34
	0	MINUS Book Depreciation	1-25
)	MINUS Real Estate & Property Taxes	26-53
		MINUS Provision for Deferred Income Tax	1-28
	10	MINUS Investment Tax Credit	29-41
		EQUALS Present and Proposed Operating Income Before	42A
		Income Taxes	42B
	11 (Income Tax Calcs.)	Tax Additions	31-37
		MINUS Tax Deductions	1-30
		EQUALS Total Tax Adjustments	38
Income		PLUS Present and Proposed Operating Income Before Income Taxes	FROM Page 10 42A 42B
Detail		EQUALS Present and Proposed Taxable Income	39A 39B
		MULTIPLIED BY State and Federal Tax Rates	
		EQUALS Present and Proposed State and Federal Income	40A
		Taxes	40B
		Present and Proposed Operating Income Before Income Taxes	FROM Page 10, Rows 42A & 42B
	(Total Return	MINUS Present and Proposed State and Federal Income Taxes	40A 40B
	Calcs.)	EQUALS Present and Proposed Preliminary Return	41A 41B
		PLUS AFUDC (from page 12)	42
		EQUALS Present and Proposed Total Return	43A 43B

CCOSS	Page		Line
Section	Number	Results Detail	Numbers
Mine	12	AFUDC	1-26
Color	12	Labor Allocator	27-48
Calcs	13	Backwards Revenue Calculations	1-36
Allocator	14	Internal Allocators and Associated Data	1-33
Data	15	External Allocators and Associated Data	1-40
Misc CCOSS Data Inputs	16	On Peak Energy Weighting Factor, Summer Factor, Minimum System Splits, Plant Stratification Data, Tax Rates, Capitol Structure, Etc.	1-46

XI. CCOSS Output (continued)

CCOSS	Page		Line
Section	Number	Results Detail	Numbers
Mine	10	AFUDC	1-26
Calcs	12	Labor Allocator	27-48
Cales	13	Backwards Revenue Calculations	1-36
Allocator	14	Internal Allocators and Associated Data	1-32
Data	15	External Allocators and Associated Data	1-44
Misc CCOSS Data Inputs	16	On Peak Energy Weighting Factor, Summer Factor, Minimum System Splits, Plant Stratification Data, Tax Rates, Capitol Structure, Etc.	1-58

XI. CCOSS Output (continued)

Exhibit___(MAP-1), Schedule 2 Appendix 1: EXTERNAL ALLOCATORS – Descriptions and Applications

The table below lists and describes the external allocators used in the Class Cost of Service (CCOSS) model.

Code	Allocator for:	Description	Allocator Rationale & Background
C11	Connection charge	Average monthly customers for the Test Year	Customer connection revenues are driven by number
	revenues		of customer services.
C10	Used to calculate C11	C11 less automatic protective lighting and load management	
		services. C11 less number of customers with a second	
		service.	
C11WAF	Used to calculate	Customer accounting cost weighting factors. The weighting	Weighting factors are set so as to reflect the relative costs
	C11WA allocator	factor for residential customers is set at 1.0. The weighting	of meter reading, billing and providing customer service
		factors for other classes are defined relative to costs for	for different classes of customers. For example some rate
		residential. E.g., if a class were three times costlier, its factor	schedules are significantly more complex requiring more
		would be 3.0.	sophisticated meter reading capabilities, billing systems
			and customer service staff.
C11WA	Customer accounting	Average monthly customers weighted by each class'	<u>Customer accounting</u> costs are driven by number of
	costs	relative rating of customer accounting costs: C11 X	customers and the complexity of their respective rate,
		C11WAF	billing issues and customer service requirements.
C12	Used to calculate	Reflects actual number of meters. C11 with an adjusted	
	C12WM allocator	street lighting customer count. Only selected street lighting	
	** 1 1 1	rates are metered	
C12WMF	Used to calculate	Average meter cost for each customer type	
	C12WM allocator		
C12WM	Meter costs	Number of meters multiplied by each class' average	<u>Metering</u> costs are driven by the number of
		meter costs: C12 X C12WMF	customers in each class and the respective metering
			costs.
C61PS	The "customer"	Average monthly customers served at primary or	The number of customers served at secondary and
	(minimum system)	secondary voltage. C11 less transmission transformed	primary voltages drives the customer related portion
	portion of <u>primary</u>	and transmission voltage customers	of <u>primary distribution line</u> costs. Transmission and
	distribution line costs		Transmission Transformed voltage customers are
			excluded since they do not use the distribution
			system

