BEFORE THE PUBLIC UTILITIES COMMISSION OF THE STATE OF SOUTH DAKOTA

In the Matter of the Application of Black Hills Power, Inc. for Authority to Increase its Electric Rates Docket No. EL14-026

EXHIBIT_(SJB-1)

OF

STEPHEN J. BARON

ON BEHALF OF THE BLACK HILLS INDUSTRIAL INTERVENORS

J. KENNEDY AND ASSOCIATES, INC. ROSWELL, GEORGIA

December 2014

Date	Case	Jurisdict.	Party	Utility	Subject
4/81	203(B)	KY	Louisville Gas & Electric Co.	Louisville Gas & Electric Co.	Cost-of-service.
4/81	ER-81-42	MO	Kansas City Power & Light Co.	Kansas City Power & Light Co.	Forecasting.
6/81	U-1933	AZ	Arizona Corporation Commission	Tucson Electric Co.	Forecasting planning.
2/84	8924	KY	Airco Carbide	Louisville Gas & Electric Co.	Revenue requirements, cost-of-service, forecasting, weather normalization.
3/84	84-038-U	AR	Arkansas Electric Energy Consumers	Arkansas Power & Light Co.	Excess capacity, cost-of- service, rate design.
5/84	830470-EI	FL	Florida Industrial Power Users' Group	Florida Power Corp.	Allocation of fixed costs, load and capacity balance, and reserve margin. Diversification of utility.
10/84	84-199-U	AR	Arkansas Electric Energy Consumers	Arkansas Power and Light Co.	Cost allocation and rate design.
11/84	R-842651	PA	Lehigh Valley Power Committee	Pennsylvania Power & Light Co.	Interruptible rates, excess capacity, and phase-in.
1/85	85-65	ME	Airco Industrial Gases	Central Maine Power Co.	Interruptible rate design.
2/85	I-840381	PA	Philadelphia Area Industrial Energy Users' Group	Philadelphia Electric Co.	Load and energy forecast.
3/85	9243	KY	Alcan Aluminum Corp., et al.	Louisville Gas & Electric Co.	Economics of completing fossil generating unit.
3/85	3498-U	GA	Attorney General	Georgia Power Co.	Load and energy forecasting, generation planning economics.
3/85	R-842632	PA	West Penn Power Industrial Intervenors	West Penn Power Co.	Generation planning economics, prudence of a pumped storage hydro unit.
5/85	84-249	AR	Arkansas Electric Energy Consumers	Arkansas Power & Light Co.	Cost-of-service, rate design return multipliers.
5/85		City of	Chamber of	Santa Clara	Cost-of-service, rate design.

Date	Case	Jurisdict.	Party	Utility	Subject
		Santa Clara	Commerce	Municipal	
6/85	84-768- E-42T	WV	West Virginia Industrial Intervenors	Monongahela Power Co.	Generation planning economics, prudence of a pumped storage hydro unit.
6/85	E-7 Sub 391	NC	Carolina Industrials (CIGFUR III)	Duke Power Co.	Cost-of-service, rate design, interruptible rate design.
7/85	29046	NY	Industrial Energy Users Association	Orange and Rockland Utilities	Cost-of-service, rate design.
10/85	85-043-U	AR	Arkansas Gas Consumers	Arkla, Inc.	Regulatory policy, gas cost-of- service, rate design.
10/85	85-63	ME	Airco Industrial Gases	Central Maine Power Co.	Feasibility of interruptible rates, avoided cost.
2/85	ER- 8507698	NJ	Air Products and Chemicals	Jersey Central Power & Light Co.	Rate design.
3/85	R-850220	PA	West Penn Power Industrial Intervenors	West Penn Power Co.	Optimal reserve, prudence, off-system sales guarantee plan.
2/86	R-850220	PA	West Penn Power Industrial Intervenors	West Penn Power Co.	Optimal reserve margins, prudence, off-system sales guarantee plan.
3/86	85-299U	AR	Arkansas Electric Energy Consumers	Arkansas Power & Light Co.	Cost-of-service, rate design, revenue distribution.
3/86	85-726- EL-AIR	ОН	Industrial Electric Consumers Group	Ohio Power Co.	Cost-of-service, rate design, interruptible rates.
5/86	86-081- E-GI	WV	West Virginia Energy Users Group	Monongahela Power Co.	Generation planning economics, prudence of a pumped storage hydro unit.
8/86	E-7 Sub 408	NC	Carolina Industrial Energy Consumers	Duke Power Co.	Cost-of-service, rate design, interruptible rates.
10/86	U-17378	LA	Louisiana Public Service Commission Staff	Gulf States Utilities	Excess capacity, economic analysis of purchased power.
12/86	38063	IN	Industrial Energy	Indiana & Michigan	Interruptible rates.

Date	Case	Jurisdict.	Party	Utility	Subject
			Consumers	Power Co.	
3/87	EL-86- 53-001 EL-86- 57-001	Federal Energy Regulatory Commission (FERC)	Louisiana Public Service Commission Staff	Gulf States Utilities, Southern Co.	Cost/benefit analysis of unit power sales contract.
4/87	U-17282	LA	Louisiana Public Service Commission Staff	Gulf States Utilities	Load forecasting and imprudence damages, River Bend Nuclear unit.
5/87	87-023- E-C	WV	Airco Industrial Gases	Monongahela Power Co.	Interruptible rates.
5/87	87-072- E-G1	WV	West Virginia Energy Users' Group	Monongahela Power Co.	Analyze Mon Power's fuel filing and examine the reasonableness of MP's claims.
5/87	86-524- E-SC	WV	West Virginia Energy Users' Group	Monongahela Power Co.	Economic dispatching of pumped storage hydro unit.
5/87	9781	KY	Kentucky Industrial Energy Consumers	Louisville Gas & Electric Co.	Analysis of impact of 1986 Tax Reform Act.
6/87	3673-U	GA	Georgia Public Service Commission	Georgia Power Co.	Economic prudence, evaluation of Vogtle nuclear unit - load forecasting, planning.
6/87	U-17282	LA	Louisiana Public Service Commission Staff	Gulf States Utilities	Phase-in plan for River Bend Nuclear unit.
7/87	85-10-22	СТ	Connecticut Industrial Energy Consumers	Connecticut Light & Power Co.	Methodology for refunding rate moderation fund.
8/87	3673-U	GA	Georgia Public Service Commission	Georgia Power Co.	Test year sales and revenue forecast.
9/87	R-850220	PA	West Penn Power Industrial Intervenors	West Penn Power Co.	Excess capacity, reliability of generating system.
10/87	R-870651	PA	Duquesne Industrial Intervenors	Duquesne Light Co.	Interruptible rate, cost-of- service, revenue allocation, rate design.

Date	Case	Jurisdict.	Party	Utility	Subject
10/87	I-860025	PA	Pennsylvania Industrial Intervenors		Proposed rules for cogeneration, avoided cost, rate recovery.
10/87	E-015/ GR-87-223	MN	Taconite Intervenors	Minnesota Power & Light Co.	Excess capacity, power and cost-of-service, rate design.
10/87	8702-EI	FL	Occidental Chemical Corp.	Florida Power Corp.	Revenue forecasting, weather normalization.
12/87	87-07-01	СТ	Connecticut Industrial Energy Consumers	Connecticut Light Power Co.	Excess capacity, nuclear plant phase-in.
3/88	10064	KY	Kentucky Industrial Energy Consumers	Louisville Gas & Electric Co.	Revenue forecast, weather normalization rate treatment of cancelled plant.
3/88	87-183-TF	AR	Arkansas Electric Consumers	Arkansas Power & Light Co.	Standby/backup electric rates.
5/88	870171C001	PA	GPU Industrial Intervenors	Metropolitan Edison Co.	Cogeneration deferral mechanism, modification of energy cost recovery (ECR).
6/88	870172C005	5 PA	GPU Industrial Intervenors	Pennsylvania Electric Co.	Cogeneration deferral mechanism, modification of energy cost recovery (ECR).
7/88	88-171- EL-AIR 88-170- EL-AIR Interim Rate	OH Case	Industrial Energy Consumers	Cleveland Electric/ Toledo Edison	Financial analysis/need for interim rate relief.
7/88	Appeal of PSC	19th Judicial Docket U-17282	Louisiana Public Service Commission Circuit Court of Louisiana	Gulf States Utilities	Load forecasting, imprudence damages.
11/88	R-880989	PA	United States Steel	Carnegie Gas	Gas cost-of-service, rate design.
11/88	88-171- EL-AIR 88-170- EL-AIR	ОН	Industrial Energy Consumers	Cleveland Electric/ Toledo Edison. General Rate Case.	Weather normalization of peak loads, excess capacity, regulatory policy.
3/89	870216/283 284/286	PA	Armco Advanced Materials Corp.,	West Penn Power Co.	Calculated avoided capacity, recovery of capacity payments.

Date	Case	Jurisdict.	Party	Utility	Subject
			Allegheny Ludlum Corp.		
8/89	8555	ТХ	Occidental Chemical Corp.	Houston Lighting & Power Co.	Cost-of-service, rate design.
8/89	3840-U	GA	Georgia Public Service Commission	Georgia Power Co.	Revenue forecasting, weather normalization.
9/89	2087	NM	Attorney General of New Mexico	Public Service Co. of New Mexico	Prudence - Palo Verde Nuclear Units 1, 2 and 3, load fore- casting
10/89	2262	NM	New Mexico Industrial Energy Consumers	Public Service Co. of New Mexico	Fuel adjustment clause, off- system sales, cost-of-service, rate design, marginal cost.
11/89	38728	IN	Industrial Consumers for Fair Utility Rates	Indiana Michigan Power Co.	Excess capacity, capacity equalization, jurisdictional cost allocation, rate design, interruptible rates.
1/90	U-17282	LA	Louisiana Public Service Commission Staff	Gulf States Utilities	Jurisdictional cost allocation, O&M expense analysis.
5/90	890366	PA	GPU Industrial Intervenors	Metropolitan Edison Co.	Non-utility generator cost recovery.
6/90	R-901609	PA	Armco Advanced Materials Corp., Allegheny Ludlum Corp.	West Penn Power Co.	Allocation of QF demand charges in the fuel cost, cost-of- service, rate design.
9/90	8278	MD	Maryland Industrial Group	Baltimore Gas & Electric Co.	Cost-of-service, rate design, revenue allocation.
12/90	U-9346 Rebuttal	MI	Association of Businesses Advocating Tariff Equity	Consumers Power Co.	Demand-side management, environmental externalities.
12/90	U-17282 Phase IV	LA	Louisiana Public Service Commission Staff	Gulf States Utilities	Revenue requirements, jurisdictional allocation.
12/90	90-205	ME	Airco Industrial Gases	Central Maine Power Co.	Investigation into interruptible service and rates.

Date	Case	Jurisdict.	Party	Utility	Subject
1/91	90-12-03 Interim	СТ	Connecticut Industrial Energy Consumers	Connecticut Light & Power Co.	Interim rate relief, financial analysis, class revenue allocation.
5/91	90-12-03 Phase II	СТ	Connecticut Industrial Energy Consumers	Connecticut Light & Power Co.	Revenue requirements, cost-of- service, rate design, demand-side management.
8/91	E-7, SUB SUB 487	NC	North Carolina Industrial Energy Consumers	Duke Power Co.	Revenue requirements, cost allocation, rate design, demand- side management.
8/91	8341 Phase I	MD	Westvaco Corp.	Potomac Edison Co.	Cost allocation, rate design, 1990 Clean Air Act Amendments.
8/91	91-372	OH	Armco Steel Co., L.P.	Cincinnati Gas &	Economic analysis of
	EL-UNC			Electric Co.	cogeneration, avoid cost rate.
9/91	P-910511 P-910512	PA	Allegheny Ludlum Corp., Armco Advanced Materials Co., The West Penn Power Industrial Users' Group	West Penn Power Co.	Economic analysis of proposed CWIP Rider for 1990 Clean Air Act Amendments expenditures.
9/91	91-231 -E-NC	WV	West Virginia Energy Users' Group	Monongahela Power Co.	Economic analysis of proposed CWIP Rider for 1990 Clean Air Act Amendments expenditures.
10/91	8341 - Phase II	MD	Westvaco Corp.	Potomac Edison Co.	Economic analysis of proposed CWIP Rider for 1990 Clean Air Act Amendments expenditures.
10/91	U-17282	LA	Louisiana Public Service Commission Staff	Gulf States Utilities	Results of comprehensive management audit.
Note: No was pref	o testimony iled on this.				
11/91	U-17949 Subdocket A	LA	Louisiana Public Service Commission Staff	South Central Bell Telephone Co. and proposed merger with Southern Bell Telephone Co.	Analysis of South Central Bell's restructuring and
12/91	91-410- EL-AIR	OH	Armco Steel Co., Air Products & Chemicals. Inc.	Cincinnati Gas & Electric Co.	Rate design, interruptible rates.

Date	Case	Jurisdict.	Party	Utility	Subject
12/91	P-880286	PA	Armco Advanced Materials Corp., Allegheny Ludlum Corp.	West Penn Power Co.	Evaluation of appropriate avoided capacity costs - QF projects.
1/92	C-913424	PA	Duquesne Interruptible Complainants	Duquesne Light Co.	Industrial interruptible rate.
6/92	92-02-19	СТ	Connecticut Industrial Energy Consumers	Yankee Gas Co.	Rate design.
8/92	2437	NM	New Mexico Industrial Intervenors	Public Service Co. of New Mexico	Cost-of-service.
8/92	R-00922314	PA	GPU Industrial Intervenors	Metropolitan Edison Co.	Cost-of-service, rate design, energy cost rate.
9/92	39314	ID	Industrial Consumers for Fair Utility Rates	Indiana Michigan Power Co.	Cost-of-service, rate design, energy cost rate, rate treatment.
10/92	M-00920312 C-007	PA	The GPU Industrial Intervenors	Pennsylvania Electric Co.	Cost-of-service, rate design, energy cost rate, rate treatment.
12/92	U-17949	LA	Louisiana Public Service Commission	South Central Bell Co.	Management audit.
12/92	R-00922378	PA	Armco Advanced Materials Co. The WPP Industrial Intervenors	West Penn Power Co.	Cost-of-service, rate design, energy cost rate, SO ₂ allowance rate treatment.
1/93	8487	MD	The Maryland Industrial Group	Baltimore Gas & Electric Co.	Electric cost-of-service and rate design, gas rate design (flexible rates).
2/93	E002/GR- 92-1185	MN	North Star Steel Co. Praxair, Inc.	Northern States Power Co.	Interruptible rates.
4/93	EC92 21000 ER92-806- 000 (Rebuttal)	Federal Energy Regulatory Commission	Louisiana Public Service Commission Staff	Gulf States Utilities/Entergy agreement.	Merger of GSU into Entergy System; impact on system
7/93	93-0114- E-C	WV	Airco Gases	Monongahela Power Co.	Interruptible rates.

