|                     | EAS     | ST RIVI                | R                              |
|---------------------|---------|------------------------|--------------------------------|
|                     | Kurt    | - P :                  |                                |
|                     | <b></b> |                        |                                |
| SOPY-ORIGINAL FILED | <u></u> | ie<br>≱r⊒j             | مەر مىيەرىيىت<br>مەر بىرىمىيىت |
|                     |         | 201<br>22              |                                |
|                     |         | ingen<br>Agges<br>€Tra |                                |
|                     | ECEIVED | 6.5                    |                                |





May 14, 2008

Mrs. Vonni Kallemeyn Department of Environment & Natural Resources Administrator - Waste Management Program 523 East Capitol Avenue Pierre, SD 57501

RE: PS-22 115 kV Transmission Line

Dear Mrs. Kallemeyn:

Waste Management Determination<sup>19, SD</sup> Hazardous Waste/Solid Waste/Asbestos It appears, based on the information provided, that this project will have little or no

impact on the weste management in this area. Approved By: Janni Kallanel 3-08 Date: 5-6

South Dakota Department of Environment & Natural Resources Phone: (605) 773-3153 Fax: (605) 773-6035

Enclosed you will find maps and supportive information concerning the proposed PS-22 115 kV Transmission Line to be constructed by East River Electric Power Cooperative, Inc.

East River Electric Power Cooperative is planning to construct a new 115 kV electric transmission line that will exit a proposed Western Area Power Administration (WAPA) substation located in Section 1, Township 104N, Range 60W and will terminate at a new 115 to 4.16 kV substation in Section 20, Township 106N, Range 57W. The new line will be approximately 22 miles in total length, and it is anticipated that construction will start in the fall of 2008 and be completed by the summer of 2009.

The line will be built above ground along the township and county roads. Some tree trimming or removal will need to be done to meet National Electrical Code. The typical structure used for this line will be a single wood pole with stand off insulators. The average height of the poles will be 65' and set into the ground 8.5'. The proposed project would require approximately 17 to 20 structures per mile.

The proposed PS-22 transmission line is required by our member, Central Electric, to meet the demands of new electrical loads being added in this area with the TransCanada Keystone pipeline.

Wildlife in the area include, but are not limited to, deer, rabbit, coyote, badger, skunk, raccoon, mink, fox, gopher, and many species of birds.

I would appreciate receiving your environmental comments concerning wetlands and endangered species on the proposed project within thirty (30) days of the date of this letter.

If any additional information is required, feel free to contact me.

Sincerely.

Kurt Doenlan Land Agent

KD/jc

Enc.



MAY 222008

DEPT. OF ENVIRONMENT AND NATURAL RESOURCES. WASTE MANAGEMENT



EXHIBIT 17

The power of human connections



# LEGEND













# **EMF Units**

# Electric Fields

Usually measured in volts per meter (V/m) For large fields the units usually used are: 1 kilovolt per meter (kV/m) = 1,000 volts per meter

# **Magnetic Fields**

Usually measured in milliGauss (mG) Other units sometimes used: 1 microTesla = 10 milliGauss 1 Amp/meter = 0.1257 milliGauss

# **Electromagnetic Spectrum**



Frequency is shown in Hertz (Hz). 1 Hz = 1 cycle per second. (Note that  $10^4$  means  $10 \times 10 \times 10 \times 10 \times 10 \times 10 \times 10^{-1}$  Hz, etc.) kHz = kilohertz = 1000 Hz, MHz = megahertz = million Hz.

lectric power lines are familiar to all of us. They have different shapes, different sized poles and varying numbers of wires. We may not be able to guess how much power they carry, but we all know what they do: they bring electric power to our homes and businesses.

Many of the dramatic improvements in health, safety and quality of life that we benefit from today could not have happened without a reliable and affordable electric supply. But could electricity be bad for our health? Electric and magnetic fields are present wherever electricity is used. Do these fields cause cancer or any other diseases, as some have suggested?

These important and serious questions have been investigated thoroughly during the past three decades. Several tens of millions of dollars have been spent worldwide.