Code	Allocator for:	Derivation	Allocator Rationale & Background
C62Sec	The "customer"	Average monthly customers served at secondary	The number of customers served at secondary
	(minimum system)	voltage. C61PS less primary voltage customers	voltage drives the customer related portion of
	portion of secondary		secondary distribution line costs. Transmission and
	(not primary)		primary voltage customers are excluded since they do
	distribution line costs		not use the secondary distribution system.
C62NL	The "customer"	Adjusted average monthly secondary voltage	The number of secondary customers drives the
	(minimum system)	customers. C62Sec less street lighting and C&I	customer portion of service line costs. C&I
	portion of service-line	underground customers	underground secondary customers are excluded since
	costs.		they own their services. Lighting customers are
			excluded since they do not have services.
D60Sub	Distribution	Class Coincident peak measured at the high voltage	Distribution substation costs are driven by class peak
	substation costs	side of the Distribution Substation less Class	demands, whenever they occur which is generally at
		Coincident peak of Transmission Voltage customers	times other than the total system peak. Transmission
			voltage customers are excluded since they do not use
			the distribution substation.
D61PS	The <u>capacity</u> portion	D60Sub less Transmission Transformed customer	The driver of primary distribution line costs is the
	of <u>primary</u> distribution	demands, less customer demands served by minimum	class coincident demands less the minimum system
	line costs.	distribution system and with reduced Residential Space	demand of each class. The minimum demand is
		Heating demands to reflect the fact that their summer	classified as a customer related cost. Also
		peak is less than their winter peak.	transmission and transmission transformed voltage
			customers are excluded since they do not use the
			distribution system.
D62Sec	Used to calculate the	D61PS less class coincident demands of primary voltage	
	D62SecL allocator	customers	
D62SecL	The <u>capacity</u> portion	D62SecL equals the average of D62Sec percent and	Capacity related secondary distribution line costs are
	of <u>secondary</u>	non-coincident (or "individual customer peak")	driven by both class coincident peak demand and
	distribution line costs	secondary voltage percent.	individual customer maximum demand, less the
			minimum system demand of each class. (The
			minimum system demand is as customer related.)
			Also, transmission and primary voltage customers are
			excluded since they do not use the secondary
			distribution system.

Code	Allocator For	Derivation	Allocator Rationale
D62NLL	The <u>capacity</u> portion	Non-coincident (or "customer peak") demand for	Capacity related service line costs are driven by
	of service-line costs	secondary voltage customers, less the customer peak	individual customer maximum demands less the
		demand for street lighting, area lighting and C&I	minimum system demand of each class. (The
		customers served underground	minimum system demand is customer related.)
			Transmission voltage, primary voltage and lighting
			customers are excluded since they do not cause
			service related costs. Also excluded are C&I
			underground customers since they install their own
			services.
D10S	Summer season	Each class' % contribution to the single summer	The class contribution to the system summer peak
	portion of capacity-	system peak. Summer months are June through	drives the summer portion of capacity-related
	related generation	September.	generation costs.
	costs		
D10W	Winter season portion	Each class' % contribution to the single winter system	The class contribution to the system winter peak
	of capacity-related	peak. Winter months are October through May.	drives the winter portion of capacity-related
DAOT	generation costs		generation costs.
D101	I ransmission plant	Weighted Class Contributions to Summer and Winter	The driver for <u>transmission</u> costs is class contribution
	costs.	Peak loads.	to the summer & winter system peaks. To reflect the
		$A_{11} = (D_{10} W_{10} / m_{1} - (D_{10} C_{10} / m_{1} - 1.22 \Gamma_{10}))$	fact that summer peaks have more impact, the
		Allocator equals (D10W% plus (D10S% times 1.5555))	summer peak contribution for each class is weighted
		divided by (1 + 1.5555). The 1.5555 ratio is the ratio of	by the ratio of average monthly summer and average
D10C	Composite related	Weighted of Class Contributions to System peaks.	Consister related concretion costs are driven by class
DIC	capacity-related	Winter system peak loads	capacity- related generation costs are driven by class
	generation costs.	winter system peak loads.	reflect the fact that summer peaks have a
		Allocator equals (D10W% plus (D10S% times 2 8514)	disproportionate impact on capacity-related
		divided by $(1 + 2.8514)$ The 2.8514 ratio is obtained	generation costs the summer neak is weighted by the
		from the average summer and winter season neak	ratio of average monthly summer and winter system
		loads, after subtracting the average annual load from	peaks, which are in excess of average annual
		each monthly load.	demand.