Date	Case	Jurisdict.	Party	Utility	Subject
8/93	930759-EG	FL	Florida Industrial Power Users' Group	Generic - Electric Utilities	Cost recovery and allocation of DSM costs.
9/93	M-009 30406	PA	Lehigh Valley Power Committee	Pennsylvania Power & Light Co.	Ratemaking treatment of off-system sales revenues.
11/93	346	KY	Kentucky Industrial Utility Customers	Generic - Gas Utilities	Allocation of gas pipeline transition costs - FERC Order 636.
12/93	U-17735	LA	Louisiana Public Service Commission Staff	Cajun Electric Power Cooperative	Nuclear plant prudence, forecasting, excess capacity.
4/94	E-015/ GR-94-001	MN	Large Power Intervenors	Minnesota Power Co.	Cost allocation, rate design, rate phase-in plan.
5/94	U-20178	LA	Louisiana Public Service Commission	Louisiana Power & Light Co.	Analysis of least cost integrated resource plan and demand-side management program.
7/94	R-00942986	PA	Armco, Inc.; West Penn Power Industrial Intervenors	West Penn Power Co.	Cost-of-service, allocation of rate increase, rate design, emission allowance sales, and operations and maintenance expense.
7/94	94-0035- E-42T	WV	West Virginia Energy Users Group	Monongahela Power Co.	Cost-of-service, allocation of rate increase, and rate design.
8/94	EC94 13-000	Federal Energy Regulatory Commission	Louisiana Public Service Commission	Gulf States Utilities/Entergy	Analysis of extended reserve shutdown units and violation of system agreement by Entergy.
9/94	R-00943 081 R-00943 081C0001	PA	Lehigh Valley Power Committee	Pennsylvania Public Utility Commission	Analysis of interruptible rate terms and conditions, availability.
9/94	U-17735	LA	Louisiana Public Service Commission	Cajun Electric Power Cooperative	Evaluation of appropriate avoided cost rate.
9/94	U-19904	LA	Louisiana Public Service Commission	Gulf States Utilities	Revenue requirements.
10/94	5258-U	GA	Georgia Public Service Commission	Southern Bell Telephone & Telegraph Co.	Proposals to address competition in telecommunication markets.

Date	Case	Jurisdict.	Party	Utility	Subject
11/94	EC94-7-000 ER94-898-00	FERC 00	Louisiana Public Service Commission	El Paso Electric and Central and Southwest	Merger economics, transmission equalization hold harmless proposals.
2/95	941-430EG	СО	CF&I Steel, L.P.	Public Service Company of Colorado	Interruptible rates, cost-of-service.
4/95	R-00943271	PA	PP&L Industrial Customer Alliance	Pennsylvania Power & Light Co.	Cost-of-service, allocation of rate increase, rate design, interruptible rates.
6/95	C-00913424 C-00946104	PA	Duquesne Interruptible Complainants	Duquesne Light Co.	Interruptible rates.
8/95	ER95-112 -000	FERC	Louisiana Public Service Commission	Entergy Services, Inc.	Open Access Transmission Tariffs - Wholesale.
10/95	U-21485	LA	Louisiana Public Service Commission	Gulf States Utilities Company	Nuclear decommissioning, revenue requirements, capital structure.
10/95	ER95-1042 -000	FERC	Louisiana Public Service Commission	System Energy Resources, Inc.	Nuclear decommissioning, revenue requirements.
10/95	U-21485	LA	Louisiana Public Service Commission	Gulf States Utilities Co.	Nuclear decommissioning and cost of debt capital, capital structure.
11/95	I-940032	PA	Industrial Energy Consumers of Pennsylvania	State-wide - all utilities	Retail competition issues.
7/96	U-21496	LA	Louisiana Public Service Commission	Central Louisiana Electric Co.	Revenue requirement analysis.
7/96	8725	MD	Maryland Industrial Group	Baltimore Gas & Elec. Co., Potomac Elec. Power Co., Constellation Energy Co.	Ratemaking issues associated with a Merger.
8/96	U-17735	LA	Louisiana Public Service Commission	Cajun Electric Power Cooperative	Revenue requirements.
9/96	U-22092	LA	Louisiana Public Service Commission	Entergy Gulf States, Inc.	Decommissioning, weather normalization, capital structure.

Date	Case	Jurisdict.	Party	Utility	Subject
2/97	R-973877	PA	Philadelphia Area Industrial Energy Users Group	PECO Energy Co.	Competitive restructuring policy issues, stranded cost, transition charges.
6/97	Civil Action No. 94-11474	US Bank- ruptcy Court Middle District of Louisiana	Louisiana Public Service Commission	Cajun Electric Power Cooperative	Confirmation of reorganization plan; analysis of rate paths produced by competing plans.
6/97	R-973953	PA	Philadelphia Area Industrial Energy Users Group	PECO Energy Co.	Retail competition issues, rate unbundling, stranded cost analysis.
6/97	8738	MD	Maryland Industrial Group	Generic	Retail competition issues
7/97	R-973954	PA	PP&L Industrial Customer Alliance	Pennsylvania Power & Light Co.	Retail competition issues, rate unbundling, stranded cost analysis.
10/97	97-204	KY	Alcan Aluminum Corp. Southwire Co.	Big River Electric Corp.	Analysis of cost of service issues - Big Rivers Restructuring Plan
10/97	R-974008	PA	Metropolitan Edison Industrial Users	Metropolitan Edison Co.	Retail competition issues, rate unbundling, stranded cost analysis.
10/97	R-974009	PA	Pennsylvania Electric Industrial Customer	Pennsylvania Electric Co.	Retail competition issues, rate unbundling, stranded cost analysis.
11/97	U-22491	LA	Louisiana Public Service Commission	Entergy Gulf States, Inc.	Decommissioning, weather normalization, capital structure.
11/97	P-971265	PA	Philadelphia Area Industrial Energy Users Group	Enron Energy Services Power, Inc./ PECO Energy	Analysis of Retail Restructuring Proposal.
12/97	R-973981	PA	West Penn Power Industrial Intervenors	West Penn Power Co.	Retail competition issues, rate unbundling, stranded cost analysis
12/97	R-974104	PA	Duquesne Industrial Intervenors	Duquesne Light Co.	Retail competition issues, rate unbundling, stranded cost analysis.
3/98 (Allocated Cost Issu	U-22092 d Stranded les)	LA	Louisiana Public Service Commission	Gulf States Utilities Co.	Retail competition, stranded cost quantification.

Date	Case	Jurisdict.	Party	Utility	Subject
3/98	U-22092		Louisiana Public Service Commission	Gulf States Utilities, Inc.	Stranded cost quantification, restructuring issues.
9/98	U-17735		Louisiana Public Service Commission	Cajun Electric Power Cooperative, Inc.	Revenue requirements analysis, weather normalization.
12/98	8794	MD	Maryland Industrial Group and Millennium Inorganic Chemicals Inc.	Baltimore Gas and Electric Co.	Electric utility restructuring, stranded cost recovery, rate unbundling.
12/98	U-23358	LA	Louisiana Public Service Commission	Entergy Gulf States, Inc.	Nuclear decommissioning, weather normalization, Entergy System Agreement.
5/99 (Cross- 4 Answerir	EC-98- 0-000 ng Testimony)	FERC	Louisiana Public Service Commission	American Electric Power Co. & Central South West Corp.	Merger issues related to market power mitigation proposals.
5/99 (Respons Testimor	98-426 se ny)	KY	Kentucky Industrial Utility Customers, Inc.	Louisville Gas & Electric Co.	Performance based regulation, settlement proposal issues, cross-subsidies between electric. gas services.
6/99	98-0452	WV	West Virginia Energy Users Group	Appalachian Power, Monongahela Power, & Potomac Edison Companies	Electric utility restructuring, stranded cost recovery, rate unbundling.
7/99	99-03-35	СТ	Connecticut Industrial \Energy Consumers	United Illuminating Company	Electric utility restructuring, stranded cost recovery, rate unbundling.
7/99	Adversary Proceeding No. 98-1065	U.S. Bankruptcy Court	Louisiana Public Service Commission	Cajun Electric Power Cooperative	Motion to dissolve preliminary injunction.
7/99	99-03-06	СТ	Connecticut Industrial Energy Consumers	Connecticut Light & Power Co.	Electric utility restructuring, stranded cost recovery, rate unbundling.
10/99	U-24182	LA	Louisiana Public Service Commission	Entergy Gulf States, Inc.	Nuclear decommissioning, weather normalization, Entergy System Agreement.
12/99	U-17735	LA	Louisiana Public Service Commission	Cajun Electric Power Cooperative, Inc.	Ananlysi of Proposed Contract Rates, Market Rates.

Date	Case	Jurisdict.	Party	Utility	Subject
03/00	U-17735	LA	Louisiana Public Service Commission	Cajun Electric Power Cooperative, Inc.	Evaluation of Cooperative Power Contract Elections
03/00	99-1658- EL-ETP	ОН	AK Steel Corporation	Cincinnati Gas & Electric Co.	Electric utility restructuring, stranded cost recovery, rate Unbundling.
08/00	98-0452 E-GI	WVA	West Virginia Energy Users Group	Appalachian Power Co. American Electric Co.	Electric utility restructuring rate unbundling.
08/00	00-1050 E-T 00-1051-E-T	WVA	West Virginia Energy Users Group	Mon Power Co. Potomac Edison Co.	Electric utility restructuring rate unbundling.
10/00	SOAH 473- 00-1020 PUC 2234	ТХ	The Dallas-Fort Worth Hospital Council and The Coalition of Independent Colleges And Universities	TXU, Inc.	Electric utility restructuring rate unbundling.
12/00	U-24993	LA	Louisiana Public Service Commission	Entergy Gulf States, Inc.	Nuclear decommissioning, revenue requirements.
12/00	EL00-66- 000 & ER00- EL95-33-002	LA -2854 2	Louisiana Public Service Commission	Entergy Services Inc.	Inter-Company System Agreement: Modifications for retail competition, interruptible load.
04/01	U-21453, U-20925, U-22092 (Subdocket B Addressing (LA 3) Contested Issue	Louisiana Public Service Commission	Entergy Gulf States, Inc.	Jurisdictional Business Separation - Texas Restructuring Plan
10/01	14000-U	GA	Georgia Public Service Commission Adversary Staff	Georgia Power Co.	Test year revenue forecast.
11/01	U-25687	LA	Louisiana Public Service Commission	Entergy Gulf States, Inc.	Nuclear decommissioning requirements transmission revenues.
11/01	U-25965	LA	Louisiana Public Service Commission	Generic	Independent Transmission Company ("Transco"). RTO rate design.
03/02	001148-EI	FL	South Florida Hospital and Healthcare Assoc.	Florida Power & Light Company	Retail cost of service, rate design, resource planning and demand side management.

Date	Case	Jurisdict.	Party	Utility	Subject
06/02	U-25965	LA	Louisiana Public Service Commission	Entergy Gulf States Entergy Louisiana	RTO Issues
07/02	U-21453	LA	Louisiana Public Service Commission	SWEPCO, AEP	Jurisdictional Business Sep Texas Restructuring Plan.
08/02	U-25888	LA	Louisiana Public Service Commission	Entergy Louisiana, Inc. Entergy Gulf States, Inc.	Modifications to the Inter- Company System Agreement, Production Cost Equalization.
08/02	EL01- 88-000	FERC	Louisiana Public Service Commission	Entergy Services Inc. and the Entergy Operating Companies	Modifications to the Inter- Company System Agreement, Production Cost Equalization.
11/02	02S-315EG	СО	CF&I Steel & Climax Molybdenum Co.	Public Service Co. of Colorado	Fuel Adjustment Clause
01/03	U-17735	LA	Louisiana Public Service Commission	Louisiana Coops	Contract Issues
02/03	02S-594E	СО	Cripple Creek and Victor Gold Mining Co.	Aquila, Inc.	Revenue requirements, purchased power.
04/03	U-26527	LA	Louisiana Public Service Commission	Entergy Gulf States, Inc.	Weather normalization, power purchase expenses, System Agreement expenses.
11/03	ER03-753-00	00 FERC	Louisiana Public Service Commission Staff	Entergy Services, Inc. and the Entergy Operating Companies	Proposed modifications to System Agreement Tariff MSS-4.
11/03	ER03-583-00 ER03-583-00 ER03-583-00	00 FERC 01 02	Louisiana Public Service Commission	Entergy Services, Inc., the Entergy Operating Companies, EWO Market-	Evaluation of Wholesale Purchased Power Contracts.
	ER03-681-00 ER03-681-00	00, D1		Power, Inc.	
	ER03-682-00 ER03-682-00 ER03-682-00	00, 01 02			
12/03	U-27136	LA	Louisiana Public Service Commission	Entergy Louisiana, Inc.	Evaluation of Wholesale Purchased Power Contracts.
01/04	E-01345- 03-0437	AZ	Kroger Company	Arizona Public Service Co.	Revenue allocation rate design.
02/04	00032071	PA	Duquesne Industrial Intervenors	Duquesne Light Company	Provider of last resort issues.

