Pipeline Current Mapper PCM+

The PCM can....

- Find contacts with other structures
- Evaluate Pipe Coating for defects
- Perform periodic Pipeline surveys
- Find defective Insulation joints

What is different about PCM

- High output power Transmitter
- Low Frequency signal
- Current Direction of applied signal
- Data logging of current measurements
- A Frame pinpointing of coating holidays[®]

The Transmitter utilises..

- High output power (150W)
- Very low frequency
- This helps to....

 ❀increase range
 ❀reduce coupling to other
 services

PCM

The Transmitter

• Can be powered from...

%110/240Vac

PCM Receiver provides..

- Pipe location and depth
- Current measurement of survey current
- Stores up to 999 readings for download to a PC or PDA

PCM

Transmitter connection

 Typical rectifier Rectified installation. Supply Provides a perfect pipe connection neu letin p Joint. point ннннннн Anode provides perfect ground connection point

Transmitter Connection

- Disconnect the rectifier output from both pipe and Anode
- Connect the PCM transmitter in place of the rectifier

• Three output settings

%4Hz, 8Hz and 98Hz

%4Hz, 8Hz and 512Hz

Setting the Transmitter

- Set Current switch to desired current
- The PCM transmitter is a constant current source, this ensures stable survey readings.

Taking current reading

- Ensure both PCM receiver is set to the same frequency as the Transmitter
- Pinpoint the pipe in the peak Mode

PCM

Taking Current Readings

- Hold the Receiver Steady on the ground, press and hold the PCM Key.
- Current is displayed after approximately 3 seconds

PCM current v Line Drops

LINEAR COMPARISONS

Data obtained during comparative tests on site

Current Direction

• This tells you in which direction the Current is flowing

Aids fault analysis

Datalogging

- 999 readings can be stored
- Stored readings can be reviewed on PCM+ or downloaded to PC
- Downloaded files are in text format and can be displayed using Excel or 123 speadsheets

Pinpointing Coating Defects

 For accurate coating defect location use the A Frame

PCM

Finding Coating Defects

Case Histories

Defects found by PCM Cut away ready for repair

Close up view of cutaway showing area of metal loss

Cables in contact with pipe

Sheet pile in contact with pipe

Current Attenuation Graph

AC Voltage Gradient Can be part of Current tools

- Becoming very popular
- Extreme sensitivity
- **Rejection of interference**
- Very accurate location of faults
 - typically better then 6"
- Sometimes part of Current Attenuation equipment
- This method deserves to be considered as a solid tool for integrity and the ECDA process.

ACVG in Operation

- Both signal strength and direction arrows lead user to holiday.
- Fault value is proportional to holiday size and soil resistivity.

Pool of Potential

Is AC, but at any instant in time, there is a direction.

ACVG Receiver Theory

ACVG Tuning

- Older systems used a simple DMM
 - Does not tune to any one frequency
 - 60 Hz, cable earth faults, telecom noise Rx'd
- Very tight tuning in the signal generator and receiver effectively increases sensitivity as it ignores current from other sources
 - SNR improves

