SOUTH DAKOTA PUBLIC UTILITIES COMMISSION

CASE NO. EL05-022

IN THE MATTER OF THE APPLICATION BY OTTER TAIL POWER COMPANY

ON BEHALF OF THE BIG STONE II CO-OWNERS

FOR AN ENERGY CONVERSION FACILITY SITING PERMIT FOR THE

DIRECT TESTIMONY

CONSTRUCTION OF THE BIG STONE II PROJECT

OF

ANDREW SKOGLUND

ACOUSTICAL ENGINEER

BARR ENGINEERING COMPANY

MARCH 15, 2006

APPLICANTS' EXHIBIT 20

1		TESTIMONY OF ANDREW J. SKOGLUND	
2		TABLE OF CONTENTS	
3	I.	INTRODUCTION	1
4	II.	NOISE	2
5			

1 BEFORE THE SOUTH DAKOTA PUBLIC UTILITIES COMMISSION

2 DIRECT TESTIMONY OF ANDREW J. SKOGLUND

- 3 I. INTRODUCTION
- 4 Q: Please state your name and business address.
- 5 A: Andrew J. Skoglund, 4700 West 77th St., Suite 200, Minneapolis, MN 55435-4803.
- 6 Q: By whom are you employed and in what capacity?
- 7 A: I am employed by Barr Engineering Co. as an Acoustical Engineer.
- 8 O: What is your educational background?
- 9 A: I graduated from Iowa State University in 2004 with a Bachelor of Science degree in
- 10 Engineering Science with a focus in acoustics. This included studies in the areas of indoor and
- 11 outdoor acoustics, attenuation and propagation of noise and vibration, finite elements analysis,
- 12 and non-destructive evaluation. I performed a study of the noise behavior of a commercial
- blender and options to attenuate its noise, as well as a vibration study of sanding discs.
- 14 O: What is your employment history?
- 15 A: I started working at Barr Engineering Co. in 2004.
- 16 O: What work experience have you had that is relevant to your testimony?
- 17 A: I have been involved in the permitting process for several mining and power industry
- 18 clients, performing both noise analysis and air quality modeling. I performed noise monitoring
- 19 for the City of Inver Grove Heights, MN. This involved monitoring the noise levels being
- 20 emitted from a warehouse facility adjacent to residences. I also modeled future noise effects of
- 21 Xcel Energy's High Bridge Combined Cycle Project. This involved modeling of a proposed
- 22 power generation facility in close proximity to residential development. My air quality modeling

- 1 experience involves primarily Class I dispersion modeling using the CALPUFF suite of
- 2 software. I also have some experience running ISC-PRIME and AERMOD.
- 3 II. NOISE
- 4 Q: Were you involved in evaluating the potential noise impacts of the proposed Big Stone
- 5 Unit II?
- 6 A: Yes.
- 7 O: Please describe your involvement.
- 8 A: I performed on-site monitoring of existing noise levels around the current Big Stone
- 9 facility on June 23 and 24, 2005. I also performed noise modeling of the proposed Big Stone
- 10 Unit II, analyzing the potential for impact on surrounding properties.
- 11 O: Did you prepare any particular sections of the Application?
- 12 A: I prepared Section 4.5.4 of the Application, which reflects the results of the noise
- 13 monitoring and noise modeling.
- 14 Q: How did you obtain ambient noise levels at the plant site?
- 15 A: I obtained the existing noise levels at the facility myself, using several calibrated
- 16 NoisePro DLX units. These units were placed at four locations around the plant for a 24 hour
- period June 23-24, 2005. Locations were chosen to be representative of surrounding receptors.
- Noise levels for the proposed equipment were provided by Burns and McDonnell.
- 19 Q: Did you consider noise emissions associated with equipment to be used at the site?
- 20 A: Yes. The noise levels of the equipment that will be part of Big Stone Unit II, used in the
- 21 modeling, were provided by Burns and McDonnell. This data consisted of the sound power
- 22 levels emitted, divided into octave bands.
- 23 Q: How did you estimate future noise levels after Big Stone Unit II is in operation?

- 1 A: I analyzed the potential noise levels using the SPM9613 computer model. This model
- 2 implements the International Standards Organization (ISO) 9613 standard for calculating the
- 3 propagation and attenuation of outdoor noise. Combination of the modeled results with the
- 4 existing background was used to give an estimate of the future noise environment.
- 5 Q: Will snow machines be utilized in the maintenance of the ponds after Big Stone Unit II is
- 6 in operation?
- 7 A: No. Snow machines located on evaporation pond dikes have previously been used to
- 8 enhance evaporation of water from the plant evaporation pond. This noise source, discussed in
- 9 Section 4.5.4 of the Application, will be eliminated as part of the Big Stone Unit II construction
- and associated changes in plant water management.
- 11 Q: Are there any federal, state, and local requirements related to noise applicable to Big
- 12 Stone Unit II?
- 13 A: There are no specific federal, South Dakota, or local quantitative standards applicable to
- 14 noise for the Big Stone Unit II site. Minnesota noise standards were used for reference purposes
- only. The proposed Big Stone Unit II site will comply with the Minnesota noise standards.
- 16 Q: What are the results of your evaluation of the potential noise impacts?
- 17 A: No significantly greater noise effects are expected from Big Stone Unit II compared to
- 18 existing conditions. South Dakota has no applicable noise standards. A comparison was made
- 19 to Minnesota standards, which would apply if the plant were located in Minnesota, and Big
- 20 Stone Unit II will be in compliance with those standards.
- 21 Q: Does this conclude your testimony?
- 22 A: Yes.

23