Exhibit___(MAP-1), Schedule 2 Appendix 1: EXTERNAL ALLOCATORS – Descriptions and Applications

Code	Allocator For	Derivation	Allocator Rationale
E8760	Energy-related portion	Class hourly energy (MWH) requirements multiplied	The driver of these costs is energy requirements,
	of generation, nuclear	by the corresponding hourly marginal energy cost.	which is measured by hourly energy requirements
	fuel capital and		weighted by hourly marginal energy costs.
	generation step-up		
	costs. Also allocator		
	for fuel, purchased		
	energy and energy-		
	related fixed		
	generation costs.		

Exhibit___(MAP-1), Schedule 2 Appendix 2: INTERNAL ALLOCATORS – Descriptions and Applications

Internal Allocators are those that are determined from data generated within the Class Cost of Service Study (CCOSS). Below is a list of internal allocators that are used within the CCOSS.

Code	Allocator for:	Description	Allocator rationale
C11P10	Expenses and labor related to customer assistance and instructional advertising	This allocator is the average of the Customer-related C11 allocator and the Production Plant investment P10 allocator.	Customer assist. and advertising expenses are driven by # of customers and since most assistance pertains to helping customers reduce energy use it affects prod. plnt invest.
D56E44	Economic development expenses	 This allocator is based on the weighted average of the generation capacity and energy allocators. The weighting is based on an analysis of the fixed-cost-contribution margin of the General service tariff. D56E44 = (% Demand Impacts x D10C) + (% Energy Impacts x E8760). \$ Energy Impacts = kWh sales x (Base Energy Charge + Fuel Costs – Marginal Energy Costs) \$ Demand Impacts = Annual Billing kW x (((4 x Summer Demand Charge)+ (8 x Winter Demand Charge))/12) The demand portion is further split between Summer and Winter based on D10C; the energy portion is already split between on-peak and off-peak because E8760 is split that way. 	Minn. Stat. §216B.16, subd. 13 (1992) permits the Commission to allow utilities to recover economic development expenses. Pursuant to Docket No: E-002/GR-91-1, the Commission allowed NSP to recover 50% of its economic development expenses. Economic development program costs and benefits are assumed to be a function of the fixed cost (margin) contribution of the demand and energy charges that result from the ED program.
D42E58	CIP expenses	D48E52 = (.4172 x D10C) + (.5828 x E8760).	CIP program expenses are split between capacity and energy according to whether the purpose of program is to reduce peak load or energy requirements. Once program costs are thus split, the standard capacity and energy allocators are applied to the separate pools of \$ expenses.
LABOR	Amortizations, Payroll Taxes and A&G Expenses that are labor related such as Salaries, Pension & Benefits, Injuries & Claims.	Total Labor costs on Page 12 line 48 less A&G Labor on Page 12 line 46. A&G Labor is excluded to avoid a circular reference.	The specified expenses are directly related to Labor costs.