Research on EMF still continues because no clear answers have been found. The balance of scientific evidence to date indicates that these fields do not cause disease. This discussion outlines the EMF issue, summarizes the research conducted to date, and describes what Western Area Power Administration is doing to address concerns about EMF.



# **Electric and Magnetic Fields**

EMFs are produced both naturally and as a result of human activity. The earth has both a magnetic field produced by currents deep inside the molten core of the planet, and an electric field produced by electrical activity in the atmosphere, such as thunderstorms.

A primary characteristic of any field is the frequency. The frequency describes how rapidly an electric or magnetic field oscillates, or cycles backward and forward every second, and is measured in hertz. The earth's electric and magnetic fields do not oscillate. They are called static fields and have a frequency of 0 Hz. Electricity produced in North America produces fields at a frequency of 60 Hz, or 60 cycles per second, and are known as "extremely low frequency" or "power frequency" fields. Fields at that frequency carry very little energy and are only one small part of the electromagnetic spectrum that ranges from fields at a frequency of 0 Hz to frequencies in excess of trillions of Hz. Computers, radios, televisions, cellular telephones, microwave ovens, X-ray equipment and other devices we use daily operate using

#### **Electromagnetic Waveform**



frequencies within this spectrum. The science and effects of higher frequency fields are quite different from the 60Hz fields this brochure focuses on.

Power frequency electric and magnetic fields occur through human activity wherever electricity is generated, transmitted and used.

# The Difference Between Electric and Magnetic Fields

# **Electric fields**

Electric fields are produced by voltage. Voltage is the pressure behind the flow of electricity. It can be compared to the pressure of water in a hose. Voltage creates electric fields around any electrical device that is plugged in—even if it is not operating. For instance, plugging a lamp or hair dryer



into a wall socket applies voltage to the cord, surrounding it with an electric field. Electric fields are strongest closest to the source and with higher voltages, but decrease rapidly within a short distance from the source. Walls, roofs, trees and vegetation also weaken or shield electric fields. Electric fields are measured in volts per meter.

#### **Electric fields**



- Produced by voltage. Lamp plugged in but turned off. Voltage produces an electric field.
- Measured in volts per meter (V/m) or in kilovolts per meter (kV/m).

1 kV = 1000V

- Easily shielded (weakened) by conducting objects like trees and buildings.
- Reduced in strength with increasing distance from the source.



- Produced by current Lamp plugged in and turned on. Current now produces a magnetic field, also.
- Measured in gauss (G) or tesla (T) 1 milligauss (mG) = 0.1 microtesla (μT) milli (m) = 1 thousandth micro (μ) = 1 millionth.
- Not easily shielded (weakened) by most materials.
- 4. Reduced in strength with increasing distance from the source.

#### **Magnetic fields**

Magnetic fields are produced by current, which is the flow of electricity. Current is measured in amperes, or amps, and is similar to the volume of water flowing in a hose when the nozzle is open. Current must be flowing before magnetic fields can be produced. For example, turning on an electric appliance causes magnetic fields to surround the cord and appliance. Magnetic fields are strongest closest to the source, and increase with higher current flow; they also decrease with distance from the source. Unlike electric fields, magnetic fields are not affected by walls or trees, and primarily depend on distance from and strength of the source. Magnetic fields are commonly measured in milliGauss (mG) and in microTeslas (µT).



### Typical 60 Hz magnetic field levels from some common home appliances

|                    | Magnetic field 6 Inches<br>from appliance (mG) | Magnetic field<br>2 feet away (mG) |
|--------------------|------------------------------------------------|------------------------------------|
| Electric shaver    | 100                                            | -                                  |
| Vacuum cleaner     | 300                                            | 10                                 |
| Electric oven      | 9                                              | ÷                                  |
| Dishwasher         | 20                                             | 4                                  |
| Microwave oven     | 200                                            | 10                                 |
| Hair dryer         | 300                                            | -                                  |
| Computers          | 14                                             | 2                                  |
| Fluorescent lights | 40                                             | 2                                  |
| Faxogram machines  | 6                                              | ~                                  |
| Copy machines      | 90                                             | 7                                  |
| Garbage disposals  | 80                                             | 2                                  |