Date	Case	Jurisdict.	Party	Utility	Subject		
03/04	03A-436E	СО	CF&I Steel, LP and Climax Molybedenum	Public Service Company of Colorado	Purchased Power Adjustment Clause.		
04/04	2003-00433 2003-00434	KY	Kentucky Industrial Utility Customers, Inc.	Louisville Gas & Electric Co. Kentucky Utilities Co.	Cost of Service Rate Design		
0-6/04	03S-539E	CO	Cripple Creek, Victor Gold Mining Co., Goodrich Corp., Holcim (U.S.,), Inc., and The Trane Co.	Aquila, Inc.	Cost of Service, Rate Design Interruptible Rates		
06/04	R-00049255	PA	PP&L Industrial Customer Alliance PPLICA	PPL Electric Utilities Corp.	Cost of service, rate design, tariff issues and transmission service charge.		
10/04	04S-164E	СО	CF&I Steel Company, Climax Mines	Public Service Company of Colorado	Cost of service, rate design, Interruptible Rates.		
03/05	Case No. 2004-00426 Case No. 2004-00421	KY	Kentucky Industrial Utility Customers, Inc.	Kentucky Utilities Louisville Gas & Electric Co.	Environmental cost recovery.		
06/05	050045-EI	FL	South Florida Hospital and Healthcare Assoc.	Florida Power & Light Company	Retail cost of service, rate design		
07/05	U-28155	LA	Louisiana Public Service Commission Staff	Entergy Louisiana, Inc. Entergy Gulf States, Inc.	Independent Coordinator of Transmission – Cost/Benefit		
09/05	Case Nos. 05-0402-E-C 05-0750-E-P	WVA CN PC	West Virginia Energy Users Group	Mon Power Co. Potomac Edison Co.	Environmental cost recovery, Securitization, Financing Order		
01/06	2005-00341	KY	Kentucky Industrial Utility Customers, Inc.	Kentucky Power Company	Cost of service, rate design, transmission expenses. Congestion		
03/06	U-22092	LA	Louisiana Public Service Commission Staff	Entergy Gulf States, Inc.	Separation of EGSI into Texas and Louisiana Companies.		
04/06	U-25116	LA	Louisiana Public Service Commission Staff	Entergy Louisiana, Inc.	Transmission Prudence Investigation		
06/06	R-00061346 C0001-0005	PA	Duquesne Industrial Intervenors & IECPA	Duquesne Light Co.	Cost of Service, Rate Design, Transmission Service Charge, Tariff Issues		
06/06	R-00061366 R-00061367 P-00062213		Met-Ed Industrial Energy Users Group and Penelec Industrial Customer	Metropolitan Edison Co. Pennsylvania Electric Co.	Generation Rate Cap, Transmission Service Charge, Cost of Service, Rate Design, Tariff Issues		

Date	Case	Jurisdict.	Party	Utility	Subject
	P-00062214		Alliance		
07/06	U-22092 Sub-J	LA	Louisiana Public Service Commission Staff	Entergy Gulf States, Inc.	Separation of EGSI into Texas and Louisiana Companies.
07/06	Case No. 2006-00130 Case No. 2006-00129	KY	Kentucky Industrial Utility Customers, Inc.	Kentucky Utilities Louisville Gas & Electric Co.	Environmental cost recovery.
08/06	Case No. PUE-2006-	VA 00065	Old Dominion Committee For Fair Utility Rates	Appalachian Power Co.	Cost Allocation, Allocation of Rev Incr, Off-System Sales margin rate treatment
09/06	E-01345A- 05-0816	AZ	Kroger Company	Arizona Public Service Co.	Revenue alllocation, cost of service, rate design.
11/06	Doc. No. 97-01-15R	CT E02	Connecticut Industrial Energy Consumers	Connecticut Light & Power United Illuminating	Rate unbundling issues.
01/07	Case No. 06-0960-E-	WV 42T	West Virginia Energy Users Group	Mon Power Co. Potomac Edison Co.	Retail Cost of Service Revenue apportionment
03/07	U-29764	LA	Louisiana Public Service Commission Staff	Entergy Gulf States, Inc. Entergy Louisiana, LLC	Implementation of FERC Decision Jurisdictional & Rate Class Allocation
05/07	Case No. 07-63-EL-UI	OH NC	Ohio Energy Group	Ohio Power, Columbus Southern Power	Environmental Surcharge Rate Design
05/07	R-00049255 Remand	6 PA	PP&L Industrial Customer Alliance PPLICA	PPL Electric Utilities Corp.	Cost of service, rate design, tariff issues and transmission service charge.
06/07	R-00072155	i PA	PP&L Industrial Customer Alliance PPLICA	PPL Electric Utilities Corp.	Cost of service, rate design, tariff issues.
07/07	Doc. No. 07F-037E	CO	Gateway Canyons LLC	Grand Valley Power Coop.	Distribution Line Cost Allocation
09/07	Doc. No. 05-UR-103	WI	Wisconsin Industrial Energy Group, Inc.	Wisconsin Electric Power Co	 Cost of Service, rate design, tariff Issues, Interruptible rates.
11/07	ER07-682-0	00 FERC	Louisiana Public Service Commission Staff	Entergy Services, Inc. and the Entergy Operating Companies	Proposed modifications to System Agreement Schedule MSS-3. Cost functionalization issues.
1/08	Doc. No. 20000-277-E	WY ER-07	Cimarex Energy Company	Rocky Mountain Power (PacifiCorp)	Vintage Pricing, Marginal Cost Pricing Projected Test Year
1/08	Case No. 07-551	OH	Ohio Energy Group	Ohio Edison, Toledo Edison Cleveland Electric Illuminating	Class Cost of Service, Rate Restructuring, Apportionment of Revenue Increase to

Date	Case	Jurisdict.	Party	Utility	Subject
2/08	ER07-956	FERC	Louisiana Public Service Commission Staff	Entergy Services, Inc. and the Entergy Operating Companies	Rate Schedules Entergy's Compliance Filing System Agreement Bandwidth Calculations.
2/08	Doc No. P-00072342	PA	West Penn Power Industrial Intervenors	West Penn Power Co.	Default Service Plan issues.
3/08	Doc No. E-01933A-0	AZ 5-0650	Kroger Company	Tucson Electric Power Co.	Cost of Service, Rate Design
05/08	08-0278 E-GI	WV	West Virginia Energy Users Group	Appalachian Power Co. American Electric Power Co.	Expanded Net Energy Cost "ENEC" Analysis.
6/08	Case No. 08-124-EL-A	OH ATA	Ohio Energy Group	Ohio Edison, Toledo Edison Cleveland Electric Illuminating	Recovery of Deferred Fuel Cost
7/08	Docket No.	UT	Kroger Company	Rocky Mountain Power Co.	Cost of Service, Rate Design
08/08	07-035-93 Doc. No. 6680-UR-11	WI 16	Wisconsin Industrial Energy Group, Inc.	Wisconsin Power and Light Co.	Cost of Service, rate design, tariff Issues, Interruptible rates.
09/08	Doc. No. 6690-UR-11	WI 19	Wisconsin Industrial Energy Group, Inc.	Wisconsin Public Service Co.	Cost of Service, rate design, tariff Issues, Interruptible rates.
09/08	Case No. 08-936-EL-	OH SSO	Ohio Energy Group	Ohio Edison, Toledo Edison Cleveland Electric Illuminating	Provider of Last Resort Competitive Solicitation
09/08	Case No. 08-935-EL-	OH SSO	Ohio Energy Group	Ohio Edison, Toledo Edison Cleveland Electric Illuminating	Provider of Last Resort Rate Plan
09/08	Case No. 08-917-EL- 08-918-EL-	OH SSO SSO	Ohio Energy Group	Ohio Power Company Columbus Southern Power Co	Provider of Last Resort Rate D. Plan
10/08	2008-00251 2008-00252	KY	Kentucky Industrial Utility Customers, Inc.	Louisville Gas & Electric Co. Kentucky Utilities Co.	Cost of Service, Rate Design
11/08	08-1511 E-GI	WV	West Virginia Energy Users Group	Mon Power Co. Potomac Edison Co.	Expanded Net Energy Cost "ENEC" Analysis.
11/08	M-2008- 2036188, M- 2008-20361	PA - 97	Met-Ed Industrial Energy Users Group and Penelec Industrial Customer Alliance	Metropolitan Edison Co. Pennsylvania Electric Co.	Transmission Service Charge
01/09	ER08-1056	FERC	Louisiana Public Service Commission	Entergy Services, Inc. and the Entergy Operating Companies	Entergy's Compliance Filing System Agreement Bandwidth Calculations.

Date	Case	Jurisdict.	Party	Utility	Subject
01/09	E-01345A- 08-0172	AZ	Kroger Company	Arizona Public Service Co.	Cost of Service, Rate Design
02/09	2008-00409	KY	Kentucky Industrial Utility Customers, Inc.	East Kentucky Power Cooperative, Inc.	Cost of Service, Rate Design
5/09	PUE-2009 -00018	VA	VA Committee For Fair Utility Rates	Dominion Virginia Power Company	Transmission Cost Recovery Rider
5/09	09-0177- E-GI	WV	West Virginia Energy Users Group	Appalachian Power Company	Expanded Net Energy Cost "ENEC" Analysis
6/09	PUE-2009 -00016	VA	VA Committee For Fair Utility Rates	Dominion Virginia Power Company	Fuel Cost Recovery Rider
6/09	PUE-2009 -00038	VA	Old Dominion Committee For Fair Utility Rates	Appalachian Power Company	Fuel Cost Recovery Rider
7/09	080677-EI	FL	South Florida Hospital and Healthcare Assoc.	Florida Power & Light Company	Retail cost of service, rate design
8/09	U-20925 (RRF 2004)	LA	Louisiana Public Service Commission Staff	Entergy Louisiana LLC	Interruptible Rate Refund Settlement
9/09	09AL-299E	СО	CF&I Steel Company Climax Molybdenum	Public Service Company of Colorado	Energy Cost Rate issues
9/09	Doc. No. 05-UR-104	WI	Wisconsin Industrial Energy Group, Inc.	Wisconsin Electric Power Co.	Cost of Service, rate design, tariff Issues, Interruptible rates.
9/09	Doc. No. 6680-UR-11	WI 7	Wisconsin Industrial Energy Group, Inc.	Wisconsin Power and Light Co.	Cost of Service, rate design, tariff Issues, Interruptible rates.
10/09	Docket No. 09-035-23	UT	Kroger Company	Rocky Mountain Power Co.	Cost of Service, Allocation of Rev Increase
10/09	09AL-299E	CO	CF&I Steel Company Climax Molybdenum	Public Service Company of Colorado	Cost of Service, Rate Design
11/09	PUE-2009 -00019	VA	VA Committee For Fair Utility Rates	Dominion Virginia Power Company	Cost of Service, Rate Design
11/09	09-1485 E-P	WV	West Virginia Energy Users Group	Mon Power Co. Potomac Edison Co.	Expanded Net Energy Cost "ENEC" Analysis.
12/09	Case No. 09-906-EL-SS	OH SO	Ohio Energy Group	Ohio Edison, Toledo Edison Cleveland Electric Illuminating	Provider of Last Resort Rate Plan

Date	Case	Jurisdict.	Party	Utility	Subject
12/09	ER09-1224	FERC	Louisiana Public Service Commission	Entergy Services, Inc. and the Entergy Operating Companies	Entergy's Compliance Filing System Agreement Bandwidth Calculations.
12/09	Case No. PUE-2009-0	VA 00030	Old Dominion Committee For Fair Utility Rates	Appalachian Power Co.	Cost Allocation, Allocation of Rev Increase, Rate Design
2/10	Docket No. 09-035-23	UT	Kroger Company	Rocky Mountain Power Co.	Rate Design
3/10	Case No. 09-1352-E-4	WV 42T	West Virginia Energy Users Group	Mon Power Co. Potomac Edison Co.	Retail Cost of Service Revenue apportionment
3/10	E015/ GR-09-1151	MN 1	Large Power Intervenors	Minnesota Power Co.	Cost of Service, rate design
4/10	EL09-61 FE	ERC	Louisiana Public Service Service Commission	Entergy Services, Inc. and the Entergy Operating Companies	System Agreement Issues Related to off-system sales
4/10	2009-00459	KY	Kentucky Industrial Utility Customers, Inc.	Kentucky Power Company	Cost of service, rate design, transmission expenses.
4/10	2009-00548 2009-00549	KY	Kentucky Industrial Utility Customers, Inc.	Louisville Gas & Electric Co. Kentucky Utilities Co.	Cost of Service, Rate Design
7/10	R-2010- 2161575	PA	Philadelphia Area Industrial Energy Users Group	PECO Energy Company	Cost of Service, Rate Design
09/10	2010-00167	KY	Kentucky Industrial Utility Customers, Inc.	East Kentucky Power Cooperative, Inc.	Cost of Service, Rate Design
09/10	10M-245E	CO	CF&I Steel Company Climax Molybdenum	Public Service Company of Colorado	Economic Impact of Clean Air Act
11/10	10-0699- E-42T	WV	West Virginia Energy Users Group	Appalachian Power Company	Cost of Service, Rate Design, Transmission Rider
11/10	Doc. No. 4220-UR-116	WI	Wisconsin Industrial Energy Group, Inc.	Northern States Power Co. Wisconsin	Cost of Service, rate design
12/10	10A-554EG	CO	CF&I Steel Company Climax Molybdenum	Public Service Company of Colorado	Demand Side Management Issues
12/10	10-2586-EL- SSO	OH	Ohio Energy Group	Duke Energy Ohio	Provider of Last Resort Rate Plan Electric Security Plan
3/11	20000-384- ER-10	WY	Wyoming Industrial Energy Consumers	Rocky Mountain Power Wyoming	Electric Cost of Service, Revenue Apportionment, Rate Design

Date	Case	Jurisdict.	Party	Utility S	ubject
5/11	2011-00036	KY	Kentucky Industrial Utility Customers, Inc.	Big Rivers Electric Corporation	Cost of Service, Rate Design
6/11	Docket No. 10-035-124	UT	Kroger Company	Rocky Mountain Power Co.	Class Cost of Service
6/11	PUE-2011 -00045	VA	VA Committee For Fair Utility Rates	Dominion Virginia Power Company	Fuel Cost Recovery Rider
07/11	U-29764	LA	Louisiana Public Service Commission Staff	Entergy Gulf States, Inc. Entergy Louisiana, LLC	Entergy System Agreement - Successor Agreement, Revisions, RTO Day 2 Market Issues
07/11	Case Nos. 11-346-EL-SS 11-348-EL-SS	0H 50 50	Ohio Energy Group	Ohio Power Company Columbus Southern Power Co.	Electric Security Rate Plan, Provider of Last Resort Issues
08/11	PUE-2011- 00034	VA	Old Dominion Committee For Fair Utility Rates	Appalachian Power Co.	Cost Allocation, Rate Recovery of RPS Costs
09/11	2011-00161 2011-00162	KY	Kentucky Industrial Utility Consumers	Louisville Gas & Electric Co. Kentucky Utilities Company	Environmental Cost Recovery
09/11	Case Nos. 11-346-EL-SS 11-348-EL-SS	0H 50 50	Ohio Energy Group	Ohio Power Company Columbus Southern Power Co.	Electric Security Rate Plan, Stipulation Support Testimony
10/11	11-0452 E-P-T	WV	West Virginia Energy Users Group	Mon Power Co. Potomac Edison Co.	Energy Efficiency/Demand Reduction Cost Recovery
11/11	11-1274 E-P	WV	West Virginia Energy Users Group	Mon Power Co. Potomac Edison Co.	Expanded Net Energy Cost "ENEC" Analysis.
11/11	E-01345A- 11-0224	AZ	Kroger Company	Arizona Public Service Co.	Decoupling
12/11	E-01345A-	AZ	Kroger Company	Arizona Public Service Co.	Cost of Service, Rate Design
3/12	Case No. 2011-00401	KY	Kentucky Industrial Utility Consumers	Kentucky Power Company	Environmental Cost Recovery
4/12	2011-00036 Rehearing C	KY ase	Kentucky Industrial Utility Customers, Inc.	Big Rivers Electric Corporation	Cost of Service, Rate Design
5/12	2011-346 2011-348	ОН	Ohio Energy Group	Ohio Power Company	Electric Security Rate Plan Interruptible Rate Issues
6/12	PUE-2012 -00051	VA	Old Dominion Committee For Fair Utility Rates	Appalachian Power Company	Fuel Cost Recovery Rider

