2022 WIND CURTAILMENT REPORT

I. INTRODUCTION

The Commission's April 4, 2006 Order regarding curtailment payments to wind developers (Docket No. E999/AA-04-1279) requires the Company to provide in future AAA reports a projection of wind generation curtailment costs given existing and planned wind-generated energy purchases and transmission system needs. The Commission's June 12, 2019 Order in Docket No. E999/CI-03-802 approved the disposition of AAA reporting requirements as agreed to by the Company and the Department. The Company and the Department agreed that curtailment reporting could be reformatted to provide support for increased curtailment, in addition to providing detailed curtailment data by unit and by curtailment code.

Below we summarize the Company's experience regarding wind curtailment payments and provide a discussion of the drivers for increased wind curtailment payments during the 2022 reporting year as compared to the 2022 forecast. Part C, Attachment 2 shows detailed curtailment payments by unit and by curtailment code, in compliance with the Commission's February 6, 2008 Order in Docket Nos. E,G999/AA-06-1208 and E002/M-04-1970 *et al.*

We most recently discussed and provided an estimate of potential curtailment payments and the assumptions used to develop our 2023 curtailment forecast in our May 2, 2022 Petition and July 29, 2022 Reply Comments in Docket No. E002/AA-22-179. We will provide an estimate of 2023 curtailment payments, including forecast assumptions, in our 2024 fuel forecast Petition to be filed by May 1, 2023.

II. CURTAILMENT OVERVIEW

The Company expects that some level of wind curtailment from Power Purchase Agreement (PPA) facilities will occur in the foreseeable future. The reasons driving the curtailment have shifted from primarily local transmission constraints on NSP's transmission system in southwest Minnesota to regional transmission system congestion on the MISO system. The regional congestion, which results in negative LMP, was the largest driver of curtailment during this reporting period. Additionally, the nature of transmission congestion is accentuated by the large concentration and increased level of wind facility operations in Minnesota, North Dakota, South Dakota, and Iowa.

Significant transmission improvements in southwestern Minnesota and the region, such as the CapX2020 transmission projects (CapX2020), the Huntley – Wilmarth 345

kV line, and all but one of the MISO Multi-Value Projects (MVPs) are now in-service and will positively impact curtailment by reducing local congestion. However, the Company believes future curtailment in this area will continue to occur because of more regional congestion and the resulting negative LMP in the MISO energy market, along with transmission outages required for construction, maintenance or repair activities and wind generation projects going into service before all required transmission facilities are completed and likely generation oversubscription of the transmission system.

To better manage regional congestion, MISO and the industry utilize Dispatchable Intermittent Resources (DIR), which provide better management of the wind resources. Under this system, a number of existing PPA wind facilities that are capable of operating as DIR, along with all new wind facilities, are registered with MISO as DIR. DIR facilities are given set point instructions every five minutes and rely on Automated Generation Control (AGC) technology, which automatically controls wind project output. DIR allows wind generators to be operated more like traditional generating facilities and, as a result, MISO is able to more quickly and accurately respond to system conditions.

Table 1 shows the current PPA wind facilities associated with this report that are registered and operate as DIR.

Wind Project	MW
Big Blue	36
Cisco	8
Crowned Ridge 1	200
Dakota Range 3	150
Fenton	200
Glen Ullin Wind	106
MinnDakota	150
Moraine II	50
Odell	200
Prairie Rose	200
Valley View	10
Zephyr	30
Total	1340

Table 1: DIR PPA Facilities

The federal Production Tax Credit (PTC), which provides tax benefits to wind generating plants, is connected with increases in wind curtailment, since wind projects are often put into service to meet PTC eligibility requirements even though the necessary transmission upgrades were not completed. The Company is aware of 7,150 MW of new wind generation in Minnesota, North Dakota, South Dakota, and Iowa that have recently gone into service, or are expected to go into service in the next couple years. This includes 2,025 MW of Company-owned and PPA wind. Table 2 shows planned wind developments by NSP and other regional companies. All of these wind developments will be registered and operated as DIRs.

