Nuclear Energy Part of a Clean Energy Portfolio

South Dakota Public Utilities Commission

B B C L E A R E B E B G T I B S T I T B T Adrian Heymer, NEI Senior Director, Strategic Programs aph@nei.org; 202-739-8094

Nuclear Energy Institute

Sustained Reliability and Productivity

U.S. Nuclear Capacity Factor, Percent

Updated: 1/09

Significant Events at U.S. Nuclear Plants:

Annual Industry Average, Fiscal Year 1988-2007

NEI

Source: NRC Information Digest, 1988 is the earliest year data is available. Updated: 4/09

Comparison of Life-Cycle Emissions Tons of Carbon Dioxide Equivalent per Gigawatt-Hour

NEI

Source: "Life-Cycle Assessment of Electricity Generation Systems and Applications for Climate Change Policy Analysis," Paul J. Meier, University of Wisconsin-Madison, August 2002.

Security Industry Post 9-11 Actions

\$1.8+ Billion in plant security upgrades Increased security workforce by 60% Additional equipment & modifications Force-on-force exercises Includes extensive insider role Industry & NRC aircraft impact assessments Public health & safety assured Communication protocols established with Federal, State and Local authorities including NORAD

U.S. Electricity Production Costs 1995-2007, In 2007 cents per kilowatt-hour

New Nuclear Power Plants Will Be Competitive

- FP&L: Nuclear superior in 8 of 9 scenarios
- SCE&G: A pure natural gas strategy would cost consumers \$15 million/yr more with \$15/ton carbon tax
- Brattle Group analysis:

Technology	Nuclear	SCPC w/CCS	IGCC w/CCS	Gas CC w/CCS
Capital Cost (\$/kWe)	4,038	4,037	3,387	1,558
Levelized Cost (\$/MWh)	83.40	141.90	124.50	103.10

Source: "Integrated Resource Plan for Connecticut," The Brattle Group, January 2008

Challenges to New Deployment

- Financing
- Workforce
 - Formed community college/university partnerships
- Supply chain
 - Manufacturers outreach forums
 - Supply & demand generating opportunities

Potential New US Nuclear Plants

Construction & Licensing Then and Now

THEN	NOW		
Design as you build	Plant designed before major construction begins		
No design standardization	Standard NRC-certified designs – 70+% Standard		
Inefficient construction	Lessons learned from overseas projects;		
management practices	Increased planning; Modular construction		
Changing regulatory standards and requirements	More stable process: NRC approves site, design, construction & operation before construction begins and significant capital is placed "at risk"		
Main opportunity for public intervention when plant is essentially complete	More opportunities to intervene at well-defined points in process. Intervention at the end of the process must be based on objective evidence that acceptance criteria, defined in the license, have not been, and will not be met		

Future Designs

- Small Light-Water Reactors (40MW 125MW), Gas-Cooled High Temperature & Fast Reactors
- Generation potential deployment 2018/19
- Process heat High Temperature Reactors
 - Industrial applications 2020s
 - Replace natural gas as heat source
 - Petro-chemical industry
 - Hydrogen manufacture
 - Coal/gas to liquid fuels
 - Water purification, desalination, fertilizers ...

Reduce industrial non-generating carbon footprint

NEI

Used Fuel Management What's Used – What's Left

Strategic Direction Four-Part Integrated Program

- Form a Executive Commission to assess options while continuing the Yucca Mtn license review
 - Adjust fee structure to fund only licensing while options being considered
- Establish R&D centers to develop advanced, more economic, proliferation resistant recycling process
- Move used fuel to interim storage locations & recycle the used fuel--reduce toxicity, heat load & volume

Isolate waste product in a geologic facility

Used Fuel Management

Benefits of Nuclear Generation

- Does not emit greenhouse gas while generating
- Stable, low-cost electricity
- Jobs Each new reactor
 - 400 700 direct jobs plus an equivalent number of indirect jobs for three generations
- Tax revenue & economy -- each reactor
 - \$20 million/yr in state & local taxes
 - Value to the economy -- \$430+ million/yr

2050 Climate Change Goal 80% Reduction in CO₂ Emissions

- Massive & complex transformation in generation & distribution
 - Electricity & energy costs will rise
- No silver bullet
- Need all clean generating sources if impact on economy is to be minimized

Additional Information

IBSTITUTE

U.S. Electric Power Industry CO₂ Avoided Million Metric Tons, 2007

Source: Emissions avoided are calculated using regional and national fossil fuel emissions rates from the Environmental Protection Agency and plant generation data from the Energy Information Administration.