Date	Case	Jurisdict.	Party	Utility	Subject
6/12	12-00012 12-00026	TN	Eastman Chemical Co. Air Products and Chemicals, Inc.	Kingsport Power Company	Demand Response Programs
6/12	Docket No. 11-035-200	UT	Kroger Company	Rocky Mountain Power Co.	Class Cost of Service
6/12	12-0275- E-GI-EE	WV	West Virginia Energy Users Group	Appalachian Power Company	Energy Efficiency Rider
6/12	12-0399- E-P	WV	West Virginia Energy Users Group	Appalachian Power Company	Expanded Net Energy Cost ("ENEC")
7/12	120015-EI	FL	South Florida Hospital and Healthcare Assoc.	Florida Power & Light Company	Retail cost of service, rate design
7/12	2011-00063	KY	Kentucky Industrial Utility Customers, Inc.	Big Rivers Electric Corporation	Environmental Cost Recovery
8/12	Case No. 2012-00226	KY	Kentucky Industrial Utility Consumers	Kentucky Power Company	Real Time Pricing Tariff
9/12	ER12-1384	FERC	Louisiana Public Service Commission	Entergy Services, Inc.	Entergy System Agreement, Cancelled Plant Cost Treatment
9/12	2012-00221 2012-00222	KY	Kentucky Industrial Utility Customers, Inc.	Louisville Gas & Electric Co. Kentucky Utilities Co.	Cost of Service, Rate Design
11/12	12-1238 E-GI	WV	West Virginia Energy Users Group	Mon Power Co. Potomac Edison Co.	Expanded Net Energy Cost Recovery Issues
12/12	U-29764	LA	Louisiana Public Service Commission Staff	Entergy Gulf States Louisiana	Purchased Power Contracts
12/12	EL09-61 FE	ERC	Louisiana Public Service Service Commission	Entergy Services, Inc. and the Entergy Operating Companies	System Agreement Issues Related to off-system sales Damages Phase
12/12	E-01933A- 12-0291	AZ	Kroger Company	Tucson Electric Power Co.	Decoupling
1/13	12-1188 E-PC	WV	West Virginia Energy Users Group	Appalachian Power Company	Securitization of ENEC Costs
1/13	E-01933A- 12-0291	AZ	Kroger Company	Tucson Electric Power Co.	Cost of Service, Rate Design
4/13	12-1571 E-PC	WV	West Virginia Energy Users Group	Mon Power Co. Potomac Edison Co.	Generation Resource Transition Plan Issues

Date	Case	Jurisdict.	Party	Utility S	ubject
4/13	PUE-2012 -00141	VA	Old Dominion Committee For Fair Utility Rates	Appalachian Power Company	Generation Asset Transfer Issues
6/13	12-1655 E-PC	WV	West Virginia Energy Users Group	Appalachian Power Company	Generation Asset Transfer Issues
06/13	U-32675	LA	Louisiana Public Service Commission Staff	Entergy Gulf States, Inc. Entergy Louisiana, LLC	MISO Joint Implementation Plan Issues
7/13	130040-EI	FL	WCF Health Utility Alliance	Tampa Electric Company	Cost of Service, Rate Design
7/13	13-0467- E-P	WV	West Virginia Energy Users Group	Appalachian Power Company	Expanded Net Energy Cost ("ENEC")
7/13	13-0462- E-P	WV	West Virginia Energy Users Group	Appalachian Power Company	Energy Efficiency Issues
8/13	13-0557- E-P	WV	West Virginia Energy Users Group	Appalachian Power Company	Right-of-Way, Vegetation Control Cost Recovery Surcharge Issues
10/13	2013-00199	KY	Kentucky Industrial Utility Customers, Inc.	Big Rivers Electric Corporation	Ratemaking Policy Associated with Rural Economic Reserve Funds
10/13	13-0764- E-CN	WV	West Virginia Energy Users Group	Appalachian Power Company	Rate Recovery Issues – Clinch River Gas Conversion Project
11/13	R-2013- 2372129	PA	United States Steel Corporation	Duquesne Light Company	Cost of Service, Rate Design
11/13	13A-0686EG	CO	CF&I Steel Company Climax Molybdenum	Public Service Company of Colorado	Demand Side Management Issues
11/13	13-1064- E-P	WV	West Virginia Energy Users Group	Mon Power Co. Potomac Edison Co.	Right-of-Way, Vegetation Control Cost Recovery Surcharge Issues
4/14	ER-432-002	FERC	Louisiana Public Service Service Commission	Entergy Services, Inc. and the Entergy Operating Companies	System Agreement Issues Related to Union Pacific Railroad Litigation Settlement
5/14	2013-2385 2013-2386	ОН	Ohio Energy Group	Ohio Power Company	Electric Security Rate Plan Interruptible Rate Issues
5/14	14-0344- E-P	WV	West Virginia Energy Users Group	Appalachian Power Company	Expanded Net Energy Cost ("ENEC")
5/14	14-0345- E-PC	WV	West Virginia Energy Users Group	Appalachian Power Company	Energy Efficiency Issues
5/14	Docket No. 13-035-184	UT	Kroger Company	Rocky Mountain Power Co.	Class Cost of Service

Date	Case	Jurisdict.	Party	Utility S	ubject
7/14	PUE-2014 -00007	VA	Old Dominion Committee For Fair Utility Rates	Appalachian Power Company	Renewable Portfolio Standard Rider Issues
7/14	ER13-2483	FERC	Bear Island Paper WB LLC	Old Dominion Electric Cooperative	Cost of Service, Rate Design Issues
8/14	14-0546- E-PC	WV	West Virginia Energy Users Group	Appalachian Power Company	Rate Recovery Issues – Mitchell Asset Transfer
8/14	PUE-2014 -00026	VA	Old Dominion Committee	Appalachian Power Company	Biennial Review Case - Cost of Service Issues
9/14	14-841-EL- SSO	OH	Ohio Energy Group	Duke Energy Ohio	Electric Security Rate Plan Standard Service Offer
10/14	14-0702- E-42T	WV	West Virginia Energy Users Group	Mon Power Co. Potomac Edison Co.	Cost of Service, Rate Design
11/14	14-1550- E-P	WV	West Virginia Energy Users Group	Mon Power Co. Potomac Edison Co.	Expanded Net Energy Cost ("ENEC")

J. KENNEDY AND ASSOCIATES, INC.

BEFORE THE PUBLIC UTILITIES COMMISSION OF THE STATE OF SOUTH DAKOTA

In the Matter of the Application of Black Hills Power, Inc. for Authority to Increase its Electric Rates Docket No. EL14-026

EXHIBIT_(SJB-2)

OF

STEPHEN J. BARON

ON BEHALF OF THE BLACK HILLS INDUSTRIAL INTERVENORS

J. KENNEDY AND ASSOCIATES, INC. ROSWELL, GEORGIA

December 2014

Independent Statistics & Analysis U.S. Energy Information Administration

April 2014

Levelized Cost and Levelized Avoided Cost of New Generation Resources in the Annual Energy Outlook 2014

This paper presents average values of levelized costs for generating technologies that are brought online in 2019¹ as represented in the National Energy Modeling System (NEMS) for the *Annual Energy Outlook 2014* (AEO2014) Reference case.² Both national values and the minimum and maximum values across the 22 U.S. regions of the NEMS electricity market module are presented.

Levelized cost of electricity (LCOE) is often cited as a convenient summary measure of the overall competiveness of different generating technologies. It represents the per-kilowatthour cost (in real dollars) of building and operating a generating plant over an assumed financial life and duty cycle. Key inputs to calculating LCOE include capital costs, fuel costs, fixed and variable operations and maintenance (O&M) costs, financing costs, and an assumed utilization rate for each plant type.³ The importance of the factors varies among the technologies. For technologies such as solar and wind generation that have no fuel costs and relatively small variable O&M costs, LCOE changes in rough proportion to the estimated capital cost of generation capacity. For technologies with significant fuel cost, both fuel cost and overnight cost estimates significantly affect LCOE. The availability of various incentives, including state or federal tax credits, can also impact the calculation of LCOE. As with any projection, there is uncertainty about all of these factors and their values can vary regionally and across time as technologies evolve and fuel prices change.

It is important to note that, while LCOE is a convenient summary measure of the overall competiveness of different generating technologies, actual plant investment decisions are affected by the specific technological and regional characteristics of a project, which involve numerous other factors. The *projected utilization rate*, which depends on the load shape and the existing resource mix in an area where additional capacity is needed, is one such factor. The *existing resource mix* in a region can directly impact the economic viability of a new investment through its effect on the economics surrounding the displacement of existing resources. For example, a wind resource that would primarily displace existing natural gas generation will usually have a different economic value than one that would displace existing coal generation.

A related factor is the *capacity value*, which depends on both the existing capacity mix and load characteristics in a region. Since load must be balanced on a continuous basis, units whose output can be varied to follow demand (dispatchable technologies) generally have more value to a system than less

¹ 2019 is shown because the long lead time needed for some technologies means that the plant could not be brought online prior to 2019 unless it was already under construction.

² The full report is available at <u>http://www.eia.gov/forecasts/aeo/index.cfm</u>.

³ The specific assumptions for each of these factors are given in the *Assumptions to the Annual Energy Outlook*, available at <u>http://www.eia.doe.gov/oiaf/aeo/index.html</u>.

flexible units (non-dispatchable technologies), or those whose operation is tied to the availability of an intermittent resource. The LCOE values for dispatchable and nondispatchable technologies are listed separately in the tables, because caution should be used when comparing them to one another.

Since projected utilization rates, the existing resource mix, and capacity values can all vary dramatically across regions where new generation capacity may be needed, the direct comparison of LCOE across technologies is often problematic and can be misleading as a method to assess the economic competitiveness of various generation alternatives. Conceptually, a better assessment of economic competitiveness can be gained through consideration of avoided cost, a measure of what it would cost the grid to generate the electricity that is otherwise displaced by a new generation project, as well as its levelized cost. Avoided cost, which provides a proxy measure for the annual economic value of a candidate project, may be summed over its financial life and converted to a stream of equal annual payments. The avoided cost is divided by average annual output of the project to develop the "levelized" avoided cost of electricity (LACE) for the project.⁴ The LACE value may then be compared with the LCOE value for the candidate project to provide an indication of whether or not the project's value exceeds its cost. If multiple technologies are available to meet load, comparisons of each project's LACE to its LCOE may be used to determine which project provides the best net economic value. Estimating avoided costs is more complex than estimating levelized costs because it requires information about how the system would have operated without the option under evaluation. In this discussion, the calculation of avoided costs is based on the marginal value of energy and capacity that would result from adding a unit of a given technology and represents the potential revenue available to the project owner from the sale of energy and generating capacity. While the economic decisions for capacity additions in EIA's long-term projections use neither LACE nor LCOE concepts, the LACE and net value estimates presented in this report are generally more representative of the factors contributing to the projections than looking at LCOE alone. However, both the LACE and LCOE estimates are simplifications of modeled decisions, and may not fully capture all decision factors or match modeled results.

Policy-related factors, such as environmental regulations and investment or production tax credits for specified generation sources, can also impact investment decisions. Finally, although levelized cost calculations are generally made using an assumed set of capital and operating costs, the inherent uncertainty about future fuel prices and future policies may cause plant owners or investors who finance plants to place a value on *portfolio diversification*. While EIA considers many of these factors in its analysis of technology choice in the electricity sector, these concepts are not included in LCOE or LACE calculations.

The LCOE values shown for each utility-scale generation technology in Table 1 and Table 2 in this discussion are calculated based on a 30-year cost recovery period, using a real after tax weighted average cost of capital (WACC) of 6.5%. In reality, the cost recovery period and cost of capital can vary by technology and project type. In the AEO2014 reference case, 3 percentage points are added to the cost of capital when evaluating investments in greenhouse gas (GHG) intensive technologies like coal-

2

⁴ Further discussion of the levelized avoided cost concept and its use in assessing economic competitiveness can be found in this article: <u>http://www.eia.gov/renewable/workshop/gencosts/</u>.

fired power and coal-to-liquids (CTL) plants without carbon control and sequestration (CCS). In LCOE terms, the impact of the cost of capital adder is similar to that of an emissions fee of \$15 per metric ton of carbon dioxide (CO₂) when investing in a new coal plant without CCS, which is representative of the costs used by utilities and regulators in their resource planning.⁵ The adjustment should not be seen as an increase in the actual cost of financing, but rather as representing the implicit hurdle being added to GHG-intensive projects to account for the possibility that they may eventually have to purchase allowances or invest in other GHG-emission-reducing projects to offset their emissions. As a result, the LCOE values for coal-fired plants without CCS are higher than would otherwise be expected.

The levelized capital component reflects costs calculated using tax depreciation schedules consistent with permanent tax law, which vary by technology. Although the capital and operating components do not incorporate the production or investment tax credits available to some technologies, a subsidy column is included in Table 1 to reflect the estimated value of these tax credits, where available, in 2019. In the reference case, tax credits are assumed to expire based on current laws and regulations.

Some technologies, notably solar photovoltaic (PV), are used in both utility-scale generating plants and distributed end-use residential and commercial applications. As noted above, the LCOE (and also subsequent LACE) calculations presented in the tables apply only to the utility-scale use of those technologies.

In Table 1 and Table 2, the LCOE for each technology is evaluated based on the capacity factor indicated, which generally corresponds to the high end of its likely utilization range. Simple combustion turbines (conventional or advanced technology) that are typically used for peak load duty cycles are evaluated at a 30% capacity factor. The duty cycle for intermittent renewable resources, wind and solar, is not operator controlled, but dependent on the weather or solar cycle (that is, sunrise/sunset) and so will not necessarily correspond to operator dispatched duty cycles. As a result, their LCOE values are not directly comparable to those for other technologies (even where the average annual capacity factor may be similar) and therefore are shown in separate sections within each of the tables. The capacity factors shown for solar, wind, and hydroelectric resources in Table 1 are simple averages of the capacity factor for the marginal site in each region. These capacity factors can vary significantly by region and can represent resources that may or may not get built in EIA capacity projections. They should not be interpreted as representing EIA's estimate or projection of the gross generating potential of resources actually projected to be built.

As mentioned above, the LCOE values shown in Table 1 are national averages. However, as shown in Table 2, there is significant regional variation in LCOE values based on local labor markets and the cost and availability of fuel or energy resources such as windy sites. For example, LCOE for incremental wind capacity coming online in 2019 ranges from \$71.3/MWh in the region with the best available resources in 2019 to \$90.3/MWh in regions where LCOE values are highest due to lower quality wind resources and/or higher capital costs for the best sites that can accommodate additional wind capacity. Costs shown for wind may include additional costs associated with transmission upgrades needed to access

⁵ Morgan Stanley, "Leading Wall Street Banks Establish The Carbon Principles" (Press Release, February 4, 2008), www.morganstanley.com/about/press/articles/6017.html.

remote resources, as well as other factors that markets may or may not internalize into the market price for wind power.

As previously indicated, LACE provides an estimate of the cost of generation and capacity resources displaced by a marginal unit of new capacity of a particular type, thus providing an estimate of the value of building such new capacity. This is especially important to consider for intermittent resources, such as wind or solar, that have substantially different duty cycles than the baseload, intermediate and peaking duty cycles of conventional generators. Table 3 provides the range of LACE estimates for different capacity types. The LACE estimates in this table have been calculated assuming the same maximum capacity factor as in the LCOE. A subset of the full list of technologies in Table 1 is shown because the LACE value for similar technologies with the same capacity factor would have the same value (for example, conventional and advanced combined cycle plants will have the same avoided cost of electricity). Values are not shown for combustion turbines, because turbines are more often built for their capacity value to meet a reserve margin rather than to meet generation requirements and avoid energy costs.