wind Generation Additions ²								
Company	MW	Location	In-Service Dates					
Alliant Energy	1,150	IA	2019-2021					
Great River Energy	1448	ND	2020-2025					
MidAmerican ²	2,216	IA	2019-2021					
Minnesota Municipal Power Agency	111	MN	2021					
Minnesota Power	250	MN	2020					
Northern States Power	2,026	ND, SD, MN	2019-2022					
Otter Tail Power	150	ND	2020					
Total	7,351							

Table 2Wind Generation Additions1

The required transmission upgrades for these wind projects will not all be in-service at the time the projects begin producing energy. A number of transmission facilities that were identified in the interconnection studies as overloaded, along with MTEP related transmission facilities were, or will be, taken out of service and rebuilt. This has, and will continue to have, a negative effect on LMP pricing in the MISO energy market and will continue to impact real-time wind generation on the NSP System.

III. TRANSMISSION SYSTEM IMPROVEMENTS

Since 1994, wind energy resources have been the dominant factor in determining the need for transmission infrastructure improvements in southwestern Minnesota. To meet this need, the Company, often in cooperation with other utilities, has planned, engineered, and constructed a number of projects designed to increase the

¹ The wind repowering projects being developed by NSP are not included in this list.

² MidAmerican has announced they are pursuing an additional 2,042 MW of wind generation and 50 MW of solar generation that if approved would go into service in 2024.

transmission capacity in that area. Table 3 shows historic southwest Minnesota projects that increased the available transmission outlet in that area.

Southwest Minnesota Wind Limits							
Transmission Project	Transmission Owner	In-Service Date					
425 MW Wind Transmission Expansion Project	Xcel Energy	December 2006					
825 MW Wind Transmission Expansion Project	Xcel Energy	June 2008					
Buffalo Ridge Incremental Generation Outlet (BRIGO)	Xcel Energy	December 2009					

Table 3

The Company also participated in the development of three CapX2020 transmission projects, all of which have gone into service and are helping reduce wind curtailment on the NSP system. Table 4 lists the CapX2020 transmission projects.

Transmission Project	Transmission	Actual/Planned					
Transmission Troject	Owner	In-Service Date					
Brookings County - Southeast Twin Cities 345 kV Line	Xcel Energy, Great River Energy	March 26, 2015					
Fargo North Dakota - Northwest Twin Cities 345 kV Line	Xcel Energy, Great River Energy	April 2, 2015					
Southeast Twin Cities - La Crosse, Wisconsin 345 kV Line	Xcel Energy, SMMPA and non-MISO	September 16, 2016					

Table 4CapX2020 Transmission Projects

In addition to the transmission projects discussed above, a number of other new transmission infrastructure projects have been placed in service, including the Huntley – Wilmarth 345 kV line, and all but one of the Multi-Value Projects (MVP). The Cardinal – Hickory Creek 345 kV Line will be the last MVP to go into service, though the expected in-service date is late 2023.³ The Huntley – Wilmarth line, which went into service on December 1, 2021, was classified as an Economic Project under the MTEP process and was installed to improve congestion. The MVPs were designed to expand and enhance the region's transmission system, reduce congestion, provide access to affordable energy sources, and meet public policy requirements including renewable energy mandates. The completion of the MVP projects, particularly the

³ The Cardinal – Hickory Creek line is involved in litigation that could negatively impact the in-service date.

ones listed in Table 5, have had, or will have, a positive impact on Company-owned and PPA wind facilities.