# Exposure

### **Standards and Guidelines**

It is not known if any EMF levels are unsafe. Some nongovernmental organizations have set advisory limits as a precautionary measure based on the knowledge that high levels of fields (more than 1,000 times the EMF found in typical environments) may induce currents in cells or stimulate nerves. The International Commission on Non-Ionizing Radiation Protection has established a continuous magnetic field exposure limit of 0.833 Gauss (833 mG) and a continuous electric field exposure limit of 4.2 kV/m for members of the general public. The American Council of Governmental Industrial Hygienists publishes Threshold Limit Values for various physical agents. The TLV for occupational exposure to 60 Hz magnetic fields has been set as 10 G (10,000 mG) and 25 kV/m for electric fields. Several states have set guidelines for electric and magnetic field levels that must be met for newly constructed transmission lines. These levels at the edge of right-of-way are about 2 kV/m



for electric fields and 200 mG for magnetic fields. In most cases, the values are maximum fields that existing lines produce at maximum load-carrying conditions. Researchers have used 2 mG in several studies as the threshold magnetic field value to differentiate between average exposed and more exposed persons. This is based on average fields found in homes, and not for any scientific reason.

### **Natural sources**

The earth's fields are static, or 0 Hz frequency. The earth's magnetic field which everyone is constantly exposed to is about 500 mG. The earth's electric field is about 100 V/m, but thunderstorms can temporarily increase the field in a given location to several thousand V/m.

## Sources within the home

In the home, in addition to the earth's natural fields, there are power frequency fields. All electric appliances produce electric and magnetic fields with a 60 Hz frequency. Fields are greatest closest to the surface of the cord and appliance and drop rapidly in just a short distance. The average house-hold background 60 Hz magnetic field is about 1 to 2 mG. The average back-ground 60 Hz electric field is 1 to 20 V/m.



**Typical field level** 





Typical EMF levels for a 230-kV transmission line

# **Overhead lines**

All overhead lines produce fields. The fields are usually the highest directly under the lines and fall rapidly with distance to the sides of the line. Actual field strengths will, of course, vary depending on the height of the conductors from the point of measurement.

| ivoical buinz electric and magnetic held levels from overnead dower | er line | power | overhead | from | levels | field | magnetic | and | electric | Hz | 60 | Typical |
|---------------------------------------------------------------------|---------|-------|----------|------|--------|-------|----------|-----|----------|----|----|---------|
|---------------------------------------------------------------------|---------|-------|----------|------|--------|-------|----------|-----|----------|----|----|---------|

| Line<br>voltage        | Centerline | Approx.<br>edge of<br>right of way | 100 feet | 200 feet | 300 feet |
|------------------------|------------|------------------------------------|----------|----------|----------|
| 115 kV                 |            |                                    |          |          |          |
| field kV/m             | 1.0        | 0.5                                | 0.07     | 0.01     | 0.003    |
| Magnetic<br>field mG   | 30         | 6.5                                | 1.7      | 0.4      | 0.2      |
| 230 kV                 |            |                                    |          |          |          |
| Electric<br>field kV/m | 2.0        | 1.5                                | 0.3      | 0.05     | 0.01     |
| Magnetic<br>field mG   | 57.5       | 19.5                               | 7.1      | 1.8      | 0.8      |
| 500 kV                 |            |                                    |          |          |          |
| field kV/m             | 7.0        | 3.0                                | 1.0      | 0.3      | 0.1      |
| Magnetic<br>field mG   | 86.7       | 29.4                               | 12.6     | 3.2      | 1.4      |

Electric fields from power lines are relatively stable because voltage does not change. Magnetic fields fluctuate greatly as current changes in response to changing load. The magnetic fields above are calculated for 321 power lines for 1990 mean loads.

6
NEXT PAGE PREVIOUS PAGE

### **Underground lines**

Underground lines can produce higher magnetic fields directly above them than an overhead line would produce at ground level, because the buried cable is closer to the ground surface. Magnetic fields fall away more rapidly than from overhead lines because of some shielding from the earth. There are no external electric fields produced because of the shielding from the earth. Underground lines are more expensive to install and more difficult and expensive to repair than overhead lines. Because of heat generated at higher voltages, most underground cables are lower voltage distribution lines, such as those that provide power to residential neighborhoods.