When the LACE of a particular technology exceeds its LCOE at a given time and place, that technology would generally be economically attractive to build. While the build decisions in the real world, and as modeled in the AEO, are somewhat more complex than a simple LACE to LCOE comparison, including such factors as policy and non-economic drivers, the net economic value (LACE minus LCOE, including subsidy, for a given technology, region and year) shown in Table 4 provides a reasonable point of comparison of first-order economic competitiveness among a wider variety of technologies than is possible using either the LCOE or LACE tables individually. In Table 4, a negative difference indicates that the cost of the marginal new unit of capacity exceeds its value to the system, as measured by LACE; a positive difference indicates that the marginal new unit brings in value in excess of its cost by displacing more expensive generation and capacity options. The range of differences columns represent the variation in the calculation of the difference for each region. For example, in the region where the advanced combined cycle appears most economic in 2019, the LCOE is \$61.5/MWh and the LACE is \$62.3/MWh, resulting in a net difference of \$0.8/MWh. This range of differences is not based on the difference between the minimum values shown in Table 2 and Table 3, but represents the lower and upper bound resulting from the LACE minus LCOE calculations for each of the 22 regions.

The average net differences shown in Table 4 are for plants coming online in 2019, consistent with Tables 1-3, as well as for plants that could come online in 2040, to show how the relative competitiveness changes over the projection period. Additional tables showing the LCOE cost components and regional variation in LCOE and LACE for 2040 can be found in the Appendix. In 2019, the average net differences are negative for all technologies except geothermal, reflecting the fact that on average, new capacity is not needed in 2019. However, the upper value for both combined cycle technologies is at or above zero, indicating competiveness in a particular region. Geothermal cost data is site-specific, and the relatively large positive value for that technology results because there may be individual sites that are very cost competitive, leading to new builds, but there is a limited amount of capacity available at that cost. By 2040, the LCOE values for most technologies are lower, typically reflecting declining capital costs over time. All technologies receive cost reductions from learning over time, with newer, advanced technologies receiving larger cost reductions, while conventional

technologies will see smaller learning effects. Capital costs are also adjusted over time based on commodity prices, through a factor based on the metals and metal products index, which declines in real terms over the projection. However, the LCOE for natural gas-fired technologies rises over time, because rising fuel costs more than offset any decline in capital costs. The LACE values for all technologies increase by 2040 relative to 2019, reflecting higher energy costs and a greater value for new capacity. As a result, the difference between LACE and LCOE for almost all technologies gets closer to a net positive value in 2040, and there are several technologies (advanced combined cycle, wind, solar PV, hydro and geothermal) that have multiple regions with positive net differences.

		U.S. Average LCOE (2012 \$/MWh) for Plants Entering Service in 2019						
				Variable				
		Levelized		O&M		Total		Total LCOE
	Capacity	Capital	Fixed	(including	Transmission	System		including
Plant Type	Factor (%)	Cost	0&M	fuel)	Investment	LCOE	Subsidy ¹	Subsidy
Dispatchable Technologies								
Conventional Coal	85	60.0	4.2	30.3	1.2	95.6		
Integrated Coal-Gasification								
Combined Cycle (IGCC)	85	76.1	6.9	31.7	1.2	115.9		
IGCC with CCS	85	97.8	9.8	38.6	1.2	147.4		
Natural Gas-fired								
Conventional combined Cycle	87	14.3	1.7	49.1	1.2	66.3		
Advanced Combined Cycle	87	15.7	2.0	45.5	1.2	64.4		
Advanced CC with CCS	87	30.3	4.2	55.6	1.2	91.3		
Conventional Combustion								
Turbine	<mark>30</mark>	<mark>40.2</mark>	<mark>2.8</mark>	<mark>82.0</mark>	<mark>3.4</mark>	<mark>128.4</mark>		
Advanced Combustion Turbine	30	27.3	2.7	70.3	3.4	103.8		
Advanced Nuclear	90	71.4	11.8	11.8	1.1	96.1	-10.0	86.1
Geothermal	92	34.2	12.2	0.0	1.4	47.9	-3.4	44.5
Biomass	83	47.4	14.5	39.5	1.2	102.6		
Non-Dispatchable Technologies								
Wind	35	64.1	13.0	0.0	3.2	80.3		
Wind – Offshore	37	175.4	22.8	0.0	5.8	204.1		
Solar PV ²	25	114.5	11.4	0.0	4.1	130.0	-11.5	118.6
Solar Thermal	20	195.0	42.1	0.0	6.0	243.1	-19.5	223.6
Hydroelectric ³	53	72.0	4.1	6.4	2.0	84.5		

Table 1. Estimated levelized cost of electricity (LCOE) for new generation resources, 2019

¹The subsidy component is based on targeted tax credits such as the production or investment tax credit available for some technologies. It only reflects subsidies available in 2019, which include a permanent 10% investment tax credit for geothermal and solar technologies, and the \$18.0/MWh production tax credit for up to 6 GW of advanced nuclear plants, based on the Energy Policy Acts of 1992 and 2005. EIA models tax credit expiration as in current laws and regulations: new solar thermal and PV plants are eligible to receive a 30% investment tax credit on capital expenditures if placed in service before the end of 2016, and 10% thereafter. New wind, geothermal and closed-loop biomass) inflation-adjusted production tax credit over the plant's first ten years of service or (2) a 30% investment tax credit, if they are under construction before the end of 2013.

² Costs are expressed in terms of net AC power available to the grid for the installed capacity.

³As modeled, hydroelectric is assumed to have seasonal storage so that it can be dispatched within a season, but overall operation is limited by resources available by site and season.

Source: U.S. Energy Information Administration, Annual Energy Outlook 2014 Early Release, December 2013, DOE/EIA-0383ER(2014).

	Range for (20	[.] Total Syster 012 \$/MWh)	n LCOE	Range for Total LCOE with Subsidies ¹ (2012 \$/MWh)		
Plant Type	Minimum	Average	Maximum	Minimum	Average	Maximum
Dispatchable Technologies						
Conventional Coal	87.0	95.6	114.4			
IGCC	106.4	115.9	131.5			
IGCC with CCS	137.3	147.4	163.3			
Natural Gas-fired						
Conventional Combined Cycle	61.1	66.3	75.8			
Advanced Combined Cycle	59.6	64.4	73.6			
Advanced CC with CCS	85.5	91.3	105.0			
Conventional Combustion						
Turbine	106.0	128.4	149.4			
Advanced Combustion Turbine	96.9	103.8	119.8			
Advanced Nuclear	92.6	96.1	102.0	82.6	86.1	92.0
Geothermal	46.2	47.9	50.3	43.1	44.5	46.4
Biomass	92.3	102.6	122.9			
Non-Dispatchable Technologies						
Wind	71.3	80.3	90.3			
Wind – Offshore	168.7	204.1	271.0			
Solar PV ²	101.4	130.0	200.9	92.6	118.6	182.6
Solar Thermal	176.8	243.1	388.0	162.6	223.6	356.7
Hydroelectric ³	61.6	84.5	137.7			

Table 2. Regional variation in levelized cost of electricity (LCOE) for new generation resources, 2019

¹Levelized cost with subsidies reflects subsidies available in 2019, which include a permanent 10% investment tax credit for geothermal and solar technologies, and the \$18.0/MWh production tax credit for up to 6 GW of advanced nuclear plants, based on the Energy Policy Acts of 1992 and 2005.

² Costs are expressed in terms of net AC power available to the grid for the installed capacity.

³As modeled, hydroelectric is assumed to have seasonal storage so that it can be dispatched within a season, but overall operation is limited by resources available by site and season.

Note: The levelized costs for non-dispatchable technologies are calculated based on the capacity factor for the marginal site modeled in each region, which can vary significantly by region. The capacity factor ranges for these technologies are as follows: Wind – 31% to 45%, Wind Offshore – 33% to 42%, Solar PV- 22% to 32%, Solar Thermal – 11% to 26%, and Hydroelectric – 30% to 65%. The levelized costs are also affected by regional variations in construction labor rates and capital costs as well as resource availability.

Source: U.S. Energy Information Administration, Annual Energy Outlook 2014 Early Release, December 2013, DOE/EIA-0383ER(2014).

7

Table 3: Regional variation in levelized avoided costs of electricity (LACE) for new generationresources, 2019

	Range for LACE (2012 \$/MWh)					
Plant Type	Minimum	Average	Maximum			
Dispatchable Technologies						
Coal-fired plant types without CCS	54.6	62.2	70.6			
IGCC with CCS ¹	54.6	62.0	70.6			
Natural Gas-fired Combined Cycle	54.5	62.9	74.2			
Advanced Nuclear	54.6	61.7	70.5			
Geothermal	58.3	60.9	62.4			
Biomass	54.5	63.3	74.5			
Non-Dispatchable Technologies						
Wind	51.7	55.7	66.4			
Wind – Offshore	55.1	62.3	73.7			
Solar PV	50.8	73.4	89.6			
Solar Thermal	48.2	73.3	82.3			
Hydroelectric	54.1	59.9	69.5			

¹Coal without CCS cannot be built in California, therefore the average LACE for coal

technologies without CCS is computed over fewer regions than the LACE for IGCC with CCS.

Otherwise, the LACE for any given region is the same across coal technologies, with or without CCS.

Table 4: Difference between levelized avoided costs of electricity (LACE) and levelized costs of electricity (LCOE), 2019 and 2040

	Comparison of LACE - LCOE (2012 \$/MWh)					
Diant Tuma	Average	Average	Average	Bango of D	Ifforoncoc	
	LCOE	LACE	Difference	Range of D	inerences	
	05.0	62.2	22.5	10.0	25.4	
	95.6	62.2	-33.5	-48.9	-25.1	
IGCC	115.9	62.2	-53.7	-66.1	-43.9	
IGCC with CCS	147.4	62.0	-85.4	-104.7	-74.8	
Natural Gas-fired						
Conventional Combined Cycle	66.3	62.9	-3.4	-13.7	0.0	
Advanced Combined Cycle	64.4	62.9	-1.5	-11.2	0.8	
Advanced CC with CCS	91.3	62.9	-28.4	-34.6	-23.7	
Advanced Nuclear	86.1	61.7	-24.4	-33.0	-13.0	
Geothermal	44.5	60.9	16.4	15.2	18.1	
Biomass	102.6	63.3	-39.3	-57.2	-28.5	
Non-Dispatchable Technologies						
Wind	80.3	55.7	-24.5	-37.6	-6.3	
Wind – Offshore	204.1	62.3	-141.8	-210.1	-107.1	
Solar PV	118.6	73.4	-45.2	-96.5	-21.2	
Solar Thermal	223.6	73.3	-150.3	-279.3	-83.4	
Hydro	84.5	59.9	-24.6	-54.7	-1.0	
2040						
Dispatchable Technologies						
Conventional Coal	87.0	76.4	-10.7	-26.3	-5.3	
IGCC	99.7	76.4	-23.3	-34.3	-18.2	
IGCC with CCS	121.2	77.0	-44.3	-51.8	-38.8	
Natural Gas-fired						
Conventional Combined Cycle	81.2	77.7	-3.5	-7.7	-0.4	
Advanced Combined Cycle	77.8	77.7	-0.1	-3.9	2.0	
Advanced CC with CCS	103.0	77.7	-25.3	-30.0	-15.5	
Advanced Nuclear	83.0	76.1	-6.8	-10.1	-0.2	
Geothermal	63.5	78.7	47.0	0.5	75.2	
Biomass	97.0	78.0	-19.0	-38.4	-9.4	
Non-Dispatchable Technologies						
Wind	73.1	70.8	-2.3	-11.8	13.0	
Wind – Offshore	170.3	77.4	-92.9	-150.7	-59.3	
Solar PV	101.3	89.4	-11.9	-58.4	10.6	
Solar Thermal	188.7	96.5	-92.2	-205.1	-36.0	
Hydro	84.6	75.3	-9.3	-27.8	11.0	

Appendix: Tables for 2040

Table A5. Estimated levelized cost of electricity (LCOE) for new generation resources, 2040

		U.S. Average LCOE (2012 \$/MWh) for Plants Entering Service in 2040						
				Variable				Total
	Capacity	Levelized		0&M		Total		LCOE
	Factor	Capital	Fixed	(including	Transmission	System		including
Plant Type	(%)	Cost	0&M	fuel)	Investment	LCOE	Subsidy ¹	Subsidy
Dispatchable Technologies								
Conventional Coal	85	52.0	4.2	29.7	1.1	87.0		
Integrated Coal-Gasification								
Combined Cycle (IGCC)	85	62.8	6.9	28.9	1.1	99.7		
IGCC with CCS	85	77.2	9.8	33.1	1.2	121.2		
Natural Gas-fired								
Conventional Combined Cycle	87	12.5	1.7	65.8	1.2	81.2		
Advanced Combined Cycle	87	13.0	2.0	61.7	1.2	77.8		
Advanced CC with CCS	87	23.4	4.2	74.3	1.2	103.0		
Conventional Combustion								
Turbine	30	35.2	2.8	107.1	3.4	148.5		
Advanced Combustion Turbine	30	21.8	2.7	87.9	3.4	115.8		
Advanced Nuclear	90	56.7	11.8	13.3	1.1	83.0		
Geothermal	94	43.6	22.9	0.0	1.4	67.8	-4.4	63.5
Biomass	83	39.8	14.5	41.4	1.2	97.0		
Non-Dispatchable Technologies								
Wind	34	56.6	13.3	0.0	3.2	73.1		
Wind – Offshore	37	141.7	22.8	0.0	5.7	170.3		
Solar PV ²	25	95.3	11.4	0.0	4.0	110.8	-9.5	101.3
Solar Thermal	20	156.2	42.1	0.0	5.9	204.3	-15.6	188.7
Hydroelectric ³	51	71.2	4.5	7.0	2.1	84.6		

¹The subsidy component is based on targeted tax credits such as the production or investment tax credit available for some technologies. It only reflects subsidies available in 2040, which includes a permanent 10% investment tax credit for geothermal and solar technologies, based on the Energy Policy Act of 1992. EIA models tax credit expiration as in current laws and regulations: new solar thermal and PV plants are eligible to receive a 30% investment tax credit on capital expenditures if placed in service before the end of 2016, and 10% thereafter. New wind, geothermal, biomass, hydroelectric, and landfill gas plants are eligible to receive either: (1) a \$21.5/MWh (\$10.7/MWh for technologies other than wind, geothermal and closed-loop biomass) inflation-adjusted production tax credit over the plant's first ten years of service or (2) a 30% investment tax credit, if they are under construction before the end of 2013. ² Costs are expressed in terms of net AC power available to the grid for the installed capacity.

³As modeled, hydroelectric is assumed to have seasonal storage so that it can be dispatched within a season, but overall operation is limited by resources available by site and season.

Source: U.S. Energy Information Administration, Annual Energy Outlook 2014 Early Release, December 2013, DOE/EIA-0383ER(2014).