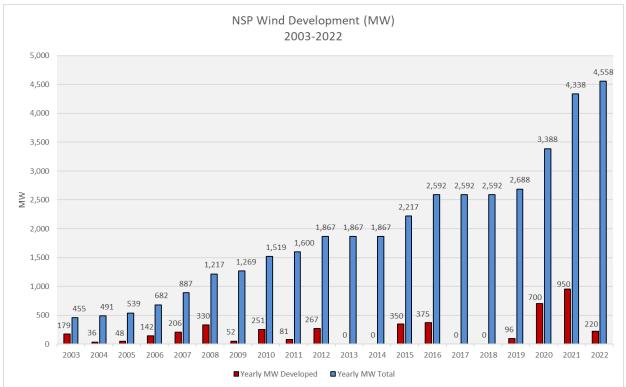
MVP Projects							
Transmission Project	Transmission Owner	Planned/Actual In-Service Date					
Big Stone South to Brookings County 345 kV Line	Otter Tail Power Company, Xcel Energy	September 8, 2017					
Lakefield Jct Winnebago - Winco - Kossuth County & Obrien County - Kossuth County - Webster 345 kV Line	MidAmerica Energy, ITC Midwest	September 27, 2018					
North La Crosse - North Madison	American Transmission Company, Xcel Energy	December 12, 2018					
Winco to Hazleton 345 kV Line	MidAmerica Energy, ITC Midwest	July 18, 2019					
Ellendale to Big Stone South 345 kV Line	Otter Tail Power Company, Montana Dakota Utilities	February 5, 2019					
Cardinal - Hickory Creek 345 kV Line	American Transmission Company, ITC Midwest	December 2023					

Table 5 MVP Projects

One of the design goals for the North La Crosse – North Madison and Cardinal – Hickory Creek 345 kV Lines was to increase the transmission export capacity from Iowa and Minnesota into the 345 kV system in Wisconsin that connects to the Milwaukee and Illinois load centers.

IV. WIND GENERATION AND CURTAILMENT

Chart 1 shows planned and installed Company-owned and PPA wind generation facilities throughout the NSP service territory on an incremental and cumulative basis.



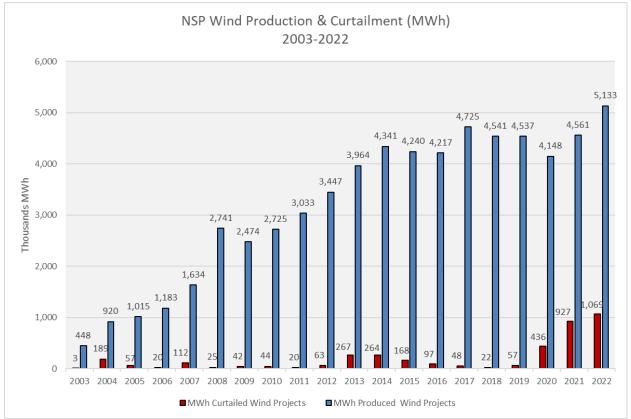

Chart 1

Chart 2 shows the comparison between total wind energy produced and the wind energy curtailed from the projects through December 2022.⁴ Despite the lead/lag time associated with generation and transmission development, Chart 2 shows that wind curtailment is small compared to the total wind generation delivered.

Wind curtailment, as a tool to manage wind generation volumes when necessary, has had the positive benefit of facilitating a large amount of wind resources to be added to the system, which would not otherwise have been possible.

⁴ Part C, Attachment 2.

The 2022 Curtailment in summarized in Table 6.

1 able 6 2022 Wind Curtailment MWh and Costs								
MWh Costs								
Curtailment	1,069,391	\$49,540,011						

It is important to note that of the \$49,540,011in total curtailment costs, the vast majority of these costs are associated with the contractual energy price of the PPAs. These are contractually obligated sunk costs which are not economically relevant to the decision to curtail the generation from a wind farm.⁵

The Company typically has broken up curtailment into two categories to better explain the reasons for the curtailment and its cause. The two categories were Transmission Curtailment and DIR Curtailment. Transmission Curtailment was specifically related to situations where local transmission-related outages impacted

⁵ The PPA contract language can generally be described as "take or pay" in which NSP must pay for the wind energy that could be produced, regardless of whether it actually is produced or if it is curtailed.

wind projects. DIR Curtailment was considered curtailment that was not caused by local transmission outages, or where transmission outages did not impact a specific wind farm. This breakdown was more informative when the curtailment was primarily related to local transmission constraints on NSP's transmission system in southwest Minnesota. Curtailment identified as Transmission Curtailment has been declining over the past number of years and is currently almost entirely related to regional transmission congestion on the MISO system, Transmission Curtailment costs in this reporting period continue to be relatively small compared to DIR Curtailment, as shown in Table 7 below:

Туре	Curtailment (MWh)
Economic	1,052,414
Transmission Related	16,977
Total	1,069,391

Table 7: 2022 Wind Curtailment Breakdown

Compared to the breakdown between these curtailment types, the Company believes that it will be more informative to provide details on the drivers of regional congestion as measured by the Real Time Binding Constraints which are used to manage congestion in the MISO Real Time Market along with a discussion on transmission outages that occurred during the year.