Updated: 4/07

High Industrial Safety Standards

3.30

ISAR = Number of accidents resulting in lost work, restricted work, or fatalities per 200,000 worker hours. Electric utilities and manufacturing do not include fatality data.

*Includes non-utility personnel for provisional 2008 results

Sources: Nuclear (World Association of Nuclear Operators), 2006 Data for Electric Utilities and Manufacturing (U.S. Bureau of Labor Statistics).

New Generating Capacity Needed Assumes 0.7% Annual Growth in Peak Load

<u>Average Electricity Growth Rate 2000 to date: 1.5%/yr</u> <u>Average Electricity Growth Rate in 1990s: 1.8%</u>

Investment Challenge 2010-2030," November 2008

NEI

Comparative Costs of New Generation Options: 2015-2020

Levelized Cost of Electricity, \$/MWh

Emissions Prevented by U.S. Nuclear Power Plants

Prevented by Nuclear Plants in 2007	SO ₂ (million short tons) 3.04	NOx (million short tons) 0.98	CO ₂ (million metric tons) 692.7
Reduced at Fossil Plants as a result of 1990 Clean Air Act Amendments	5.15	4.29	CO_2 emissions are not regulated by Clean Air Act

Source: Environmental Protection Agency, Energy Information Administration, Nuclear Energy Institute Updated: 5/08

Lifecycle Emissions for Electricity Generation in Germany Grams per MWh

Generation type	SO2	NOx	Particulates	CO2
Nuclear	32	70	7	19,700
Coal	326	560	182	815,000
Gas	3	277	18	362,000
Oil	1,611	985	67	935,000
Wind	15	20	4.6	6,460
PV (Home Application)	104	99	6.1	53,300

Source: "*ExternE - Externalities of Energy. National Implementation in Germany*", W. Krewitt, P. Mayerhofer, R. Friedrich, A. Trukenmüller, T. Heck, A. Greßmann, F. Raptis, F. Kaspar, J. Sachau, K. Rennings, J. Diekmann, B. Praetorius; IER, Stuttgart; 1998.

Emissions Produced by 1 Kilowatt-hour of Electricity Based on Life-Cycle Analysis

Generation Option	Greenhouse gas emissions gram equiv. (in CO2/kWh)	Sulfur dioxide emissions (in milligrams/kWh)	Nitrogen oxide emissions (in milligrams/kWh)	NMVOC (in milligrams /kWh**)	Particulate matter (in milligrams /kWh)
Hydropower	2 – 48	5 – 60	3 – 42	0	5
Nuclear	2 – 59	3 – 50	2 – 100	0	2
Wind	7 – 124	21 – 87	14 — 50	0	5 – 35
Solar photovoltaic	13 – 731	24 – 490	16 – 340	70	12 – 190
Biomass forestry waste combustion	15 – 101	12 – 140	701 – 1,950	0	217 – 320
Natural gas (combined cycle)	389 – 511	4 – 15,000[*]	13 – 1,500	72 – 164	1 – 10
Coal – modern	790 – 1,182	700 – 32,321	700 – 5,273	18 – 29	30 – 663

[*] The sulfur content of natural gas when it comes out of the ground can have a wide range of values. When the hydrogen sulfide content is more that 1 percent, the gas is usually known as "sour gas." Normally, almost all of the sulfur is removed from the gas and sequestered as solid sulfur before the gas is used to generate electricity. Only in the exceptional case when the hydrogen sulfide is burned would the high values of sulfur dioxide emissions occur.

** NMVOC means non-methane volatile organic compounds.

Source: "Hydropower-Internalized Costs and Externalized Benefits," Frans H. Koch, International Energy Agency (IEA)-Implementing Agreement for Hydropower Technologies and Programs, Ottawa, Canada, 2000.

Fuel as a Percentage of Electric Power Production Costs 2007

Source: Ventyx Velocity Suite; Energy Resources International, Inc. Updated: 5/08

CO₂ Emissions Resulting from U.S. Nuclear Plant License Expirations