### **Substations**

EMFs are produced within electric substations, but due to the spacing of electrical equipment measured field strengths are low outside the fence line. Fields close by a substation are mainly produced by the entering power lines.

### Other field sources

We are surrounded daily with fields from many other sources having frequencies different than 60 Hz. These sources include emissions from computers, radio and television towers, cellular telephones, weather and air traffic control radar, military and commercial communications systems, household and industrial remote control devices, intrusion detection equipment and many others. Fields from 60 Hz electrical systems are a very small sliver of the total natural and man-made electromagnetic spectrum environment we live in.

### **Stray voltages**

Sometimes, cattle and dairy farmers express concern about a herd's behavior, weight loss or decreased milk production and blame EMFs from nearby transmission or distribution lines. Investigation of the situation normally shows the cause to be stray voltages. Stray voltages are from deteriorating wiring, or defective, or improperly wired or grounded, equipment. While standing on damp earth or other conductive ground, the animal receives a small electric shock when contacting parts of milking equipment, electrically heated or pumped watering facilities or other electric equipment around the farm. Electric companies usually offer stray voltage diagnosis services.



# **Research into Potential Health Effects**

With any issue that involves human health, it is important that scientific research be conducted to find out about possible causes, effects and solutions. Three main types of research are being conducted to determine if EMFs could be related to disease.

### Epidemiology

Epidemiology is the study of patterns of disease in populations. Epidemiology looks for any statistical link between exposure to EMF and disease in human populations. Concerns about EMFs were first raised in an epidemio-logical study when two scientists suggested that levels of fields encountered in some homes might lead to childhood cancer. Since then, other diseases including adult cancers, heart disease, Alzheimer's disease and depression have been examined to determine if there could be a link between them and EMFs.

Epidemiology can only look at populations and observe statistical associations. It cannot eliminate the many other possible factors that could determine the development of diseases and, therefore, cannot prove whether a particular disease is caused by EMFs.

About 20 epidemiological studies have been performed looking at the possible link between magnetic fields and childhood leukemia. Several other studies have looked at other diseases in relationship to magnetic fields for the general population and in the workplace. Some studies have found a weak association with magnetic fields, and others have not. Where there is association suggested, it is usually very near the statistical threshold of significance. When these studies are repeated, the results are generally not reproduced. Replication of results is a basic test of scientific validity. Research continues to look at magnetic fields until a more certain conclusion can be reached.

Very little evidence exists to confirm that electric fields have any association with childhood cancer, and some research suggests specifically they do not.

8
NEXT PAGE PREVIOUS PAGE

### Theoretical

Theoretical research looks for a possible mechanism that can demonstrate how the fields could react with living systems. A variety of theories have been put forth over the years but no such mechanism has been found that would operate at the levels of fields seen around homes or near power lines.

#### **Biological**

The test of any proposed theory or proposed health risk is biological research in the laboratory to observe the effects of EMFs on cells, tissues and organisms. Scientists look for effects that can be successfully replicated in different laboratories for proof that a cause-and-effect relationship exists. Hundreds of EMF-related biological research projects have been conducted. In 30 years of research, there have been no such reproducible results. The evidence from the laboratory is that low EMF levels of the kind experienced by the public do not cause the diseases that have been claimed.

Our use of electricity has increased exponentially over the past 100 years, likely resulting in greater daily exposures to power frequency EMFs. In general, it has been found that rates of cancer, considering improved diagnostic methods, have remained level or decreased somewhat. While many other variables are unaccounted for, these two observations would suggest that exposure to normal 60 Hz field levels is not a major human health issue.



# **EMF Research References**

Research related to possible adverse health effects of EMFs has been in progress for more than 30 years. It is not reasonable to list or summarize the results of past and ongoing research in this document because of the great amount of information. Work conducted by the National Institute of Environmental Health Sciences/Department of Energy EMF Research and Public Information Dissemination Program provides EMF research information and references. The publication *Electric and Magnetic Fields Associated with the Use of Electric Power, Questions and Answers* prepared under the NIEHS/DOE EMF RAPID program, specifically Chapter 6, National and International EMF Reviews, and Chapter 7, References, supplies a comprehensive summary and listing of research. The document is available online at http: //www.niehs.nih.gov/emfrapid. Another NIEHS report is *Questions and Answers, EMF in the Workplace*.