Exhibit___(MAP-1), Schedule 2 Appendix 2: INTERNAL ALLOCATORS – Descriptions and Applications

Code	Allocator for:	Description	Allocator rationale
NEPIS	Property Insurance	Electric plant in service less accumulated provision for	Property insurance is driven by net electric
		depreciation	plant in service
OXDTS	Distribution customer	All Distribution O&M Expense, except Supervision and	The OXDTS allocator represents the majority
	installation expenses and	Engineering, Customer Install and Miscellaneous. Supervision	of Distribution O&M expenses (excl
	miscellaneous distribution	& engineering expenses are excluded since they are an	supervision and customer installation costs)
	expense.	overhead expense. Customer installation expenses and	which is a good indicator for miscellaneous
		miscellaneous distribution expense are excluded to avoid a	distribution expenses.
		circular reference. (lines 2 thru 7, 9 and 11 of page 8)	
OXOPD	Used to allocate Capacity-Related	Capacity related "Other Production" expenses: Peaking +	Capacity-Related Other Production O&M
	Other Production labor costs	Base Load (line 37 of page 7)	costs are a good indicator of Capacity-Related
			Production Other Production labor
OXTS	Selected administrative and	All O&M costs except Regulatory Expense and any A&G	The OXTS allocator includes all O&M
	general expenses such as Office	costs, which are the costs to be allocated on OXTS (lines 40	expenses except regulatory expense and those
	Supplies, General Advertising,	& 41 of page 7 and lines 12-15, 18-21, 32 and 33 of page 8).	A&G items that are allocated with OXTS.
	Contributions and maintenance	These A&G expenses are excluded to avoid circular references	Representing most O&M expenses, the
	of "General" plant.		OXTS allocator is appropriate for allocating
			A&G expenses.
P10	Interchange Production Capacity	Total Production Plant: Original Plant in Service (line 6 of	Total production plant investment is closely
	(i.e. fixed) inter-company	page 4)	associated with Interchange Agreement
	Revenues. Rate base addition		Capacity related revenues
	production-related materials and		
	supplies.		
P10WoN	Interchange Production Capacity	Total Production Plant less Nuclear Fuel: Original Plant in	Since Wisc. does not have nuclear plants,
	(1.e. fixed) inter-company Costs	Service. Nuclear fuel is excluded since NSP Wisconsin does	Total production plant investment less
		not have nuclear plants (Total Production Plant on line 6 of	nuclear fuel investment is a good indicator of
		page 4 less Nuclear Fuel on line 5 of page 4)	Interchange Agreement Capacity related
DELCL			expenses
P5161A	Used to allocate Step-up sub	Total Generation Set-Up Transformer original plant in service:	Generation step-up plant investment drives
	transmission labor costs	I ran Gener Step Up (line 9 of page 4) + Distrib Substn Step	step-up generation labor costs
		Up (line 14 of page 4)	
P61	Distribution Substation O&M	Distribution Plant: Substations	Substation plant original investment drives
101	expense and Distribution	Original Plant in Service (line 18, page 4)	Distribution Substation plant O&M costs and
	Substation labor	Original Flant in Service (inte 10, page 4)	Distribution Substation Labor
P68	All costs related to Distribution	Distribution Plant: Line Transformers	Line transformer plant investment drives all
	Plant "Line Transformers"	Original Plant in Service (line 37 of page 4)	line transformer costs.
P69	All costs related to Distribution	Customer-Connection "Services" Original Plant in Service	Distribution "Services" plant investment
	Plant "Services"	(line 40 of page 4)	drives all costs of "Services"

Exhibit___(MAP-1), Schedule 2 Appendix 2: INTERNAL ALLOCATORS – Descriptions and Applications