Per the MISO website, the Real-Time Market is a continuous process for balancing supply and demand at least-cost while recognizing current operating conditions. This includes any deviations from the day-ahead plan as a result of unanticipated and unhedged congestion due to unexpected changes. The Real Time Market dispatches the least-cost generation resources to satisfy system demand without overloading the transmission network.

MISO uses the Security Constrained Economic Dispatch (SCED) algorithm to provide cooptimized clearing solutions in the Real-Time Market. The objective of the Security Constrained Economic Dispatch (SCED) algorithm is to minimize cost while meeting forecasted demand, scheduled interchange, and operating reserves requirements, which are subject to transmission congestion and other system limitations. SCED produces Balanced injections and withdrawals, congestion management solutions and LMP and MCP. The SCED runs every five minutes during the Operating Hour to establish the dispatch instruction for generation resources. SCED produces Resource Energy Dispatch Targets, Dispatch target information vis setpoint instructions, RT LMP and RT MCP. MISO sends out a five-minute dispatch target to each resource and repeats throughout the Operating Day.

1. Curtailment Procedures

MISO performs a 10-minute forecast every five minutes which is used as the maximum limit for the wind farm in the Unit Dispatch System. MISO sends fiveminute dispatch instructions to DIR wind farms. When LMP drops below the offer price of the DIR unit, the farm is automatically dispatched down. The setpoint is sent to the DIR wind farm, and the facility is automatically curtailed. Both PTC and non-PTC DIR wind farms are managed by MISO through automatic control, and these facilities are required to comply with the MISO cost signals. Failure to comply would expose the Company to Revenue Sufficiency Guarantee charges. More curtailment occurs at non-PTC wind farms.

2. Real Time Binding Constraints

Real time binding constraints are the transmission facilities that are identified in the SCED that would overload in anticipation of the next contingency. The SCED would send setpoint instruction to redispatch generation to eliminate the constraint. The most frequent real time binding constraints in the NSP area are listed in Table 7.⁶

⁶ Area includes Minnesota, North Dakota, South Dakota and Wisconsin.

Docket No. E002/AA-21-295 True-Up Report Part C, Attachment 1 Page 10 of 14

Constraint Name	Contingency Description	State	RTBC Hours	Avg Shadow Price
Forman_230_115_TR1_flo_Hankins on_Wahpeton_230kV	HANKINSON-WAHPETON 230+WAHPETN TR2	ND	2,446.8	(\$374.4)
Ellendal_AberdeenJct_115kV_flo_T winBrooks_BigSto	TWIN BROOKS - BIG STONE South 345	ND	846.7	(\$55.6)
NSP34011_MURPHYCR_MURPH HAYWA16_1_1	HELENA-SHEAS LAKE 345	MN	450.5	(\$152.6)
Watertn_345_230_XF_FTLO_Haw kn_Lk_Lyon_Co_345kV	LYON CO - HAWKS NEST LAKE 345	SD	416.1	(\$116.7)
OTP23100_JOHNJCT_JOHNJGR ACE11_1_1	HANKINSON-WAHPETON 230+WAHPETN TR2	MN	396.8	(\$1,272.5)
ScottCounty_BlueLake_345kV_flo_ Helena_ChubLake_3	CHUB LAKE-HELENA 345 (0960)	MN	335.9	(\$74.2)
PrairieIsland_NorthRochester_345_ FLO_Hampton_Nor	HAMPTON - NORTH ROCHESTER 345	MN	317.7	(\$88.6)
Blair_Granite_Falls_230_KV_FLO_ Hawksnest_Ln_Lyon	LYON CO - HAWKS NEST LAKE 345	SD	231.1	(\$245.7)
FoxLake_Rutland_161kV_flo_Lakef ieldJct_Huntley_3	HUNTLEY - LAKEFIELD 345	MN	215.5	(\$261.7)
ALENSP01_EAU_CLA_TR9_TR9	EAU CLAIRE - ARPIN 345	WI	209.8	(\$482.3)
OTP23100_MORRISOT_MORRIG RANT11_1_1	HANKINSON-WAHPETON 230+WAHPETN TR2	MN	203.3	(\$879.6)
NSP34008_MURPHYCR_MURPH HAYWA16_1_1	SHEAS LAKE - WILMARTH 345	MN	164.7	(\$130.7)
Bigstone_BrownsVally_230kV_flo_ Oaks_Ellenda_230k	ELLENDALE-OAKES 230	SD	161.8	(\$237.1)
NSPALW02_SOUTHBND_TR6_T R6	WILMARTH - HUNTLEY 345	MN	158.0	(\$513.5)
White_Split_Rock_345_kV_FTLO_ Hawks_Nest_Lyon_Cou	LYON CO - HAWKS NEST LAKE 345	MN	154.5	(\$139.7)
NSP34X12_WILMART_TR9_TR9	WILMARTH 345/115 T10	MN	134.8	(\$252.4)