	Range for Total System LCOE (2012 \$/MWh)			Range for Total LCOE with Subsic (2012 \$/MWh)			
Plant Type	Minimum	Average	Maximum	Minimum	Average	Maximum	
Dispatchable Technologies							
Conventional Coal	78.9	87.0	106.7				
IGCC	90.8	99.7	114.7				
IGCC with CCS	113.0	121.2	135.7				
Natural Gas-fired							
Conventional Combined Cycle	75.8	81.2	94.0				
Advanced Combined Cycle	73.4	77.8	89.4				
Advanced CC with CCS	97.8	103.0	114.8				
Conventional Combustion							
Turbine	118.8	148.5	172.3				
Advanced Combustion Turbine	108.9	115.8	132.3				
Advanced Nuclear	80.2	83.0	87.6				
Geothermal	54.4	67.8	81.3	50.7	63.5	76.3	
Biomass	85.3	97.0	118.8				
Non-Dispatchable Technologies							
Wind	63.4	73.1	82.9				
Wind – Offshore	140.9	170.3	225.3				
Solar PV ²	86.5	110.8	170.2	79.2	101.3	155.0	
Solar Thermal	148.6	204.3	325.6	137.2	188.7	300.5	
Hydroelectric ³	63.6	84.6	122.4				

Table A6. Regional variation in levelized cost of electricity (LCOE) for new generation resources, 2040

¹Levelized cost with subsidies reflects subsidies available in 2040, which includes a permanent 10% investment tax credit for geothermal and solar technologies, based on the Energy Policy Act of 1992.

²Costs are expressed in terms of net AC power available to the grid for the installed capacity.

³As modeled, hydroelectric is assumed to have seasonal storage so that it can be dispatched within a season, but overall operation is limited by resources available by site and season.

Note: The levelized costs for non-dispatchable technologies are calculated based on the capacity factor for the marginal site modeled in each region, which can vary significantly by region. The capacity factor ranges for these technologies are as follows: Wind – 32% to 41%, Wind Offshore – 33% to 42%, Solar PV- 22% to 32%, Solar Thermal – 11% to 26%, and Hydroelectric – 35% to 65%. The levelized costs are also affected by regional variations in construction labor rates and capital costs as well as resource availability.

Source: U.S. Energy Information Administration, Annual Energy Outlook 2014 Early Release, December 2013, DOE/EIA-0383ER(2014).

Table A7: Regional variation in levelized avoided costs of electricity (LACE) for new generation resources, 2040

	Range for LACE (2012 \$/MWh)					
Plant Type	Minimum	Average	Maximum			
Dispatchable Technologies						
Coal-fired plant types without CCS	72.3	76.4	80.7			
IGCC with CCS ¹	72.3	77.0	88.6			
Natural Gas-fired Combined Cycle	72.2	77.7	88.4			
Advanced Nuclear	72.2	76.1	80.6			
Geothermal	75.0	78.7	88.0			
Biomass	72.3	78.0	88.7			
Non-Dispatchable Technologies						
Wind	65.8	70.8	84.1			
Wind – Offshore	71.9	77.4	88.1			
Solar PV	83.2	89.4	96.5			
Solar Thermal	87.7	96.5	104.4			
Hydroelectric	71.0	75.3	88.0			

¹Coal without CCS cannot be built in California, therefore the average LACE for coal technologies without CCS is computed over fewer regions than the LACE for IGCC with CCS.

Otherwise, the LACE for any given region is the same across coal technologies, with or without CCS.

12

BEFORE THE PUBLIC UTILITIES COMMISSION OF THE STATE OF SOUTH DAKOTA

In the Matter of the Application of Black Hills Power, Inc. for Authority to Increase its Electric Rates Docket No. EL14-026

EXHIBIT_(SJB-3)

OF

STEPHEN J. BARON

ON BEHALF OF THE BLACK HILLS INDUSTRIAL INTERVENORS

J. KENNEDY AND ASSOCIATES, INC. ROSWELL, GEORGIA

December 2014

ELECTRIC UTILITY COST ALLOCATION MANUAL ASSOCIATION DEDI CO NATIONAL ASSOCIATION OF REGULATORY UTILITY COMMISSIONERS January, 1992

PREFACE

This project was jointly assigned to the NARUC Staff Subcommittees on Electricity and Economics in February, 1985. Jack Doran, at the California PUC had led a task force in 1969 that wrote the original Cost Allocation Manual; the famous "Green Book". I was asked to put together a task force to revise it and include a Marginal Cost section.

I knew little about the subject and was not sure what I was getting into so I asked Jack how he had gone about drafting the first book. "Oh" he said, "There wasn't much to it. We each wrote a chapter and then exchanged them and rewrote them." What Jack did not tell me was that like most NARUC projects, the work was done after five o'clock and on weekends because the regular work always takes precedence. It is a good thing we did not realize how big a task we were tackling or we might never have started.

There was great interest in the project so when I asked for volunteers, I got plenty. We split into two working groups; embedded cost and marginal cost. Joe Jenkins from the Florida PSC headed up the Embedded Cost Working Group and Sarah Voll from the New Hampshire PUC took the Marginal Cost Working Group. We followed Jack's suggestions but, right from the beginning, we realized that once the chapters were technically correct, we would need a single editor to cast them all "into one hand" as Joe Jenkins put it. Steven Mintz from the Department of Energy volunteered for this task and has devoted tremendous effort to polishing the book into the final product you hold in your hands. Victoria Jow at the California PUC took Steven's final draft and desktop published the entire document using Ventura Publisher.

We set the following objectives for the manual:

- It should be simple enough to be used as a primer on the subject for new employees yet offer enough substance for experienced witnesses.
- It must be comprehensive yet fit in one volume.
- The writing style should be non-judgmental; not advocating any one particular method but trying to include all currently used methods with pros and cons.

It is with extreme gratitude that I acknowledge the energy and dedication contributed by the following task force members over the last five years.

Steven Mintz, Department of Energy, Editor; Joe Jenkins, Florida PSC, Leader, Embedded Cost Working Group; Sarah Voll, New Hampshire PUC, Leader, Marginal Cost Working Group; Victoria Jow, California PUC; John A. Anderson, ELCON; Jess Galura, Sacramento MUD; Chris Danforth, California PUC; Alfred Escamilla, Southern California Edison; Byron Harris, West Virginia CAD; Steve Houle, Texas Utility Electric Co.; Kevin Kelly, formally NRRI; Larry Klapow California PUC; Jim Ketter P.E., Missouri PSC; Ed Lucero, Price Waterhouse; J. Robert Malko, Utah State University; George McCluskey, New Hampshire PUC; Marge Meeter, Florida PSC; Gordon Murdock, The FERC; Dennis Nightingale, North Carolina UC; John Orecchio, The FERC; Carl Silsbee, Southern California Edison; Ben Turner, North Carolina UC; Dr. George Parkins, Colorado PUC; Warren Wendling, Colorado PUC; Schef Wright, formally Florida PSC; IN MEMORIAL Bob Kennedy Jr., Arkansas PSC.

Julian Ajello California PUC

CHAPTER 6

CLASSIFICATION AND ALLOCATION OF DISTRIBUTION PLANT

Distribution plant equipment reduces high-voltage energy from the transmission system to lower voltages, delivers it to the customer and monitors the amounts of energy used by the customer.

Distribution facilities provide service at two voltage levels: primary and secondary. Primary voltages exist between the substation power transformer and smaller line transformers at the customer's points of service. These voltages vary from system to system and usually range between 480 volts to 35 KV. In the last few years, advances in equipment and cable technology have permitted the use of higher primary distribution voltages. Primary voltages are reduced to more usable secondary voltages by smaller line transformers installed at customer locations along the primary distribution circuit. However, some large industrial customers may choose to install their own line transformers and take service at primary voltages because of their large electrical requirements.

In some cases, the utility may choose to install a transformer for the exclusive use of a single commercial or industrial customer. On the other hand, in service areas with high customer density, such as housing tracts, a line transformer will be installed to serve many customers. In this case, secondary voltage lines run from pole-to-pole or from handhole-to-handhole, and each customer is served by a drop tapped off the secondary line leading directly to the customer's premise.

I. COST ACCOUNTING FOR DISTRIBUTION PLANT AND EXPENSES

The Federal Energy Regulatory Commission (FERC) Uniform System of Accounts requires separate accounts for distribution investment and expenses. Distribution plant accounts are summarized and classified in Table 6-1. Distribution expense accounts are summarized and classified in Table 6-2. Some utilities may choose to establish subaccounts for more detailed cost reporting.

TABLE 6-1

CLASSIFICATION OF DISTRIBUTION PLANT¹

FERC Uniform System of Accounts No.	Description	Demand Related	Customer Related
	Distribution Plant ²		
360	Land & Land Rights	X	х
361	Structures & Improvements	x	X
362	Station Equipment	X	-
363	Storage Battery Equipment	X	-
364	Poles, Towers, & Fixtures	X	X
365	Overhead Conductors & Devices	X	x
366	Underground Conduit	x	X
367	Underground Conductors & Devices	x	x
368	Line Transformers	x	x
369	Services	-	x
370	Meters	-	x
371	Installations on Customer Premises	-	X
372	Leased Property on Customer Premises	-	X
373	Street Lighting & Signal Systems ¹	-	-

¹Assignment or "exclusive use" costs are assigned directly to the customer class or group which exclusively uses such facilities. The remaining costs are then classified to the respective cost components.

²The amounts between classification may vary considerably. A study of the minimum intercept method or other appropriate methods should be made to determine the relationships between the demand and customer components.

TABLE 6-2

CLASSIFICATION OF DISTRIBUTION EXPENSES¹

FERC Uniform System of		Demand	Customer
Accounts No.	Description	Related	Related
	Operation ²		
580	Operation Supervision & Engineering	X	х
581	Load Dispatching	х	-
582	Station Expenses	x	-
583	Overhead Line Expenses	x	х
584	Underground Line Expenses	x	х
585	Street Lighting & Signal System Expenses ¹	-	-
586	Meter Expenses	-	х
587	Customer Installation Expenses	-	х
588	Miscellaneous Distribution Expenses	х	х
589	Rents	x	х
	Maintenance ²		
590	Maintenance Supervision & Engineering	x	х
591	Maintenance of Structures	X	х
592	Maintenance of Station Equipment	X	-
593	Maintenance of Overhead Lines	x	x
594	Maintenance of Underground Lines	X	х
595	Maintenance of Line Transformers	X	Х
596	Maint. of Street Lighting & Signal Systems 1		-
597	Maintenance of Meters	-	X
598	Maint. of Miscellaneous Distribution Plants	X	X

¹Direct assignment or "exclusive use" costs are assigned directly to the customer class or group which exclusively uses such facilities. The remaining costs are then classified to the respective cost components.

²The amounts between classifications may vary considerably. A study of the minimum intercept method or other appropriate methods should be made to determine the relationships between the demand and customer components.

To ensure that costs are properly allocated, the analyst must first classify each account as demand-related, customer-related, or a combination of both. The classification depends upon the analyst's evaluation of how the costs in these accounts were incurred. In making this determination, supporting data may be more important than theoretical considerations.

Allocating costs to the appropriate groups in a cost study requires a special analysis of the nature of distribution plant and expenses. This will ensure that costs are assigned to the correct functional groups for classification and allocation. As indicated in Chapter 4, all costs of service can be identified as energy-related, demand-related, or customer-related. Because there is no energy component of distribution-related costs, we need consider only the demand and customer components.

To recognize voltage level and use of facilities in the functionalization of distribution costs, distribution line costs must be separated into overhead and underground, and primary and secondary voltage classifications. A typical functionalization and classification of distribution plant would appear as follows:

> Substations: Distribution:

Demand Overhead Primary Demand Customer

Overhead Secondary Demand Customer

Underground Primary Demand Customer

Underground Secondary Demand Customer

Line Transformers Demand Customer

Services:

Meters:

Sales:

Street Lighting:

Customer Accounting:

Overhead Demand Customer

Underground Demand Customer Customer Customer Customer Customer From this breakdown it can be seen that each distribution account must be analyzed before it can be assigned to the appropriate functional category. Also, these accounts must be classified as demand-related, customer-related, or both. Some utilities assign distribution to customer-related expenses. Variations in the demands of various customer groups are used to develop the weighting factors for allocating costs to the appropriate group.

II. DEMAND AND CUSTOMER CLASSIFICATIONS OF DISTRIBUTION PLANT ACCOUNTS

When the utility installs distribution plant to provide service to a customer and to meet the individual customer's peak demand requirements, the utility must classify distribution plant data separately into demand- and customer-related costs.

Classifying distribution plant as a demand cost assigns investment of that plant to a customer or group of customers based upon its contribution to some total peak load. The reason is that costs are incurred to serve area load, rather than a specific number of customers.

Distribution substations costs (which include Accounts 360 -Land and Land Rights, 361 - Structures and Improvements, and 362 -Station Equipment), are normally classified as demand-related. This classification is adopted because substations are normally built to serve a particular load and their size is not affected by the number of customers to be served.

Distribution plant Accounts 364 through 370 involve demand and customer costs. The customer component of distribution facilities is that portion of costs which varies with the number of customers. Thus, the number of poles, conductors, transformers, services, and meters are directly related to the number of customers on the utility's system. As shown in Table 6-1, each primary plant account can be separately classified into a demand and customer component. Two methods are used to determine the demand and customer components of distribution facilities. They are, the minimum-size-of-facilities method, and the minimum-intercept cost (zero-intercept or positive-intercept cost, as applicable) of facilities.

A. The Minimum-Size Method

Classifying distribution plant with the minimum-size method assumes that a minimum size distribution system can be built to serve the minimum loading requirements of the customer. The minimum-size method involves determining the minimum size pole, conductor, cable, transformer, and service that is currently installed by the utility. Normally, the average book cost for each piece of equipment determines

the price of all installed units. Once determined for each primary plant account, the minimum size distribution system is classified as customer-related costs. The demand-related costs for each account are the difference between the total investment in the account and customer-related costs. Comparative studies between the minimum-size and other methods show that it generally produces a larger customer component than the zero-intercept method (to be discussed). The following describes the methodologies for determining the minimum size for distribution plant Accounts 364, 365, 366, 367, 368, and 369.

1. Account 364 - Poles, Towers, and Fixtures

- Determine the average installed book cost of the minimum height pole currently being installed.
- Multiply the average book cost by the number of poles to find the customer component. Balance of plant account is the demand component.

2. Account 365 - Overhead Conductors and Devices

- Determine minimum size conductor currently being installed.
- Multiply average installed book cost per mile of minimum size conductor by the number of circuit miles to determine the customer component. Balance of plant account is demand component. (Note: two conductors in minimum system.)
- 3. Accounts 366 and 367 Underground Conduits, Conductors, and Devices
 - Determine minimum size cable currently being installed.
 - O Multiply average installed book cost per mile of minimum size cable by the circuit miles to determine the customer component. Balance of plant Account 367 is demand component. (Note: one cable with ground sheath is minimum system.) Account 366 conduit is assigned, basedon ratio of cable account.
 - Multiply average installed book cost of minimum size transformer by number of transformers in plant account to determine the customer component. Balance of plant account is demand component.

4. Account 368 - Line Transformers

Determine minimum size transformer currently being installed.