Additional EMF information resources are available from:

California Department of Health Services California EMF Program http://www.dhs.ca.gov/ps/deodc/ehib/emf/general.html

Medical College of Wisconsin, Electromagnetic Fields and Human Health http://www.mcw.edu/gcrc/cop/powerlines-cancer-FAQ/toc.html

Environmental Health Information Service http://ehis.niehs.nih.gov/

Microwave News http://www.microwavenews.com

World Health Organization http://www.who.int/emf

# Limiting Exposure to EMF

Research has not determined if exposure to EMFs could be a health risk. Scientists are studying long-term exposure to low fields, exposure to certain transient waves and other kinds of EMFs. You may prefer to take low- and no-cost steps to limit your exposure to strong fields as a way to reduce potential risk. Some scientists call this "prudent avoidance." For instance, you might:

- Move your motor-driven electric clocks or other electrical devices away from your bed.
- Stand away from an operating microwave oven or other appliances that use a lot of electricity.
- Sit away from the TV and at least an arm's length away from the computer screen and processing unit.
- Decide to use a safety razor instead of an electric one.

While steps like these may lower your exposure to 60 Hz fields, it is far more difficult to limit exposure to EMFs in the rest of the vast electromagnetic spectrum. It is virtually impossible to reduce exposure to broadcast frequencies and radar, for instance. Some scientists have recommended limiting cell phone use as a prudent avoidance measure, however.

# Western's EMF Position

Western recognizes the public concern over the possible health effects of electric and magnetic fields. While primary exposure to EMFs for most people is in the home and at work, Western realizes that some people have concerns about EMFs created by our transmission facilities.

In the past 30 years, scientists have studied the relationship, if any, of EMF to human, plant and animal health. Congress mandated in 1992 that Federal agencies and the scientific community research and conduct a comprehensive review of potential EMF effects on health. These studies concluded in 1997 that there is only "weak" evidence that magnetic fields increase the risk of cancer and other human disease.

Scientific research continues on a wide range of questions relating to EMF exposure, and some of this work has hinted at possible health risks. A comprehensive EMF health risk assessment by the World Health Organization is under way, and will likely influence decision making and further research. The research is expected to continue for several more years. Until conclusive or more specific research results are obtained, Western will continue to take prudent actions regarding EMFs.

Western will continue to:

- Provide balanced and accurate information to employees, customers and the public. EMF measurements will continue to be made upon request.
- Support and participate in scientific research on EMF and monitor results of research activities by utility, government and private groups.
- Pursue and implement alternative design and siting approaches for new and upgraded transmission facilities to reduce the public exposure to EMFs, particularly when the siting of the facilities may occur in populated areas.

Western is committed to providing a safe, healthy environment for our employees and safe, reliable and economic electric energy to our customer and communities. For more information about Western or EMF, call or write your nearest Western office:

Corporate Services Office Mailing address: P.O. Box 281213, Lakewood, CO 80228-8213 E-mail: CorpComm@wapa.gov Phone: 720-962-7000 Fax: 720-962-7200

CRSP Management Center Mailing address: P.O. Box 11606, Salt Lake City, UT 84147-0606 Phone: 801-524-5493 Fax: 970-240-6295

Desert Southwest Region Mailing address: P.O. Box 6457, Phoenix, AZ 85005-6457 Phone: 602-605-2525 Fax: 602-605-2630

Rocky Mountain Region Mailing address: P.O. Box 3700, Loveland, CO 80539-3003 Phone: 970-461-7200 Fax: 970-461-7213

Sierra Nevada Region Mailing address: 114 Parkshore Drive, Folsom, CA 95630-4710 Phone: 916-353-4416 Fax: 916-985-1934

Upper Great Plains Region Mailing address: P.O. Box 35800, Billings, MT 59107-5800 Phone: 406-247-7405 Fax: 406-247-7408

NEXT PAGE PREVIOUS PAGE



P.O. Box 281213 Lakewood, CO 80228-8213



PREVIOUS PAGE

•