Table 82022 Real Time Binding Constraints

A number of factors result in real time binding constraints which cause curtailment including 1) the oversubscription of the transmission system resulting in more wind generation than the transmission system can accommodate; 2) the relationship between wind and load levels where more curtailment will occur during periods of higher wind and lower load; 3) planned and emergency transmission outages required for construction, maintenance or repair activities; and 4) wind generation projects going into service before all required transmission facilities are completed.

Table 9 lists the transmission outages that the Company has identified as having the most impact on the binding constraints listed above and the resulting curtailment. The outages were required for reasons including construction required for regional transmission upgrades and generator interconnection required upgrades along with regular maintenance or repair activities.

Request	Company	KV	From_Station	To_Station	Start	End	Duration
1-26308777	GRE, NSP	345/115	LYON_CO TR9	_	5/28/2021	5/3/2022	341
1-25868944	GRE, OTP	115	JOHNJCT	MORRISOT	9/27/2021	2/1/2022	128
1-26406529	MDU	230	MANDAN	NAPOLNSW	8/15/2022	11/18/2022	96
1-26458059	MDU	230	MANDAN	NAPOLNSW	11/30/2021	2/18/2022	81
1-26224013	ITC_MW	161	ADAMS	HAYWARD	3/28/2022	6/7/2022	72
1-26224013	ITC_MW	161	BARTONS	ADAMS_I	3/28/2022	6/7/2022	72
1-26224013	DPC,	161	BVR_CRK	ADAMS_I	3/28/2022	6/7/2022	72
1-26224013	ITC_MW	345/161	ADAMS TR1		3/28/2022	6/7/2022	72
1-26597650	NSP	345	CRANDAL	FIELDON	5/11/2022	7/8/2022	59
1-26597650	GRE, NSP	345	FIELDON	WILMART	5/11/2022	7/8/2022	59
1-26215034	NSP	345/161	EAU_CLA TR10		5/10/2022	7/6/2022	58
1-26488066	NSP	345	LAKEFLD	NOBLES	6/24/2022	7/25/2022	32
1-26516536	GRE, NSP	230	PYNSVIL	WILLMRU	10/3/2022	11/2/2022	31
1-26516536	GRE	230	WILLMRU	GRANITF	10/3/2022	11/2/2022	31
1-26500578	ATC, NSP	345	EAU_CLA	ARPIN	11/28/2022	12/21/2022	24
1-26634491	NSP	345	CRANDAL	FIELDON	10/10/2022	11/1/2022	23
1-26634491	GRE, NSP	345	FIELDON	WILMART	10/10/2022	11/1/2022	23
1-26614542	ITC_MW	161	MOWERCTY	ADAMS_I	6/17/2022	7/7/2022	21
1-26642057	NSP	115	BUFFRID	YANKEE	10/17/2022	11/3/2022	18
1-26454153	ITC_MW	345	HUNTLEY2	LAKEFLD	1/31/2022	2/14/2022	15

Table 92022 Significant Transmission Outages

The Company believes that many of the binding constraints listed in Table 8 were caused or made worse by the transmission outages identified in Table 9. The Forman Transformer binding constraint, which was the most common binding constraint in 2022, was negatively impacted by the Napoleon – Mandan 230 kV line outage⁷. The Napoleon – Mandan outage also likely contributed to the Ellendale – Aberdeen Jct. binding constraint. The Fox Lake – Rutland 161 kV and Wilmarth TR 9 transformer binding constraints occurred almost exclusively during the Crandall – Fielden –

⁷ The Napoleon – Mandan 230 kV line was required to be rebuilt to provide transmission capacity for a new generator interconnection.