Code	Allocator for:	Derivation	Allocator rationale
P73	All costs related to Street	Street Lighting Original Plant in Service	Street Lighting plant investment drives all
	Lighting	(line 42 of page 4)	Street Lighting costs
POL	All costs related to Overhead	Distribution Plant: Overhead Lines	Overhead distribution line plant investment
	Distribution Lines including	Original Plant in Service (line 26 of page 4)	drives all costs related to Overhead
	Rental costs and Distribution		Distribution Lines.
	overhead line rent revenues.		
PT0	Working Cash	Total Real Estate & Property Taxes (line 50 of page 9)	Working Cash is closely related to Real Estate
			Taxes
PTD	All costs related to General Plant	Production + Transmission + Distribution Plant Original	Total investment in production, transmission
	and Electric Common Plant	Plant Investment	and distribution plant is the best allocator for
		(lines 6, 13 and 43 of page 4)	general and common plant.
PUL	All costs related to Underground	Distribution Plant: Underground Lines	Underground distribution line plant
	Distribution Lines	Original Plant in Service (line 33 of page 4)	investment drives all costs related to
			Underground Distribution Lines.
RTBASE	Income Tax Addition: Avoided	Total Rate Base (line 36 of page 6)	Total rate base drives avoided tax interest
	tax interest		
TD	Transmission and Distribution	Total Transmission and Distribution Original Plant in Service	Total Transmission and distribution plant
	Materials and Supplies that are	(Lines 13 and 43 of page 4)	investment drives investment in
	Rate Base Additions		miscellaneous transmission and distribution
			materials and supplies
ZDTS	Supervision & Engineering and	All Distribution Labor except Supervision and Engineering	Distribution labor (excluding Supervision &
	Customer Installation	and Customer Installation. These items are excluded to avoid	Engineering) drives Supervision and
	Distribution Labor	a circular reference. (All of lines 33 thru 42 on page 12, except	Engineering and Customer Installation Labor.
		lines 33 and 40)	

Exhibit___(MAP-1), Schedule 2 Appendix 3: CCOSS Customer Classes Vs Tariff Cross Reference

	Customer Class	Rate Codes	Voltage Specifications
1	Residential	E01, E02, E03, E04, E06, E10 (if residential), E11 (if residential)	
2	C&I Non Demand Metered	E10 (if C&I), E11 (if C&I), E13, E14, E18	
3	C&I Secondary Voltage	E15, E16, E20, E21, E22	Secondary
4	C&I Primary Voltage	E15, E16, E20, E21, E22	Primary
5	C&I Transmission Transformed Voltage *	E15, E16, E20, E21, E22	Transmission Transformed
6	C&I Transmission Voltage *	E15, E16, E20, E21, E22	Transmission
7	Street Lighting	E12, E30, E31, E32, E33	

A. <u>Summary</u> Customer Classes

B. Detailed Customer Sub-Classes

	Customer Class	Rate Codes	kW Size	Voltage Specifications
1	Residential without Space Heating	E01, E02, E03, E04		opeenieuriono
2	Residential with Space Heating	E01, E02, E03, E04		
3	Load Management	E06, E10, E11		
4	Small C&I Non Demand Metered	E13, E14, E18		
5	Small C&I Secondary Voltage	E15, E16	< 1,000 kW	Secondary
6	Small C&I Primary Voltage	E15, E16	< 1,000 kW	Primary
7	Small C&I Transmission Transformed	E15 E16	< 1,000 kW	Transmission
	Voltage *	213, 210		Transformed
8	Small C&I Transmission Voltage *	E15, E16	< 1,000 kW	Transmission
9	Large C&I Secondary Voltage	E15, E16	> 1,000 kW	Secondary
10	Large C&I Primary Voltage	E15, E16	> 1,000 kW	Primary
11	Large C&I Transmission Transformed	E15 E16	> 1,000 kW	Transmission
	Voltage *	E13, E10		Transformed
12	Large C&I Transmission Voltage *	E15, E16	> 1,000 kW	Transmission
13	Interruptible All Voltages	E20, E21, E22		All Voltages
14	Street Lighting – Company Owned	E30		
15	Street Lighting - Customer Owned	E31, E32, E33		
16	Auto Protective Lighting	E12		

* Note: Currently there are no Xcel Energy customers in South Dakota that are served at Transmission Transformed or Transmission Voltages