- Multiply average installed book cost of minimum size transformer by number of transformers in plant account to determine the customer component.
- 5. Account 369 Services
 - Determine minimum size and average length of services currently being installed.
 - Estimate cost of minimum size service and multiply by number of services to get customer component.
 - If overhead and underground services are booked separately, they should be handled separately. Most companies do not book service by size. This requires an engineering estimate of the cost of the minimum size, average length service. The resultant estimate is usually higher than the average book cost. In addition, the estimate should be adjusted for the average age of service, using a trend factor.

B. The Minimum-Intercept Method

The minimum-intercept method seeks to identify that portion of plant related to a hypothetical no-load or zero-intercept situation. This requires considerably more data and calculation than the minimum-size method. In most instances, it is more accurate, although the differences may be relatively small. The technique is to relate installed cost to current carrying capacity or demand rating, create a curve for various sizes of the equipment involved, using regression techniques, and extend the curve to a no-load intercept. The cost related to the zero-intercept is the customer component. The following describes the methodologies for determining the minimum intercept for distribution-plant Accounts 364, 365, 366, 367, and 368.

1. Account 364 - Poles, Towers, and Fixtures

- Determine the number, investment, and average installed book cost of distribution poles by height and class of pole. (Exclude stubs for guy-ing.)
- Determine minimum intercept of pole cost by creating a regression equation, relating classes and heights of poles, and using the Class 7 cost intercept for each pole of equal height weighted by the number of poles in each height category.
- Multiply minimum intercept cost by total number of distribution poles to get customer component.

- Balance of pole investment is assigned to demand component.
- O Total account dollars are assigned based on ratio of pole investment. (Transformer platforms in Account 364 are all demand-related. They should be removed before determining the account ratio of customerand demand-related costs, and then they should be added to the demand portion of Account 364.)

2. Account 365 - Overhead Conductors and Devices

- O If accounts are divided between primary and secondary voltages, develop a customer component separately for each. The total investment is assigned to primary and secondary; then the customer component is developed for each. Since conductors generally are of many types and sizes, select those sizes and types which represent the bulk of the investment in this account, if appropriate.
- O When developing the customer component, consider only the investment in conductors, and not such devices as circuit breakers, insulators, switches, etc. The investment in these devices will be assigned later between the customer and demand component, based on the conductor assignment.
 - Determine the feet, investment, and average installed book cost per foot for distribution conductors by size and type.
 - Determine minimum intercept of conductor cost per foot using cost per foot by size and type of conductor weighted by feet or investment in each category, and developing a cost for the utility's minimum size conductor.
 - Multiply minimum intercept cost by the total number of circuit feet times 2. (Note that circuit feet, not conductor feet, are used to get customer component.)
 - Balance of conductor investment is assigned to demand.
 - Total primary or secondary dollars in the account, including devices, are assigned to customer and demand components based on conductor investment ratio.

3. Accounts 366 and 367 - Underground Conduits, Conductors, and Devices

• The customer demand component ratio is developed for conductors and applied to conduits. Underground conductors are generally booked by type and size of conductor for both one-conductor (I/c) cable and three-conductor (3/c) cables. If conductors are booked by voltage, as between primary and secondary, a customer component is developed for each. If network and URD investments are segregated, a customer component must be developed for each.

- The conductor sizes and types for the customer component derivation are restricted to I/c cable. Since there are generally many types and sizes of I/c cable, select those sizes and types which represent the bulk of the investment, when appropriate.
 - Determine the feet, investment, and average installed book cost per foot for I/c cables by size and type of cable.
 - Determine minimum intercept of cable cost per foot using cost per foot by size and type of cable weighted by feet of investment in each category.
 - Multiply minimum intercept cost by the total number of circuit feet (I/c cable with sheath is considered a circuit) to get customer component.
 - Balance of cable investment is assigned to demand.
 - Total dollars in Accounts 366 and 367 are assigned to customer and demand components based on conductor investment ratio.

4. Account 368 - Line Transformers

- The line transformer account covers all sizes and voltages for singleand three-phase transformers. Only single-phase sizes up to and including 50 KVA should be used in developing the customer components. Where more than one primary distribution voltage is used, it may be appropriate to use the transformer price from one or two predominant, selected voltages.
 - Determine the number, investment, and average installed book cost per transformer by size and type (voltage).
 - Determine zero intercept of transformer cost using cost per transformer by type, weighted by number for each category.
 - Multiply zero intercept cost by total number of line transformers to get customer component.
 - Balance of transformer investment is assigned to demand component.
 - Total dollars in the account are assigned to customer and demand components based on transformer investment ratio from customer and demand components.

C. The Minimum-System vs. Minimum-Intercept Approach

When selecting a method to classify distribution costs into demand and customer costs, the analyst must consider several factors. The minimum-intercept method can sometimes produce statistically unreliable results. The extension of the regression equation beyond the boundaries of the data normally will intercept the Y axis at a positive value. In some cases, because of incorrect accounting data or some other abnormality in the data, the regression equation will intercept the Y axis at a negative value. When this happens, a review of the accounting data must be made, and suspect data deleted.

The results of the minimum-size method can be influenced by several factors. The analyst must determine the minimum size for each piece of equipment: "Should the minimum size be based upon the minimum size equipment currently installed, historically installed, or the minimum size necessary to meet safety requirements?" The manner in which the minimum size equipment is selected will directly affect the percentage of costs that are classified as demand and customer costs.

Cost analysts disagree on how much of the demand costs should be allocated to customers when the minimum-size distribution method is used to classify distribution plant. When using this distribution method, the analyst must be aware that the minimum-size distribution equipment has a certain load-carrying capability, which can be viewed as a demand-related cost.

When allocating distribution costs determined by the minimum-size method, some cost analysts will argue that some customer classes can receive a disproportionate share of demand costs. Their rationale is that customers are allocated a share of distribution costs classified as demand-related. Then those customers receive a second layer of demand costs that have been mislabeled customer costs because the minimum-size method was used to classify those costs.

Advocates of the minimum-intercept method contend that this problem does not exist when using their method. The reason is that the customer cost derived from the minimum-intercept method is based upon the zero-load intercept of the cost curve. Thus, the customer cost of a particular piece of equipment has no demand cost in it whatsoever.

D. Other Accounts

The preceding discussion of the merits of minimum-system versus the zero-intercept classification schemes will affect the major distribution-plant accounts for FERC Accounts 364 through 368. Several other plant accounts remain to be classified. While the classification of the following distribution-plant accounts is an important step,

it is not as controversial as the classification of substations, poles, transformers, and conductors.

1. Account 369 - Services

This account is generally classified as customer-related. Classification of services may also include a demand component to reflect the fact that larger customers will require more costly service drops.

2. Account 370 - Meters

Meters are generally classified on a customer basis. However, they may also be classified using a demand component to show that larger-usage customers require more expensive metering equipment.

3. Account 371 - Installations on Customer Premises

This account is generally classified as customer-related and is often directly assigned. The kind of equipment in this account often influences how this account is treated. The equipment in this account is owned by the utility, but is located on the customer's side of the meter. A utility will often include area lighting equipment in this account and assign the investment directly to the lighting customer class.

4. Account 373 - Street Lighting and Signal Systems

This account is generally customer-related and is directly assigned to the street customer class.

III. ALLOCATION OF THE DEMAND AND CUSTOMER COMPONENTS OF DISTRIBUTION PLANT

After completing the classification of distribution plant accounts, the next major step in the cost of service process is to allocate the classified costs. Generally, determining the distribution-demand allocator will require more data and analysis than determining the customer allocators. Following are procedures used to calculate the demand and customer allocation factors.

A. Development of the Distribution Demand Allocators

There are several factors to consider when allocating the demand components of distribution plant. Distribution facilities, from a design and operational perspective, are installed primarily to meet localized area loads. Distribution substations are designed to meet the maximum load from the distribution feeders emanating from the substation. Similarly, when designing primary and secondary distribution feeders, the distribution engineer ensures that sufficient conductor and transformer capacity is available to meet the customer's loads at the primary- and secondary-distribution service levels. Local area loads are the major factors in sizing distribution equipment. Consequently, customer-class noncoincident demands (NCPs) and individual customer maximum demands are the load characteristics that are normally used to allocate the demand component of distribution facilities. The customer-class load characteristic used to allocate the demand component of distribution plant (whether customer class NCPs or the summation of individual customer maximum demands) depends on the load diversity that is present at the equipment to be allocated. The load diversity at distribution substations and primary feeders is usually high. For this reason, customer-class peaks are normally used for the allocation of these facilities. The facilities nearer the customer, such as secondary feeders and line transformers, have much lower load diversity. They are normally allocated according to the individual customer's maximum demands. Although these are the methods normally used for the allocation of distribution demand costs, some exceptions exist.

The load diversity differences for some utilities at the transmission and distribution substation levels may not be large. Consequently, some large distribution substations may be allocated using the same method as the transmission system. Before the cost analyst selects a method to allocate the different levels of distribution facilities, he must know the design and operational characteristics of the distribution system, as well as the demand losses at each level of the distribution system.

As previously indicated, the distribution system consists of several levels. The first level starts at the distribution substation, and the last level ends at the customer's meters. Power losses occur at each level and should be included in the demand allocators. Power losses are incorporated into the demand allocators by showing different demand loss factors at each predominant voltage level. The demand loss factor used to develop the primary-distribution demand allocator will be slightly larger than the demand loss factor used to develop the secondary demand allocator. When developing the distribution demand allocator, be aware that some customers take service at different voltage levels.

Cost analysts developing the allocator for distribution of substations or primary demand facilities must ensure that only the loads of those customers who benefit from these facilities are included in the allocator. For example, the loads of customers who take service at transmission level should not be reflected in the distribution substation or primary demand allocator. Similarly, when analysts develop the allocator for secondary demand facilities, the loads for customers served by the primary distribution system should not be included.

Utilities can gather load data to develop demand allocators, either through their load research program or their transformer load management program. In most cases, the load research program gathers data from meters on the customers' premises. A more complex procedure is to use the transformer load management program. This procedure involves simulating load profiles for the various classes of equipment on the distribution system. This provides information on the nature of the load diversity between the customer and the substation, and its effect on equipment cost. Determining demand allocators through simulation provides a first-order load approximation, which represents the peak load for each type of distribution equipment.

The concept of peak load or "equipment peak" for each piece of distribution equipment can be understood by considering line transformers. If a given transformer's loading for each hour of a month can be calculated, a transformer load curve can be developed. By knowing the types of customers connected to each load management transformer, a simulated transformer load profile curve can be developed for the system. This can provide each customer's class demand at the time of the transformer's peak load. Similarly, an equipment peak can be defined for equipment at each level of the distribution system. Although the equipment peak obtained by this method may not be ideal, it will closely approximate the actual peak. Thus, this method should reflect the different load diversities among customers at each level of the distribution system. An illustration of the simulation procedure is provided in Appendix 6-A.

B. Allocation of Customer-Related Costs

When the demand-customer classification has been completed, most of the assumptions will have been made that affect the results of the completed cost of service study.

The allocation of the customer-related portion of the various plant accounts is based on the number of customers by classes of service, with appropriate weightings and adjustments. Weighting factors reflect differences in characteristics of customers within a given class, or between classes. Within a class, for instance, we may want to give more weighting of a certain plant account to rural customers, as compared to urban customers. The metering account is a clear example of an account requiring weighting for differences between classes. A metering arrangement for a single industrial customer may be 20 to 80 times as costly as the metering for one residential customer.

While customer allocation factors should be weighted to offset differences among various types of customers, highly refined weighting factors or detailed and time consuming studies may not seem worthwhile. Such factors applied in this final step of the cost study may affect the final results much less than such basic assumptions as the demand-allocation method or the technique for determining demand-customer classifications.

Expense allocations generally are based on the comparable plant allocator of the various classes. For instance, maintenance of overhead lines is generally assumed to be directly related to plant in overhead conductors and devices. Exceptions to this rule will occur in some accounts. Meter expenses, for example, are often a function of

maintenance and testing schedules related more to revenue per customer than to the cost of the meters themselves.

BEFORE THE PUBLIC UTILITIES COMMISSION OF THE STATE OF SOUTH DAKOTA

In the Matter of the Application of Black Hills Power, Inc. for Authority to Increase its Electric Rates Docket No. EL14-026

EXHIBIT_(SJB-4)

OF

STEPHEN J. BARON

ON BEHALF OF THE BLACK HILLS INDUSTRIAL INTERVENORS

J. KENNEDY AND ASSOCIATES, INC. ROSWELL, GEORGIA

December 2014

BLACK HILLS POWER, INC. SD PUC DOCKET: EL-14-026 RATE CASE

REQUEST DATE:June 30, 2014RESPONSE DATE:July 28, 2014REQUESTING PARTY:Black Hills Industrial Intervenors

BHII Request No. 36: Please provide all work papers (including all electronic work papers with formulas intact) supporting the development of the factors used to classify distribution accounts 364, 365, 366, and 367 between Primary and Secondary.

Response to BHII Request No. 36:

The factors used to classify distribution account 364, 365, 366 and 367 between Primary and Secondary were from a borrowed study from Black Hills Power's sister utility, Black Hills/Colorado Electric Utility Company, LP. The same factors used were previously used in the 2012 Black Hills Power rate case.

Black Hills Power was unable to locate all electronic work papers with formulas intact. Copies of the available work papers are attached as Attachment 36.