Wilmarth outages. The Johnson Jct. – Graceville binding constraint only occurred during the Johnson Jct. – Morris 115 kV line outage. The Murphy Creek – Hayward 161 kV constraint was negatively impacted by the Adams area outages⁸.

The remaining binding constraints were likely negatively impacted by the various transmission outages that occurred throughout 2022.

3. Curtailment Mitigation Efforts

The Company has been working to schedule transmission outages to minimize curtailment for a number of years –performing multiple outages at the same time and scheduling these activities during times when wind is normally at its lowest levels – typically the summer months in the NSP service territory. While Xcel Energy attempts to plan outage work with this principle in mind, this is not always possible. Summer months are also high load months and transmission outages may not be possible due to load serving needs.

The Company is also working to identify binding constraints that are likely to occur going forward and are developing plans to mitigate these constraints. The mitigation plans will be designed to cost effectively reduce both curtailment and congestion. The plans include breaker reconfiguration and transmission facility upgrades.

V. WIND PRODUCTION AND CURTAILMENT PAYMENTS

Chart 3 shows the corresponding production and curtailment costs for 2003 through 2022.⁹ As with wind generation produced and curtailed, paid curtailment is a very small portion of total cost of wind generation on the system.

⁸ Adams area outages included the Adams 345/161 kV transformer, Adams - Hayward, Barton- Adams and Beaver Creek – Adams 161 kV lines.

⁹ The data for 2021-2022 is shown in Part C, Attachment 2.

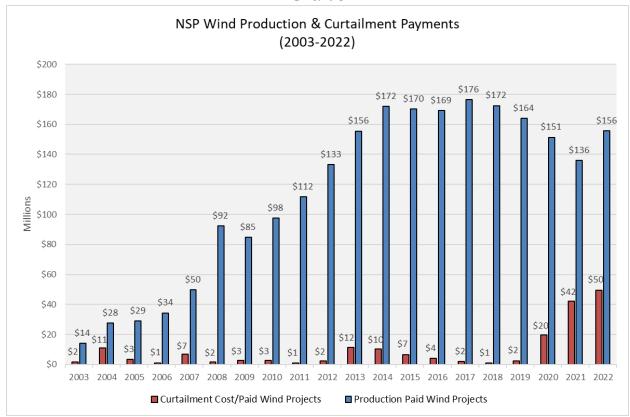


Chart 3

The Company has typically provided estimates of future potential curtailment payment estimates in the AAA Report. However, going forward these estimates will be provided in our fuel forecast Petition, including the one that will be filed by May 1, 2023. The Company is projecting future curtailment will occur because of regional congestion and the resulting negative LMP in the MISO energy market, along with transmission outages required for construction, maintenance or repair activities and wind generation projects going into service before all required transmission facilities are completed.

Significant transmission improvements in southwestern Minnesota and the region such as the CapX2020 transmission projects (CapX2020), the Huntley – Wilmarth and all but one of the MISO Multi-Value Projects (MVPs)¹⁰ are now in-service and will positively impact curtailment by reducing local congestion. However, the Company anticipates that wind generation curtailment and associated payment to vendors will continue to occur over the coming years because of regional congestion and the resulting negative LMP in the MISO energy market, along with transmission outages required for construction, maintenance, or repair activities and wind

¹⁰ The Cardinal - Hickory Creek 345 kV MVP line is scheduled to go into service in late 2023.

generation projects going into service before all required transmission facilities are completed and likely generation oversubscription of the transmission system. System conditions and wind project development are very dynamic and actual curtailment may vary from that projected in this report. The Company will continue to participate in discussions regarding transmission planning and operations to identify needs and work to manage future costs. We will continue to refine and gather information for use in future updates to be submitted with subsequent true-up and AAA reports.

The Company continues to utilize initiatives to reduce curtailment. Examples include, where possible, scheduling transmission activities which can impact curtailment during low wind months. The Company is also working to identify binding constraints that are likely to occur going forward and are developing plans to mitigate these constraints.

Northern States Power Company Electric Utility - State of Minnesota Wind Curtailment Summary Report - Total 2022 AAA Period

	Date	Paid	Wind Prod	<mark>ucti</mark>	on Delivered	Lost Production			
					Amount		Amount		Total
Production	Delivered	Lost	MWh		Xcel Energy		Xcel Energy		Xcel Energy
Month	MWh	MWh	Delivered		Paid	Lost MWh	Paid		Paid
Jan-21			415,276.96	\$	12,790,075.17	55,813.10	\$ 2,807,900.43	\$\$	15,597,975.60
Feb-21			299,731.39	\$	9,077,653.32	33,081.74	\$ 1,494,249.98		, ,
Mar-21			454,702.83	\$	13,823,194.08	102,918.72	\$ 4,570,158.12	? \$	18,393,352.20
Apr-21			452,040.18	\$	13,764,354.19	95,559.76	\$ 4,295,598.08	\$\$	18,059,952.27
May-21			378,818.38	\$	11,076,185.38	83,722.64	\$ 3,810,012.94	! \$	14,886,198.32
Jun-21			279,425.87	\$	8,220,002.13	53,729.94	\$ 2,451,113.61	\$	10,671,115.74
Jul-21			254,534.12	\$	6,964,756.60	19,170.23	\$ 842,853.61	\$	7,807,610.21
Aug-21			334,103.43	\$	9,296,401.87	45,423.20	\$ 2,027,854.3	; \$	11,324,256.22
Sep-21			365,006.51	\$	10,674,869.41	90,261.00	\$ 4,036,330.17	'\$	14,711,199.58
Oct-21			374,769.54	\$	10,876,269.01	127,250.80	\$ 5,717,621.97	\$	16,593,890.98
Nov-21			475,572.96	\$	14,208,437.64	117,907.39	\$ 5,371,503.97	\$	19,579,941.61
Dec-21			477,025.60	\$	15,228,791.71	102,492.38	\$ 4,738,764.29	\$	19,967,556.00
Total-21			4,561,007.76	\$	136,000,990.51	927,330.92	\$ 42,163,961.52	\$	178,164,952.03
Jan-22			486,114.99	\$	15,421,309.72	133,508.58	\$ 6,145,798.49	\$	21,567,108.21
Feb-22			502,705.35	\$	14,769,300.19	108,559.97	\$ 4,988,995.72	2 \$	19,758,295.91
Mar-22			514,652.57	\$	15,019,353.70	92,798.08	\$ 4,318,981.60	; \$	19,338,335.36
Apr-22			530,699.02	\$	15,996,139.35	214,574.54	\$ 9,782,194.5	; \$	25,778,333.90
May-22			366,916.47	\$	11,262,896.97	109,890.35	\$ 5,166,458.68	\$\$	16,429,355.65
Jun-22			350,175.92	\$	10,518,548.04	63,910.23	\$ 3,115,800.38	\$\$	13,583,670.96
Jul-22			301,204.95	\$	8,932,747.36	33,917.25	\$ 1,645,347.40) \$	10,529,413.05
Aug-22			313,056.66	\$	9,541,612.85	17,553.49	\$ 841,351.23	\$	10,382,964.08
Sep-22			363,404.50	\$	11,401,827.49	58,496.79	\$ 2,698,650.21	\$	14,100,477.70
Oct-22			456,771.15	\$	13,490,974.69	89,873.45	\$ 4,187,674.83	\$	17,678,649.52
Nov-22			519,125.58	\$	15,715,595.96	99,216.95	\$ 4,491,208.90) \$	20,206,804.86
Dec-22			427,886.52	\$	13,749,195.05	47,091.44	\$ 2,157,549.42	2 \$	15,906,744.47
Total-22			5,132,713.69	\$	155,819,501.37	1,069,391.11	\$ 49,540,011.47	′\$	205,260,153.67