Attachments: 36 - Distribution Plant Account 364_367 Allocation Factors.pdf

BEFORE THE PUBLIC UTILITIES COMMISSION OF THE STATE OF SOUTH DAKOTA

In the Matter of the Application of Black Hills Power, Inc. for Authority to Increase its Electric Rates Docket No. EL14-026

EXHIBIT_(SJB-5)

OF

STEPHEN J. BARON

ON BEHALF OF THE BLACK HILLS INDUSTRIAL INTERVENORS

J. KENNEDY AND ASSOCIATES, INC. ROSWELL, GEORGIA

December 2014

BLACK HILLS INDUSTRIAL INTERVENORS CORRECTED PRO FORMA CLASS COST OF SERVICE STUDY FOR THE TEST YEAR ENDED SEPTEMBER 30, 2013

			TOTAL			GS LARGE/		
LINE NO.	E DESCRIPTION	ALLOCATION BASIS	SOUTH DAKOTA	RESIDENTIAL SERVICE	GENERAL SERVICE	INDUSTRIAL CONTRACT	LIGHTING SERVICE	WATER PUMP
	(a)	(b)	(c)	(d)	(e)	(h)	(i)	(j)
1	SUMMARY AT PRESENT RATES							
2								
3	DEVELOPMENT OF RETURN							
4								
5	OPERATING REVENUE	Sched O-1 Reference						
6	Base Sales of Electricity		124,169,353	49,009,989	41,997,396	29,828,727	1,702,416	1,630,824
7	Contract Revenues		19,288,845	7,350,394	5,857,566	5,751,361	106,151	223,374
8	Other Operating Revenue		5,800,779	3,478,253	1,209,889	928,155	131,091	53,392
9	TOTAL OPERATING REVENUE		149,258,977	59,838,635	49,064,851	36,508,243	1,939,658	1,907,590
10								
11	OPERATING EXPENSES							
12	Operation and Maintenance Expense		67,628,526	32,165,655	18,601,295	15,552,318	587,592	721,667
13	Depreciation Expense		26,137,533	11,979,102	7,295,360	6,275,606	291,762	295,703
14	Amortization Expense		4,031,631	1,980,627	1,085,427	888,252	35,436	41,889
15	Taxes Other Than Income Taxes		4,199,038	1,923,263	1,172,479	1,007,551	47,845	47,902
16	State Income Tax		0	0	0	0	0	0
17	Federal Income Tax		10,753,377	1,415,317	5,723,640	3,113,140	285,057	216,223
18	TOTAL OPERATING EXPENSES		112,750,105	49,463,963	33,878,201	26,836,866	1,247,691	1,323,385
19								
20	OPERATING INCOME (RETURN)		36,508,872	10,374,672	15,186,649	9,671,377	691,968	584,205
21								
22								
23	DEVELOPMENT OF RATE BASE							
24	Electric Plant in Service		901,099,320	412,869,069	251,496,019	216,167,196	10,294,636	10,272,399
25	Less: Accumulated Depreciation		251,710,991	117,394,415	69,368,736	58,651,647	3,415,356	2,880,837
26	Less: Amortization		2,835,303	1,080,448	861,014	845,403	15,603	32,834
27	Plus: Working Capital		13.863.167	5.602.535	3.841.110	4.071.969	155.094	192,459
28	Less: Other Rate Base Deductions		117.714.228	54,469,729	32,969,748	27.521.751	1,426,478	1.326.522
29			, ,		, ,	, ,	, ,	, ,
30	TOTAL RATE BASE		542.701.964	245.527.012	152.137.631	133.220.364	5.592.293	6.224.664
31				,	,,	,,	-,,	-,,
32								
33	RATE OF RETURN (PRESENT)		6.73%	4.23%	9,98%	7.26%	12.37%	9,39%
34			2	0/0	2.5070			210070
35	INDEX RATE OF RETURN (PRESENT)		1 00	0.63	1 48	1.08	1 84	1 40
36				0.00				1.10

- 37 38 39 40
- 41 42 43

BLACK HILLS INDUSTRIAL INTERVENORS CORRECTED PRO FORMA CLASS COST OF SERVICE STUDY FOR THE TEST YEAR ENDED SEPTEMBER 30, 2013

			TOTAL			GS LARGE/		
LINE		ALLOCATION	SOUTH	RESIDENTIAL	GENERAL	INDUSTRIAL	LIGHTING	WATER PUMP
NO.	DESCRIPTION	BASIS	DAKOTA	SERVICE	SERVICE	CONTRACT	SERVICE	IRRIGATION
	(a)	(b)	(c)	(d)	(e)	(h)	(i)	(j)
44								
45								
46								
47	EQUALIZED RETURN AT PROPOSED ROR							
48								
49	DEVELOPMENT OF RETURN (EQUALIZED RATE LEV	ELS)						
50								
51	RATE BASE		542,701,964	245,527,012	152,137,631	133,220,364	5,592,293	6,224,664
52				a a	a	a (aa)		
53	RATE OF RETURN		8.48%	8.48%	8.48%	8.48%	8.48%	8.48%
54								
55	RETURN (RATE BASE * ROR)		46,021,127	20,820,691	12,901,271	11,297,087	474,226	527,852
56	1 500							
57								
58	OPERATING EXPENSES	Sched O-1 Reference	07 000 500	00 405 055	40.004.005	45 550 040	507 500	704 007
59			67,628,526	32,165,655	18,601,295	15,552,318	587,592	/21,66/
60	Depreciation Expense		26,137,533	11,979,102	7,295,360	6,275,606	291,762	295,703
61	Amortization Expense		4,031,631	1,980,627	1,085,427	888,252	35,436	41,889
62			4,199,038	1,923,263	1,172,479	1,007,551	47,845	47,902
63	State Income Tax		15 075 004	7.040.006	4 402 052	0 2 000 522	167.011	105.070
04		CALCULATED	10,870,301	7,040,096	4,493,052	3,988,522	107,011	100,079
60	TOTAL OPERATING EXPENSES		117,872,089	55,088,742	32,047,013	27,712,248	1,130,445	1,293,041
67			162 002 215	75 000 422	15 510 001	20 000 225	1 604 672	1 000 000
67	EQUALS TOTAL COST OF SERVICE		103,893,215	75,909,432	40,048,884	39,009,335	1,604,672	1,820,892
60	1 500.							
70			25 090 624	10 929 647	7 067 454	6 670 516	227 242	276 765
70	OTHER OPERATING REVENCES		25,009,024	10,020,047	7,007,454	0,079,510	237,242	270,705
72	FOUNI S.							
72	PROPOSED BASE RATE SALES @ FOLIALIZED BO	R	138 803 591	65 080 786	38 481 430	32 329 819	1 367 430	1 544 127
74		R	100,000,001	00,000,700	00,401,400	02,020,010	1,007,400	1,044,127
75								
76	TOTAL COST OF SERVICE INCREASE/DECREASE		14 634 238	16 070 797	(3 515 966)	2 501 091	(334 987)	(86 697)
77			,00 .,200	10,010,101	(0,010,000)	2,001,001	(001,001)	(00,001)
78	BASE SALES OF ELECTRICITY		124,169,353	49.009.989	41,997,396	29.828.727	1.702.416	1.630.824
79	SALES OF ELECTRICITY FOR BASE ENERGY COS	TS ENERGY2	33 682 213	11 594 018	9 158 128	12 053 051	323 929	553 088
80	TOTAL CURRENT RETAIL REVENUES		157.851.566	60.604.006	51,155,524	41.881.778	2.026.346	2,183,912
81			,	,,	.,	,	_,,-	_,,.
82	REVENUE INCREASE TO RETAIL REVENUES (%)		9.27%	26.52%	-6.87%	5.97%	-16.53%	-3.97%
83	· · · · · · · · · · · · · · · · · · ·			/0				2.0170
84								
85								
86								

BLACK HILLS INDUSTRIAL INTERVENORS CORRECTED PRO FORMA CLASS COST OF SERVICE STUDY FOR THE TEST YEAR ENDED SEPTEMBER 30, 2013

			TOTAL			GS LARGE/		
LINE		ALLOCATION	SOUTH	RESIDENTIAL	GENERAL	INDUSTRIAL	LIGHTING	WATER PUMP
NO.	DESCRIPTION	BASIS	DAKOTA	SERVICE	SERVICE	CONTRACT	SERVICE	IRRIGATION
	(a)	(b)	(c)	(d)	(e)	(h)	(i)	(j)
92								
93	RETURN AT PROPOSED RATES							
94								
95	DEVELOPMENT OF RETURN AT PROPOSED RATE L	EVELS						
96								
97	OPERATING REVENUE							
98	Sales of Electricity		138,803,636	55,546,653	45,733,753	33,896,966	1,851,073	1,775,191
99	Contract Revenues		19,288,845	7,350,394	5,857,566	5,751,361	106,151	223,374
100	Other Operating Revenue		5,800,779	3,478,253	1,209,889	928,155	131,091	53,392
101	TOTAL OPERATING REVENUE		163,893,260	66,375,300	52,801,207	40,576,482	2,088,315	2,051,956
102								
103	OPERATING EXPENSES							
104	Operation and Maintenance Expense		67,628,526	32,165,655	18,601,295	15,552,318	587,592	721,667
105	Depreciation Expense		26,137,533	11,979,102	7,295,360	6,275,606	291,762	295,703
106	Amortization Expense		4,031,631	1,980,627	1,085,427	888,252	35,436	41,889
107	Taxes Other Than Income Taxes		4,199,038	1,923,263	1,172,479	1,007,551	47,845	47,902
108	State Income Tax	CALCULATED	0	0	0	0	0	0
109	Federal Income Tax	CALCULATED	15,875,376	3,703,150	7,031,365	4,537,023	337,087	266,752
110	TOTAL OPERATING EXPENSES		117,872,104	51,751,795	35,185,926	28,260,749	1,299,720	1,373,913
111								
112	OPERATING INCOME (RETURN) AT PROPOSED RAT	ES	46,021,156	14,623,504	17,615,281	12,315,733	788,595	678,043
113								
114								
115	RATE BASE		542,701,964	245,527,012	152,137,631	133,220,364	5,592,293	6,224,664
116								
117								
118	RATE OF RETURN		8.48%	5.96%	11.58%	9.24%	14.10%	10.89%
119								
120	INDEX RATE OF RETURN		1.00	0.70	1.37	1.09	1.66	1.28
121								
122			44.004.000	0 500 004	0 700 057	4 000 000	440.057	444.007
123	PROPOSED TOTAL REVENUE INCREASE (\$)		14,634,283	6,536,664	3,736,357	4,068,239	148,657	144,367
124			404 400 050	10 000 000	44 007 000	00 000 707	4 700 440	4 000 004
125	BASE SALES OF ELECTRICITY		124,169,353	49,009,989	41,997,396	29,828,727	1,702,416	1,630,824
126	SALES OF ELECTRICITY FOR BASE ENERGY COS	IS ENERGY2	33,682,213	11,594,018	9,158,128	12,053,051	323,929	553,088
127	IUIAL CURRENT RETAIL REVENUES		157,851,566	60,604,006	51,155,524	41,881,778	2,026,346	2,183,912
128			0.070/	40 700/	7 000/	0.740/	7.0.40/	0.040/
129	PROPOSED TOTAL REVENUE INCREASE (%)		9.27%	10.79%	7.30%	9.71%	7.34%	0.61%

BEFORE THE PUBLIC UTILITIES COMMISSION OF THE STATE OF SOUTH DAKOTA

In the Matter of the Application of Black Hills Power, Inc. for Authority to Increase its Electric Rates Docket No. EL14-026

AFFIDAVIT OF SERVICE

STATE OF MINNESOTA)) ss. COUNTY OF HENNEPIN)

I, Kathy Prestidge, hereby certify that I have this day served a true and correct copy of the following documents to all persons at the addresses indicated below or on the attached list by electronic filing, electronic mail, courier, interoffice mail or by depositing the same in an envelope with postage paid in the United States Mail at Minneapolis, Minnesota.

- 1. Direct Testimony and Exhibits of Lane Kollen on behalf of Black Hills Industrial Intervenors (public version)
- 2. Direct Testimony and Exhibits of Stephen J. Baron on behalf of Black Hills Industrial Intervenors (public version)

Counsel for parties to this docket who have executed a Non-Disclosure Agreement will receive an e-mail copy of the confidential versions of the aforementioned testimony.

Further Your Affiant Sayeth Not.

Subscribed and sworn to before me this 30th Day of December, 2014.

Backen

Notary Public

SHARLA R. BACKER NOTARY PUBLIC - MINNESOTA My Commission Expires Jan. 31, 2017

Service List EL14-026

Ms. Patricia Van Gerpen Executive Director South Dakota Public Utilities Commission 500 E. Capitol Ave. Pierre, SD 57501 <u>patty.vangerpen@state.sd.us</u> (605) 773-3201 - voice (866) 757-6031 - fax

Ms. Karen E. Cremer Staff Attorney South Dakota Public Utilities Commission 500 E. Capitol Ave. Pierre, SD 57501 <u>karen.cremer@state.sd.us</u> (605) 773-3201 - voice (866) 757-6031 - fax

Ms. Brittany Mehlhaff Staff Analyst South Dakota Public Utilities Commission 500 E. Capitol Ave. Pierre, SD 57501 <u>brittany.mehlhaff@state.sd.us</u> (605) 773-3201 - voice (866) 757-6031 - fax

Mr. Patrick Steffensen Staff Analyst South Dakota Public Utilities Commission 500 E. Capitol Ave. Pierre, SD 57501 <u>patrick.steffensen@state.sd.us</u> (605) 773-3201 - voice (866) 757-6031 - fax Mr. Eric Paulson Staff Analyst South Dakota Public Utilities Commission 500 E. Capitol Ave. Pierre, SD 57501 <u>eric.paulson@state.sd.us</u> (605) 773-3201- voice (866) 757-6031 - fax

Mr. Jon Thurber Manager of Regulatory Affairs Black Hills Power, Inc. PO Box 1400 625 Ninth St. Rapid City, SD 57709-1400 Jon.Thurber@blackhillscorp.com (605) 721-1603 - voice

Mr. Todd L. Brink Senior Counsel Black Hills Power, Inc. PO Box 1400 625 Ninth St. Rapid City, SD 57709-1400 <u>Todd.brink@blackhillscorp.com</u> (605) 721-2516 - voice

Mr. Lee A. Magnuson Lindquist & Vennum, LLP Ste. 302 101 S. Reid St. Sioux Falls, SD 57103 <u>Imagnuson@lindquist.com</u> (605) 978-5201 - voice

Ms. Amy Koenig Corporate Counsel Black Hills Corporation PO Box 1400 625 Ninth St. Rapid City, SD 57709-1400 amy.koenig@blackhillscorp.com (605) 721-1166 - voice Mr. Andrew P. Moratzka, Esq. - Representing: GCC Dacotah, Inc.; Pete Lien & Sons, Inc.; Rushmore Forest Products, Inc.; Spearfish Forest Products, Inc.; Rapid City Regional Hospital, Inc.; and Wharf Resources (U.S.A.), Inc. Stoel Rives LLP 33 South Sixth Street, Ste. 4200 Minneapolis, MN 55402 <u>apmoratzka@stoel.com</u> (612) 373-8822 - voice (612) 373-8881 - fax

Mr. Mark Moreno, Esq. - Representing: GCC Dacotah, Inc.; Pete Lien & Sons, Inc.; Rushmore Forest Products, Inc.; Spearfish Forest Products, Inc.; Rapid City Regional Hospital, Inc.; and Wharf Resources (U.S.A.), Inc. Schmidt, Schroyer, Moreno, Lee & Bachand, P.C. 124 South Euclid, Ste. 201 P.O. Box 1174 Pierre, SD 57501-1174 <u>mmoreno@pirlaw.com</u> (605) 224-0461 - voice (605) 224-1607- fax

Chad T. Marriott - Representing: GCC Dacotah, Inc.; Pete Lien & Sons, Inc.; Rushmore Forest Products, Inc.; Spearfish Forest Products, Inc.; Rapid City Regional Hospital, Inc.; and Wharf Resources (U.S.A.), Inc. Stoel Rives LLP Ste. 2600 900 SW Fifth Ave. Portland, OR 97204 <u>ctmarriott@stoel.com</u> (503) 294-9339 - voice (503) 220-2480 - fax

Ms. Sabrina King - Representing: Dakota Rural Action 518 Sixth Street, #6 Rapid City, SD 57701 sabrina@dakotarural.org

Ms. Caitlin F. Collier - Representing: Dakota Rural Action Attorney PO Box 435 Vermillion, S.D. 57069 <u>collierlawoffice@gmail.com</u> (605) 202-0281 - voice