Northern States Power Company Electric Utility - State of Minnesota Wind Curtailment Summary Report - Curtailment Reason Code 3 (MISO) 2022 AAA Period

	Date	Paid	Wind Prod	uction Delivered	Lost Production		
				Amount		Amount	Total
Production	Delivered	Lost	MWh	Xcel Energy		Xcel Energy	Xcel Energy
Month	MWh	MWh	Delivered	Paid	Lost MWh	Paid	Paid
Jan-21			286,239.78	\$ 8,608,971.51	55,813.10	\$ 2,807,900.43	\$ 11,416,871.94
Feb-21			207,036.82	\$ 5,238,392.38	33,081.74	\$ 1,494,249.98	\$ 6,732,642.36
Mar-21			313,731.84	\$ 7,958,889.42	102,918.72	\$ 4,570,158.12	\$ 12,529,047.54
Apr-21			359,879.41	\$ 10,295,738.72	95,559.76	\$ 4,295,598.08	\$ 14,591,336.80
May-21			335,682.76	\$ 9,476,493.54	83,722.64	\$ 3,810,012.94	\$ 13,286,506.48
Jun-21			244,634.08	\$ 6,801,152.64	53,729.94	\$ 2,451,113.61	\$ 9,252,266.25
Jul-21			188,634.61	\$ 4,407,043.28	19,170.23	\$ 842,853.61	\$ 5,249,896.89
Aug-21			279,344.49	\$ 7,183,597.10	45,423.20	\$ 2,027,854.35	\$ 9,211,451.45
Sep-21			317,149.99	\$ 8,632,740.85	90,261.00	\$ 4,036,330.17	\$ 12,669,071.02
Oct-21			322,379.24	\$ 8,637,684.25	127,250.80	\$ 5,717,621.97	\$ 14,355,306.22
Nov-21			409,323.89	\$ 11,381,625.18	117,907.39	\$ 5,371,503.97	\$ 16,753,129.15
Dec-21			413,313.74	\$ 12,568,403.16	102,492.38	\$ 4,738,764.29	\$ 17,307,167.45
Total-21			3,677,350.63	\$ 101,190,732.03	927,330.92	\$ 42,163,961.52	\$ 143,354,693.55
Jan-22			421,262.70	\$ 12,660,937.24	133,508.58	\$ 6,145,798.49	\$ 18,806,735.73
Feb-22			444,805.98	\$ 12,491,211.87	108,559.97	\$ 4,988,995.72	\$ 17,480,207.59
Mar-22			449,872.63	\$ 12,203,323.15	92,798.08	\$ 4,318,981.66	\$ 16,522,304.81
Apr-22			449,668.29	\$ 12,480,199.83	214,574.54	\$ 9,782,194.55	\$ 22,262,394.38
May-22			331,572.70	\$ 9,590,629.65	109,890.35	\$ 5,166,458.68	\$ 14,757,088.33
Jun-22			325,296.09	\$ 9,173,049.08	63,910.23	\$ 3,115,800.38	\$ 12,288,849.46
Jul-22			281,795.31	\$ 7,914,911.18	33,917.25	\$ 1,645,347.40	\$ 9,560,258.58
Aug-22			294,801.09	\$ 8,576,613.16	17,553.49	\$ 841,351.23	\$ 9,417,964.39
Sep-22			330,882.88	\$ 9,722,738.22	58,496.79	\$ 2,698,650.21	\$ 12,421,388.43
Oct-22			422,570.65	\$ 11,865,164.82	89,873.45	\$ 4,187,674.83	\$ 16,052,839.65
Nov-22			403,573.57	\$ 10,362,753.12	99,216.95	\$ 4,491,208.90	\$ 14,853,962.02
Dec-22			385,427.73	\$ 11,753,056.65	47,091.44	\$ 2,157,549.42	\$ 13,910,606.07
Total-22			4,541,529.61	\$ 128,794,587.97	1,069,391.11	\$ 49,540,011.47	\$ 178,334,599.44